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Abstract
This paper presents a novel hierarchical surface
abstraction technique based on Mean Shift
for 3D shape matching. The automatically
generated statistical modes and their associated
geometric properties from Mean Shift-based
surface analysis are further integrated into an
Attributed Relational Graph (ARG). Therefore,
the ARG can be used as an abstract represen-
tation of the 3D surface object for 3D shape
matching, which has direct applications on
motion synthesis, capturing and transfer. In
particular, we propose an adaptive mean shift
technique and a hierarchical framework based
on normalized cuts. Our experiments show
that the surface abstraction technique is robust,
insensitive to resolution changes and stable to
noise. We have tested the technique in 3D shape
matching. The experimental results demon-
strate the effectiveness of the presented method.
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1 Introduction

The rapid development of 3D object digitaliza-
tion equipments and ever increasing demand of
shape animation applications have driven the
pertinent shape analysis and matching to be-
come a very active research field in computer
graphics. Shape matching becomes increas-
ingly popular in many animation applications
in the past few years. For example, it was
used in motion synthesis [1] and motion cap-
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ture [2]. Tangelder et al. classified all ex-
isting 3D shape retrieval methods into several
categories [3]. It was shown that even though
global feature-based methods are more efficient,
only algorithms based on local features can sup-
port accurate detailed matching. The prior work
again raises the question of how to effectively
integrate local and global features in a single
framework. The solution to this question will
certainly lead to a better understanding of a
given shape. To facilitate most shape compari-
son tasks, global appearance, local variance and
topological features of shapes should be consid-
ered together in a systematic way. Taking effi-
ciency into consideration, redundancies should
be hidden from execution. Therefore, an auto-
matic abstraction algorithm is a very appealing
solution for shape description, which can retain
both global and local shape characteristics.

In most cases, a complex shape is composed
of relatively simple components. Recent hu-
man perception study proved that visual content
is recognized by components or parts [4, 5].
We observed that, on one hand, the global fea-
ture of a shape can be treated as the compo-
sition of the features from its components, on
the other hand, partial matching is usually doc-
umented as the task of identifying non-trivial,
similar components of more complex shapes.
These components either have similar seman-
tical meaning from a global point of view or
simply share similar local properties. Overall,
it requires a systematic approach to represent
global composition and local feature informa-
tion of the components properly. In this pa-
per, we present a hierarchical surface abstraction
framework based on adaptive Mean Shift for au-



tomatic construction of such a shape representa-
tion. Through hierarchical abstraction, we can
describe the shape in different levels-of-details.
At each level, we only focus on a specific scale
of components. This hierarchical abstraction ap-
proach is an ideal way to organize shape charac-
teristics towards a representation for all-purpose
retrieval tasks. Particularly in this paper, we fo-
cus on the surface objects. The surface abstrac-
tion is achieved through an adaptive mean shift-
based decomposition and a graph-based organi-
zation, which together form a powerful descrip-
tion of the shape.

The main contributions of this paper are sum-
marized as follow:

1. We propose a novel adaptive manifold
mean shift approach to automatically de-
compose the surface into meaningful sub-
regions, which are called Feature Enriched
Components (FECs), based on its global
and local statistics in the feature space.
Since geometry and topology information
can both be encoded into the feature space,
FEC decomposition is a more general way
to characterize the shape. It can handle sur-
faces of complex geometry and arbitrary
topology.

2. We present a hierarchical surface abstrac-
tion framework. The surface subregions
are hierarchically organized into an at-
tributed relational graph (ARG) which re-
flects both global structures and local
levels-of-details of the shape in terms
of topology and geometry. The com-
pact shape description facilitates efficient
matching and comparison.

3. The shape representation enables many dif-
ferent shape matching and retrieval tasks.
Both the partial matching and deformable
model retrieval can be achieved using FECs
and ARG. Objects with high-genus shapes
can be handled without extra efforts.

The rest of the paper is organized as follows.
Section 2 reviews the major work that is related
to our approaches. In Section 3, we present
the adaptive mean shift method and demonstrate
how to use it to decompose a surface shape rep-
resented by triangular mesh into FECs. In Sec-

tion 4, we explain how to use an attributed re-
lational graph based representation to achieve
global and local abstraction of a shape. In Sec-
tion 5, we show the results of different shape
retrieval applications based on our techniques.
Finally, in Section 6, we discuss the advantages
and disadvantages of our framework, and poten-
tial future work.

2 Related work

Our work is motivated by the state of art in the
shape matching field. This section reviews some
most related work.

The basic operation of partial matching is to
match similar geometries between a query in-
put object and samples in the database. There-
fore, the subregions of the sample must be
properly defined. To avoid exhaustive search,
some research work focused partial matching
on “salient” region detection and comparison.
One of the typical work was done by Gal and
Cohen-Or [6]. They tried to find subregions
that are “salient” based on local curvature vari-
ances. However, without considerable modifi-
cation, it may not give the same discriminative
power when features other than curvatures are
considered. As an alternative, Shilane et al. [7]
focused on finding distinctive regions on 3D sur-
faces. Unlike the salient region method, which
measures how much a region sticks out from the
rest of the object rather than how important the
region is for defining the object type, the distinc-
tive regions are obtained by searching for unique
regions among the whole query set. The main
problem of this method is its efficiency, the dis-
tinctive regions need to be recomputed when the
query set is changed. Some other work proposed
to extract salient points rather than subregions
[8, 9]. Although these points can also take prop-
erties such as scales [10], they seem to be too
local and not semantic enough for matching pur-
poses. And they are error prone without careful
local feature calculation.

Deformable shape retrieval methods are usu-
ally skeleton based or graph-based [11, 12,
13]. Although these approaches achieved cer-
tain success when models with similar skeletons
are considered as in the same class, the skele-
ton is good at representing shape topology but



not at describing surface geometry, thus, they
are not accurate for detail matching. Further-
more, the nodes defined on the skeletons are
too local to have enough representative power,
thus intraclass dissimilarity can not be measured
precisely. The idea of combining both topo-
logical and geometric surface representations of
a shape had motivated Gary et al. to build a
“surface skeleton” based on Level Set Diagram
(LSD) [14]. In their implementation, the nodes
are defined as surface subregions, which form
an atlas of the surface. Geometry features are
extracted from these subregions, so that they are
more suitable for intraclass comparison. How-
ever, the algorithm can only handle genus-zero
manifold, and may perform poorly when noise
is present.

To overcome the difficulties of previous meth-
ods, we developed a method to extract FECs of
a shape, which can support both partial and de-
formable model retrieval.

3 Surface decomposition based
on adaptive mean shift

We believe that the existing component-based
shape representations are not suitable for uni-
versal tasks, since the component definitions are
either not simple enough to be stable, or not hav-
ing enough discriminative power.

As a summery, the components should have
at least two properties to form a good shape
representation for common applications such as
matching:

1. The component should not be too small
or too local. Otherwise, it is statistically
unstable, and not semantically meaningful.
The component should not contain a large
and complex region either.

2. The samples inside a component should
share the same geometrical or physical fea-
tures, thus, the components can be easily
found by clustering. This also implies cer-
tain simplicities of the components.

These two properties ensure strong discrimina-
tive power, good robustness, and high efficiency.

Although in our implementation, the decom-
position is base on general geometric features,

such as curvature and normal, other features can
be easily embedded to make the patches feature
enriched. Thus, we name components satisfy-
ing the above two properties as feature enriched
components(FECs). A modified mean shift al-
gorithm is used to extract FECs from a shape.

3.1 Manifold mean shift and mode
seeking on manifold

Mean shift is a robust approach for feature space
analysis [15, 16]. It is widely applied in com-
puter vision applications such as filtering ,seg-
mentation and tracking. It is a statistical ap-
proach which is independent of resolution and
noise competing. Shamir et al. in [17] extended
the mean shift method for feature space analysis
of triangular meshes.

The basic idea of mean shift is to find the sta-
tistical modes of the sample data, which are usu-
ally determined in a high dimensional feature
space. The probability density function (PDF)
of the data is estimated using a multivariate ker-
nel density estimator:

f(x) =
1
n

n∑
i=1

K(x − xi), (1)

where K is the d-variate kernel which usually
takes the form of K(x) = ck,dk(‖x‖2), where
ck,d is a normalization constant.

To find the mode of each sample, in each step,
the current sample point moves toward the mean
value of a certain neighborhood along the gradi-
ent direction. The offset is calculated as:

δ(x) =
∑n

i=1 xig(‖x−xi
h ‖2)∑n

i=1 g(‖x−xi
h ‖2)

− x, (2)

where g(x) = −k′(x) and h is the band-
width. In [15], Comaniciu and Meer further
modified the d-variate kernel to be Khs,hr(x) =

C
h2

shp
r
k(‖xs

hs
‖2)k(‖xr

hr
‖2), so that the spatial part

xs (stands for locations) can be separated from
the range part xr (stands for properties) for re-
spective controls.

Due to the sound robustness of mean shift,
Shamir et.al had extended this framework onto
triangular meshes [17]. However, directly move
the metric for meanshift calculation onto a
closed manifold will cause bad localization of
the modes, and generate sibling modes 1.



Figure 1: Sibling modes detected by manifold
mean shift: the cylinder is colored by
mean curvature, multiple modes are
found on its mother lines, these modes
represent the same cluster.

Furthermore, kernel size should be determined
wisely since neighborhood query becomes ex-
pensive on a nonparametric surface.

To solve the above problems, we present a
two-stage approach based on our novel adaptive
mean shift, and the normalized cut.

3.2 Adaptive manifold mean shift for
shape decomposition

The adaptive manifold mean shift is designed to
find the best kernel size for each sample(vertex)
as follows:

1. Run manifold mean shift with a small win-
dow size wMIN , which determines the
smallest possible clusters in the final atlas.
Set the repeatability r of each mode to be
1.

2. Increase the window size by δw and center
windows at the modes found in step 1. Cal-
culate the stability (will be discussed later)
of the mode under the current kernel set-
ting. If the corresponding mode is still a
“basin of attraction”, ie. an extremum, in-
crease its repeatability r by 1.

3. Repeat step 2 until the mode is not stable
any more, or the window size reaches the
predefined maximum wMAX , which deter-
mines the largest possible clusters. For
each mode, store the maximum window
size wmax under which the mode is still sta-
ble.

In order to decide the stability of a mode given
a certain truncated kernel function, two terms

are calculated:

1. The mean shift offset δ(m) from equation 2
by centering the window at the mode.

2. The estimated probability density f(m)
calculated by equation 1.

If the mode is still stable, δ(m) should not be
too large and f(m) shouldn’t be too small. The
decision is made by thresholding both of them.

After the above stability test, each ver-
tex will be covered by windows with sizes,
dw1

max, dw2
max, · · · , and dwp

max, determined by
adjacent modes m1,m2, · · · ,mp. The largest
window size is selected at the vertex for its mean
shift calculation. In this first stage, the initial
FECs are obtained by grouping vertices con-
verging to the same mode.

3.3 Second stage clustering and
hierarchical FEC decomposition

To deal with the bad localization of modes, a
second stage clustering is carried out. After the
adaptive manifold mean shift, we further clus-
ter the modes according to their Euclidian dis-
tances between each other. This problem could
be easily transformed to a graph partition prob-
lem, which has a robust solution by normal-
ized cut [18]. Given an initial FEC decomposi-
tion with M clusters represented by M ′ modes,
a weight matrix W for normalized cut is con-
structed as follows:

W = {wi,j |i = 0, 1, · · · ,M − 1; j = 0, 1,
· · · ,M − 1}
wi,j = exp(−dis(Ci, Cj)),

(3)
where dis(mi,mj) is the average euclidian dis-
tance between modes in cluster Ci and Cj .
Some FECs are merged after the second stage
clustering to eliminate bad mode localization.

Another important aspect of using normalized
cut is that, by implementing the recursive n-way
cut [18], it is easy to achieve a hierarchical FEC
decomposition. By simply adjusting the Ncut
value, the number of levels and the number of
FECs in each level will be automatically deter-
mined, which is ideal for our automatic hierar-
chical surface abstraction.



3.4 Shape descriptors for matching

Once the decomposition is completed, the FECs
can be compared for matching purposes. One
way to do it is based geometry hashing [6]. In
order to facilitate fast matching, we define a fea-
ture vector for each FEC as follows:

V c ={ndev, gcdev, gcmean,mcdev,

mcmean, gddev, gdmean},
(4)

where nvar is the deviation of the surface nor-
mal, gcdev and mcdev are the deviations of
gaussian curvature and mean curvature respec-
tively, gcmean and mcmean are the mean of
gaussian curvature and mean curvature respec-
tively, gdmean is the mean geodesic distance of
all vertices from the center of the patch normal-
ized by patch size, and gddev is the correspond-
ing deviation of the geodesic distances. Note
that V c is affine and scale invariant.

4 Surface abstraction based on
attributed relational graph

The last step of the shape abstraction procedure
is to organize the FECs to form a complete and
hierarchical description of the shape. An at-
tributed relational graph is a good choice [19,
20]. Attributed Graph (AG) or Attributed Rela-
tional Graph (ARG) is a kind of part-based rep-
resentation. An ARG is a graph G = (V,E, A),
where V is the vertex set, E is the edge set, and
A is the attribute set. A consists of unary at-
tribute ai attaching to each node vi ∈ V and
binary attribute aij attaching to each edge eij =
(vi, vj) ∈ E. ARG can convert shape matching
problems into graph matching problems.

In our framework, each node of the ARG is
an FEC, and the associated attribute is the eight-
tuple V c defined in Section 3.4. Adjacent FECs
are connected by an edge with eij being the av-
erage geodesic distance between node i and j.
The abstraction is achieved by splitting the ver-
tices of the ARG, from the coarsest level to the
finest level. This process is illustrated in Figure
2.

The abstraction is extremely useful in tasks
such as shape matching and retrieval, since this
representation systematically integrate geomet-
ric and topological information, which makes it

Figure 2: Splitting of vertices to build a hierar-
chical ARG: circles are graph nodes in
the current level, diamonds are graph
nodes in the child level. Solid and
dashed lines indicate the edges in the
current and child level.

easy to handle deformable models and models
of high genus. Matching scores from different
levels are stored for further queries, ie., surface
shapes exhibit different extents of similarity in
different levels, which is implied by the abstrac-
tion hierarchy. The similarity of two shapes can
be measured using the following standards for
two different matching purposes:

1. Partial Matching: The highest matching
score among different levels of FECs. The
level producing the maximum score is
called the best matching level.

2. Global Matching: The summation of the
scores from all levels.

The following section demonstrates some
matching results in order to show the superiority
of our method.

5 Experimental results

We have evaluated our algorithm on SHREC
dataset. Both rigid model and deformable model
are tested. Figure 3 shows the decomposition of
an airplane model at different levels.

Figure 4 demonstrates modes found on an
airplane model (rigid model) with our adap-
tive manifold mean shift algorithm. Note that
this model is quite noisy, even areas on the
wings are quite bumpy. Figure 5 shows the re-
sult of FEC-based decomposition and matching,
where two bird models are automatically de-
composed into FECs and generate the match-
ing correspondence. As for deformable model



Figure 3: FEC decomposition at 3 different levels

Figure 4: The red points are modes detected by the adaptive manifold mean shift. The model is viewed
in three different angles in order to show all the detected modes.

Figure 5: Two bird models matched based on
hierarchical FEC decomposition and
ARGs. The colors show the decom-
position.

matching, we demonstrate the FEC decomposi-
tion on two horse models with different poses.
They are matched based on their ARG represen-
tations. The FEC decomposition and matching
correspondence is illustrated in Figure 6. Figure
7 shows that our FEC based graph can handle
models with high genus as well, which is very
difficult for many algorithms, e.g., the one pre-
sented in [14].

We have tested inter- and intra- class match-
ing scores. We selected totally 50 objects from
5 categories. Each category contains 10 objects.
We did the inter- and intra-class matching us-
ing the hierarchical surface abstraction based on
adaptive mean shift and ARGs. The average
matching scores between each pair of categories
are shown in Figure 8. Based on the matching
scores, we can see the framework can perform
quite well in shape matching and retrieval.

Figure 6: Two horse models with different poses
matched with FEC decomposition and
ARGs. The FEC decomposition
and matching correspondence is illus-
trated(the matched FECs are colored
the same).

Figure 7: Two objects of genus one matched
based on FECs and ARGs.



Figure 8: Matching scores placed in a matrix. Each row/column stands for one category, each cell
of the matrix indicates the average matching score between two categories. Darker squares
stand for higher scores.

6 Conclusion and Discussion

In this paper, we have designed a novel frame-
work for surface abstraction which is well suit-
able for shape matching and retrieval. Com-
pared to [14], our decomposition is in the com-
posite feature space rather than in the physical
space. This gives the possibility to make the
components geometric and topological feature
enriched instead of only topologically meaning-
ful. In addition, our method can handle objects
with high-genus topologies, and is insensitive to
resolution and noise. Furthermore, our ARG is
built in a hierarchical way towards a full abstrac-
tion of the input surface. The surface objects can
be compared at different levels for fast computa-
tion. The framework can be adapted to different
applications.

However, due to the lack of extra knowledge,
the feature space is built solely from local geom-
etry such as curvature and normal. This limita-
tion can be exceeded by introducing more fea-
tures, such as texture and color. As the di-
mension of the feature space increases, the well
known curse of dimension need to be treated
properly then. This is a very good direction to

explore in the near future. At present, the algo-
rithms work fine in the seven dimensional fea-
ture space. In the future, we will also spend
more effort on applying the framework on mo-
tion analysis and animation synthesis.
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