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This paper introduces a new unified particle-based formulation for resamplings with 
specific patterns from original point clouds. Given the input point clouds, the proposed 
Lp-Gaussian kernel function is defined to simulate the inter-particle energy and force 
to form the isotropic/adaptive/anisotropic hexagonal and quadrilateral sampling patterns. 
Then, the particle-based optimization can be easily formulated and computed in parallel 
scheme with the high-efficiency and the fast convergence, without any control of particle 
population. Finally, based on the optimized particle distribution, the high-quality surface 
meshes are reconstructed by computing the restricted Voronoi diagram and its dual mesh 
with the parallel implementation. The experimental results are demonstrated by using 
extensive examples and evaluation criteria as well as compared with the state-of-the-art 
in the point cloud resampling and reconstruction.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of various types of 3D scanners and imaging devices, point clouds and meshes are most 
common representations of 3D shapes. They are widely used in a variety of applications, such as designing 3D models 
for manufacturing, creating 3D shapes for animations, representing 3D objects for autonomous driving, etc. How to effi-
ciently and effectively build such models is a challenging research problem. Traditionally, large-size and high-resolution raw 
point clouds or meshes are required to represent complicated 3D objects with a lot of features and details. It is difficult to 
build a real-time system to process the high-resolution 3D models in real 3D scenarios, such as registration, segmentation, 
classification, simulation, compression, transmission, etc. Hence it requires an unsufferable computational time and unaf-
fordable storage, e.g., a 3D point cloud of 30M samples has 1GB data size. Therefore, it is important to resample the original 
dense point clouds into the relative sparse point sets with high-quality and high-fidelity, and then compute the meshes to 
reconstruct the 3D surfaces.

Point cloud resampling and surface remeshing are possible solutions to address the aforementioned problem. There are 
extensive methods for uniform and adaptive resampling from point clouds Lipman et al. (2007), Huang et al. (2009), Liao 
et al. (2013), Huang et al. (2013), Preiner et al. (2014), Luo et al. (2018), Chen et al. (2018), and isotropic and anisotropic 
remeshing from surface meshes Shimada and Gossard (1995), Shimada et al. (1997), Du et al. (1999, 2003), Yan et al. (2009), 
Du and Wang (2005), Valette et al. (2008), Lévy and Liu (2010), Zhong et al. (2013).
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Among them, centroidal Voronoi tessellation (CVT) is a popular technique that has been successfully applied to 
isotropic/anisotropic resampling and remeshing. However, the CVT-based methods need to compute Voronoi diagram it-
eratively during the energy optimization Du et al. (1999, 2003), Yan et al. (2009), especially in adaptive and anisotropic 
cases Du and Wang (2005), Valette et al. (2008), Lévy and Liu (2010), Chen et al. (2018), which are complicated and time-
consuming. On the other hand, in order to improve the efficiency and simplicity, particle-based methods are developed 
to formulate the inter-particle energy or force, and then generate the different sampling distributions Witkin and Heckbert 
(1994), Bossen and Heckbert (1996), Shimada and Gossard (1995), Shimada et al. (1997), Zhong et al. (2013), Ni et al. (2018). 
The particle insertion and deletion strategies are needed in most previous methods, which may not be efficient. Besides that, 
to our knowledge, all the previous particle-based methods are not designed and implemented in parallel schemes; and also 
not developed for point cloud applications.

In this paper, we propose a new unified particle-based method for high-quality resamplings from the input point clouds. 
The proposed particle-based optimization framework can be easily computed in a parallel scheme with the high efficiency. 
Finally, based on the optimized particle distribution, the surface meshes are reconstructed by computing the restricted 
Voronoi diagram (RVD) with a parallel implementation. The experimental results are demonstrated by using extensive exam-
ples and evaluation criteria as well as compared with the state-of-the-art in the point cloud resampling and reconstruction. 
The key contributions of our work are as follows:

• It proposes a unified Lp -Gaussian kernel function (p = 2 or p = ∞), by leveraging the classical L2-Gaussian kernel, 
to simulate the inter-particle energy and force to optimize a set of particles to form the high-quality uniform/adap-
tive/anisotropic hexagonal and quadrilateral patterns from the input point clouds (with adaptive/anisotropic metrics).

• The L∞-Gaussian kernel with squared Lp norm (such as p ≥ 4) is a new and effective kernel formulation in the particle-
based method for quadrilateral sampling and meshing.

• To our knowledge, this is the first time that a parallel particle-based computational algorithm is proposed for resampling 
of point clouds. Our empirical evaluations in several scenarios demonstrate that the proposed method is a practical 
utility with the fast speed.

2. Related work

In this section, we only review some most related work on point sampling methods, CVT-based methods, and particle-
based methods for 3D shape surfaces/point clouds.

2.1. Point sampling methods

In computer graphics, sampling distribution on a shape has become an interesting research topic in the past few decades. 
There are some methods proposed to generate uniform distributions with blue noise properties on a surface mesh, such 
as Öztireli et al. (2010), Chen et al. (2012, 2013), Yan et al. (2015), which have been used in many applications such as 
stippling, rendering, as well as surface remeshing. Lipman et al. (2007) introduced the Locally Optimal Projection (LOP) 
operator for surface approximation from point-set data. Then, Huang et al. (2009) proposed an improved weighted-LOP 
(WLOP) operator, which is combined with a novel normal estimation and propagation algorithm, and this method can pro-
duce a set of clean and uniformly distributed points endowed with reliable normals. Liao et al. (2013) further considered 
both spatial and geometric feature information of the point clouds and proposed a feature-preserving LOP operator. Huang 
et al. (2013) proposed an edge-aware point set resampling method. Preiner et al. (2014) presented a continuous formulation 
of the WLOP operator and achieved a significant speed acceleration. Recently, Luo et al. (2018) presented a point cloud 
resampling method based on the Gaussian-weighted graph Laplacian to make the point distribution conformal to a target 
density distribution. All the aforementioned work does generally focus on uniform/adaptive point sampling without con-
sidering anisotropic and specific sampling patterns (e.g., hexagonal or quadrilateral). In this work, we propose an efficient 
method that constructs high-quality isotropic/anisotropic hexagonal/quadrilateral resampling results from point clouds.

2.2. CVT-based methods

A centroidal Voronoi tessellation (CVT) is a special Voronoi diagram, where each generating sample coincides with the 
centroid of its Voronoi cell Du et al. (1999). The Lloyd relaxation Lloyd (1982) and a quasi-Newton energy optimization 
solver Liu et al. (2009) are widely used to compute CVT and generate a regular sampling. In order to make the computation 
practical on 3D shape surfaces, the restricted Voronoi diagram (RVD) or restricted Delaunay triangulation (RDT) Edelsbrunner 
and Shah (1994) are used in meshing algorithms Dey and Ray (2010). Then, Du et al. (2003) defined a restricted CVT 
theoretically and then Yan et al. (2009) developed an efficient algorithm to compute the RVD for isotropic surface remeshing.

Du and Wang (2005) further extended the concept of CVT to the anisotropic case, that is anisotropic CVT (ACVT). An 
anisotropic Voronoi diagram (AVD) with the given Riemannian metric needs to be constructed in each Lloyd iteration, 
which is time-consuming. To improve the computational speed, Valette et al. (2008) proposed a discrete approximation 
of ACVT by clustering the vertices of a dense triangulation of the domain, by sacrificing the mesh quality. Lévy and Bon-
neel (2012) extended the computation of CVT to a 6D space (using vertex positions and normals) in order to achieve the 
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curvature-adaptation for anisotropic meshing, but did not provide user’s flexibility to control the anisotropy. Zhong et al. 
(2014) provided a method to solve the anisotropic meshing by conformally mapping the metric surface to an appropriate 
2D parametric domain and then compute CVT on it, but it cannot handle surfaces with complicated topologies. Lévy and 
Liu (2010) introduced an Lp -CVT, which is to minimize a higher-order norm of the coordinates on the Voronoi cells with 
the input surface meshes, and generate triangular and quad-dominant surface meshes. Recently, Chen et al. (2018) extended 
the Lp-CVT method for resampling isotropic or anisotropic distributions from a given point cloud.

In order to further improve the computations on CVT or Voronoi diagram, Vasconcelos et al. (2008) proposed to utilize 
GPU to compute CVT in a 2D plane, by using a pre-defined mask to estimate the Voronoi cell for each site. Rong et al. 
(2011) presented a GPU-assisted method to compute the constrained CVT on a surface, based on its 2D geometry image. 
The surface is discretized as pixels on a rectangular domain, and then the discrete Voronoi diagram is computed by using 
the jump flooding algorithm Rong and Tan (2006). Fei et al. (2014) solved the CVT problem by improving the non-linear 
optimization on GPU with a parallel L-BFGS-B algorithm. Recently, Boltcheva and Lévy (2017) presented a parallel method 
for reconstructing a 3D surface triangulation from an input point set by computing the RVD and implemented the algorithm 
by using a multi-core CPU. Ray et al. (2018) proposed a GPU-based algorithm to compute a 3D Voronoi diagram. Compared 
to all the above CVT-based approaches, our particle-based scheme avoids the construction of Voronoi diagram/AVD in the 
intermediate iterations of energy optimization. Thus, it can achieve faster performance in the computational complexity as 
demonstrated in Sec. 6.

2.3. Particle-based methods

Witkin and Heckbert (1994) constructed particles with pair-wise Gaussian energy to sample and control implicit sur-
faces. Meyer et al. (2005) formulated the energy kernel as a modified cotangent function with finite support. Bronson et al. 
(2012) worked on the particle-based isotropic and adaptive meshing of CAD models by using the parametric space of each 
surface patch. Zhong and Hua (2016) introduced a kernel-based adaptive sampling approach for 2D/3D image reconstruction 
and triangular meshing, but it does not handle with sampling for mesh or point cloud surfaces. As for anisotropic meshing, 
Bossen and Heckbert (1996) incorporated the metric into a distance function to model the repulsion and attraction forces 
between particles. Shimada and Gossard (1995), Shimada et al. (1997), Yamakawa and Shimada (2000) proposed physics-
based relaxation of “bubbles” with a bounded cubic function of the distance to model the inter-bubble forces, and extended 
it to anisotropic meshing by converting spherical bubbles to ellipsoidal ones. Both Bossen et al. and Shimada et al.’s work 
requires to adaptively insert or delete particles/bubbles in certain regions. Thus, it takes a longer convergence time. Adap-
tive Smoothed Particle Hydrodynamics (ASPH) Shapiro et al. (1996) uses inter-particle Gaussian kernels with an anisotropic 
smoothing tensor, but it directly formulates the energy in the original space without using the embedding space concept. 
This procedure leads to an inaccurate anisotropy in the computed mesh as demonstrated in Zhong et al. (2013).

In order to address the above limitations, Zhong et al. (2013) showed that by formulating an accurate inter-particle 
energy optimization for anisotropic meshing in a high-d embedding space, such optimizations have the fast convergence 
without any need for the explicit control of particle population. Ni et al. (2018) proposed a particle-based method to 
optimize a set of particles to form the desired lattice pattern for tetrahedral meshing. In their method, the particle insertion 
and deletion strategies are required, which may not be as efficient as our proposed method. Besides that, all the previous 
particle-based methods are not designed and implemented in the parallel scheme.

3. A novel L p particle formulation

In the particle-based framework, considering each sample as a particle, the potential energy between particles deter-
mines inter-particle forces. When forces applied on each particle become equilibrium, particles reach the optimal balanced 
state with the specified distribution under the given metric (e.g., isotropic or anisotropic). In the following subsection, we 
introduce and extend L2 optimal approximation idea into a unified Lp in the designed inter-particle energy, which can 
guide particles to form the hexagonal and quadrilateral patterns in a 3D surficial (2-manifold) space when they reach the 
equilibrium.

Merits: (1) The progress of the physically-based system leads to force equilibrium of particles in the nature, such as 
honeycomb/grid, glass/steel panel structures, etc. Particle system is a natural design in the mesh generation Shimada and 
Gossard (1995), Shimada et al. (1997), Zhong et al. (2013), Ni et al. (2018) as well as the shape sampling Witkin and 
Heckbert (1994), Meyer et al. (2005), since it is essentially structurally-aware and physically-aware. (2) The computational 
complexity is relatively low (i.e., considering particle interactions with a small neighborhood) and the implementation is 
very simple, which is superbly efficient among sampling algorithms. The details will be given in Sec. 3.4 and Sec. 6. For ex-
ample, compared with 2D CVT, it is complicated to compute restricted Voronoi cells on the shape surface, and optimize the 
sampling positions by using CVT method. (3) The particle-based system is easily formulated in the (isotropic or anisotropic) 
metric space as discussed in the following of this section, and the inter-particle energy can be independently calculated for 
parallelism. The details will be given in Sec. 4.3 and Algorithm 1.

Definition: The aim of Lp-Gaussian kernel is to propose a new energy function well suited to variational hexagonal 
and quadrilateral resampling. Given n particles with their positions X = {xi |i = 1, . . . , n} on the point clouds of the shape 
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Fig. 1. The visualization of the proposed Gaussian kernels with different norms. The top row is visualized from the 2D x-y view and the bottom row is 
visualized from the 3D view. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

surface � embedded in Rm (m is the dimension of 2-manifold in this work), the inter-particle energy can be defined by an 
Lp-Gaussian kernel:

Eij
L p

= e
− ‖xi−x j‖2

p
2σ2 , (1)

where σ = cσ
√|�|/n is a kernel width. |�| denotes the area of underlying shape surface (represented by point clouds 

in this work) and cσ is a constant. p is used to define different norms in finite-dimensional vector spaces. More detailed 
discussion about the kernel width and cσ will be given in Sec. 4.2. In this work, we investigate several potential variants of 
Lp-Gaussian kernel for generating different sampling patterns in the following subsections.

3.1. Hexagonal sampling: L2-Gaussian kernel

L2-Gaussian kernel, i.e., p = 2 in Eq. (1), is a nonnegative radially-symmetric exponential function (Fig. 1 a). Essentially, 
in 2D kernel, domain is a circle, which leads to simulate the interactions between particles and form the ideal 2D hexagonal 
patterns of the sampling. L2-Gaussian kernel is C∞ continuous, ensuring to obtain a good optimum. For instance, the 
previous CVT-based energies for meshing are at most C2 continuity Liu et al. (2009). The previous particle-based work, such 
as Zhong et al. (2013), Ni et al. (2018), Zhong et al. (2018), only designs and uses L2-Gaussian kernel for mesh generation. 
In our work, we are working on the L2-Gaussian kernel for resampling on point clouds.

Then, the gradient of Eij
L2

w.r.t. x j is the force Fi j
L2

applied on particle j by the other particle i:

Fi j
L2

= ∂ Eij
L2

∂x j
= (xi − x j)

σ 2
e
− ‖xi−x j‖2

2
2σ2 . (2)

3.2. Quadrilateral sampling: L∞-Gaussian kernel

L∞-Gaussian kernel, i.e., p = ∞ in Eq. (1), is a nonnegative grid-symmetric exponential function. Essentially, in 2D kernel, 
domain is a square, which leads to simulate the interactions between particles and form the ideal 2D quad patterns of the 
sampling. However, the L∞ norm is not differentiable. The Lp norm is a good approximation, and easier to manipulate alge-
braically (Fig. 1 b). || · || represents the Lp norm. In other words, ||x||p = p

√|x|p + |y|p + |z|p and ||x||2p = p
2
√|x|p + |y|p + |z|p . 

In this work, we use L4 in a Gaussian kernel for quadrilateral sampling.
Then, the gradient of Eij

Lp
w.r.t. x j is the force Fi j

Lp
applied on particle j by the other particle i:

Fi j
L p

=
∂ Eij

L p

∂x j
= (xi − x j)

p−1‖xi − x j‖2
p

σ 2‖xi − x j‖p
p

e
− ‖xi−x j‖2

p
2σ2 . (3)

Importance of squared Lp norm in Gaussian kernel: The visualization of the proposed Gaussian kernels with different 
norms is illustrated in Fig. 1. Fig. 1 (a) shows the classical L2-Gaussian kernel with circular iso-contours. Fig. 1 (b) and (c) 



S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 47
show two variants of Lp -Gaussian kernel with square/quad iso-contours (e.g., L4 norm as an example). Their key difference 
is: (b) uses the squared Lp norm and (c) uses the pth power of Lp norm (this is intuitive from Lp-CVT Lévy and Liu (2010)). 
Through Fig. 1, it is easy to see that the domain area and variance ratio of iso-contours in (b) are quite similar to those in 
(a), except the shape of the iso-contours, i.e., (a) is circular and (b) is square/quad. That is what we exactly desire. When 
we apply the pth power of Lp norm in a Gaussian kernel, the iso-contours are still square. However, the larger iso-contour 
values of the kernel are dominantly occupied in the domain and they are changing dramatically and steeply around domain 
boundary, which leads to the instability of the inter-particle energy and force/gradient.

3.3. Anisotropic and adaptive sampling

In order to simulate the adaptive or anisotropic sampling patterns, we can integrate the density or anisotropic metric in 
the proposed Lp-Gaussian kernel function. In anisotropic case, at a given point x ∈ �, the dot product between two vectors 
a and b is denoted by 〈a, b〉M(x) , which is defined over the tangent space of the surface (the point cloud). The metric can be 
represented by an m ×m symmetric, positive, and definite (SPD) matrix M(x). Its square root Q(x) = √

M(x) is also a unique 
SPD matrix Horn and Johnson (1990), which is defined on vectors a and b. The anisotropic L p -Gaussian kernel function is:

Eij
aniso = e

− ‖Qi j (xi−x j )‖2
p

2σ2 , (4)

where Qi j is the anisotropic metric at the middle position of the particles i and j and it is defined on the vector xi − x j .

Then the gradient of Eij
aniso is the force Fi j

aniso applied on particle j by the other particle i in the anisotropic embedding 
space (derived from Eq. (3) with integrating metric Qi j ):

Fi j
aniso = [Qi j(xi − x j)]p−1‖Qi j(xi − x j)‖2

p

σ 2‖Qi j(xi − x j)‖p
p

e
− ‖Qi j (xi−x j )‖2

p
2σ2 . (5)

It is noted that when M(x) = ρ(x)I, where I is an identity matrix, it defines an adaptive metric with the density function 
ρ(x). Then, Eq. (4) becomes the adaptive Lp-Gaussian kernel function.

3.4. Particle objective function

Once the inter-particle Lp-Gaussian energy is defined, the particle optimization is formulated as an energy minimization 
problem, i.e., to sum up all inter-particle energies. The total objective function is:

E(X) =
∑

i

∑
j 
=i

E i j ≈
∑

i

∑
j∈N(i)

Eij, (6)

where X = {xi |i = 1, . . . , n}, which are constrained in the domain of the point cloud surface �, N(i) is the set of neighbors of 
particle i within five standard deviations of the Gaussian energy kernel (5σ ). The key reason is that we only need to consider 
the inter-particle energies within a certain neighborhood, instead of every pair of particles, since the Gaussian energy is 
close to 0 when the neighborhood distance is larger than 5σ . With the help of k-d tree data structure for computing 
K-Nearest Neighbors (K-NN), the computational complexity of particle optimization is O (n log n), instead of O (n2). This 
computational complexity also includes the k-d tree construction. In our implementation, Approximate Nearest Neighbor 
(ANN) library Mount and Arya (1998) is applied to efficiently search local neighborhoods. It is noted that, in practice, the 
number of output particles (samples) in this work is less than 1M, so that log n ≤ 20 (e.g., even if n ≈ 1B, log n = 30). In 
conclusion, the practical computational performance of the proposed particle system is quite efficient.

4. Algorithm design on point clouds

In the following subsections, the details of the key components in the proposed algorithm on point clouds are discussed, 
i.e., tangent plane disk, kernel width, particle optimization, and surface reconstruction.

4.1. Tangent plane disk

Point clouds do not have explicit surface information, so we need to define the local tangent planes to constrain the 
particles during the optimization. The idea we use is to compute the local tangent plane disks derived from the original 
point clouds to approximate the underlying surfaces. The first step is to build a k-d tree for all the input point clouds. Then, 
the normal of each point is computed by using the least-square plane fitting estimation Rusu (2009) based on K-NN. The 
number of neighbors is 30 in our experiments. The normals do not need to be oriented, since we only use normals to 
define the tangent planes. After that, we need to compute suitable radiuses to define local tangent plane disks. The radius 
for every disk has to be adaptive because the original point clouds are not uniformly distributed, though they are relatively 
dense. There is a trade-off for overlaps and gaps between disks. When larger radius is used, more overlaps will exist. On 
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the other hand, when smaller radius is used, more gaps will appear. In our experiments, we use the radius defined based 
on the average distance between the point and its neighbors (such as six nearest neighbors) to determine the size of the 
local tangent plane disk.

4.2. Kernel width

The Gaussian kernel energies as defined in Eq. (1) and Eq. (4) depend on the choice of the fixed kernel width σ , which 
determines the final sampling. Once users specify the total number of particles, the proposed particle-based computation 
can be automatically optimized without any control of particle population for different models (e.g., inserting or deleting 
particles during the optimization).

The slope of the proposed energy peaks at distance of σ and it is near zero at much smaller or much greater distances. 
When σ is chosen too small, kernels will nearly stop spreading because there is almost no overlapping/interaction between 
Gaussian kernels, which may lead to aliasing and artifacts in the computed sampling. When σ is chosen too large, nearby 
kernels cannot repel each other and the resulting sampling pattern will be poor. In this work, σ is set to be proportional to 

the average “radius” of each kernel when they are uniformly distributed on the underlying surface �: σ = cσ

√
|�|/n, when 

|�| represents the area of the surface � in the embedding space (i.e., isotropic, adaptive, and anisotropic space), n is the 
number of particles, and cσ is a constant coefficient. From our extensive experiments, we find out that the best value of cσ

is around 0.3.
It is noted that when the isotropic sampling is computed, � = � and it can be computed based on the area summation 

of all the local tangent plane disks as discussed in Sec. 4.1 (with multiplying a constant α = 1.3). As for anisotropic and 
adaptive samplings, given any input anisotropic/adaptive metric field M(x) (Q(x) = √

M(x)), the area of the embedded space 
is: |�| = ∫

�
det Q(x)ds. In this work, the input surfaces are represented by the dense point clouds, with metric defined on 

each point. We need to approximate the surface area through point clouds. For each point pi , we use its nearest neighbors, 
e.g., six neighbors pi1 , . . . , pi6 , to approximate a local disk area under the metric. The average distance between pi and its 
neighbors in the embedded space is:

dpi = 1

6

6∑
j=1

||Q(pi) + Q(pi j )

2
· (pi − pi j )||. (7)

Then, we use the above distance as the local disk radius to approximate the underlying local surface area covering by pi as: 

S pi ≈ απ(
dpi
2 )2, where α is a constant (α = 1.3) in our experiments. After summing all the disk areas of the point clouds, 

we can approximate the total area of the surface |�| represented by the point clouds in the embedded space.

4.3. Particle optimization

During the particle optimization, with the summation of inter-particle energy defined in Eq. (6) and force defined in 
Eq. (2), or Eq. (3), or Eq. (5), we use the L-BFGS algorithm Liu and Nocedal (1989) to optimize the particle positions. It is 
a quasi-Newton method, which can quickly minimize the energy function of our particle-based sampling with less storage 
requirement. The total energy and the gradient are updated at each iteration during the optimization. As we discussed 
before, the gradient of particle xi can be considered as the force Fi applied to itself. Furthermore, particles are supposed to 
move on the tangent space T� of the surface. So the gradient used by the L-BFGS optimizer needs to be projected onto T�:

Fi|T�
= Fi − [Fi · n(xi)]n(xi), (8)

where n(xi) is the unit normal of particle xi on the point cloud surface.
In the L-BFGS optimization, the particles are constrained on the input point cloud surface �. In each iteration, the up-

dated particle positions need to be projected to their nearest locations on the tangent plane disks, if they are out of the 
boundary or out of the surface. It is noted that the particle optimization formulation is constructed by using a pushing 
energy and force based on an Lp -Gaussian kernel, which can maximally and optimally push particles away within the 
boundary constraint so as to cover the entire domain (point cloud surface), leading to automatically capture and reconstruct 
the boundaries without requiring the user’s tagging as an extra input (such as CVT-based approaches need user’s interven-
tion). This optimization process is iterated until convergence by satisfying a specified stopping condition, e.g., the magnitude 
of the gradient is smaller than a threshold or the maximal number of iterations. In our experiments of this work, we use 
the number of iterations as the stopping condition and the detailed settings are given in Sec. 6.

Since no inter-thread communication/synchronization is required for each particle i (w.r.t. its inter-particle energy and 
force), parallelization of the algorithm is easy and it can directly gain a factor nearly linear in the number of CPU cores. The 
L-BFGS algorithm can be implemented in parallel of CPU cores by using HLBFGS package Liu (2010).
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Data: Point cloud surface � with metric M, the norm Lp , and the desired number of resampling points n
Result: The isotropic/anisotropic resampling X and surface mesh of �
Initialize particle locations X;
while stopping condition not satisfied do

Build k-d tree for the current sampling X;
for each particle i in parallel do

Get particle i’s neighbor N(i) from k-d tree;
for each particle j ∈ N(i) in parallel do

Compute Eij using Eq. (1) or Eq. (4);

Compute Fi j using Eq. (2) or Eq. (3) or Eq. (5);
end
Sum the total force Fi ;

Project Fi to the tangent space using Eq. (8);
end
Sum the total energy E in Eq. (6);

Run parallel L-BFGS using HLBFGS with E and Fi , to get updated locations X;
Project X onto the tangent plane disks or the boundary of the point clouds in parallel;

end
Compute the surface mesh in parallel using Geogram from the computed X;

Algorithm 1: Parallel Particle Optimization and Surface Reconstruction.

4.4. Surface reconstruction

4.4.1. Triangular meshing
After the L2 particle optimization, the final output triangular mesh is generated as the dual of restricted Voronoi dia-

gram (RVD) Yan et al. (2009). The parallel computation of RVD on point clouds is developed by using the method Boltcheva 
and Lévy (2017). The idea is to compute the intersection between the 3D Voronoi diagram of the computed particles and 
a set of disks centered at such particles. Once the RVD is obtained, we can easily compute its dual graph, i.e., restricted 
Delaunay triangulation (RDT). The algorithm robustly computes the RVD using filtered geometric predicates and symbolic 
perturbation to resolve degeneracies Lévy (2016). Generally, there is no guarantee that the dual mesh will not have inverted 
elements. Whenever such an inverted element is detected, our implementation inserts additional points using the provably 
terminating algorithm in Rouxel-Labbé et al. (2016), which is also used in Lévy and Bonneel (2012). In our implementation, 
Geogram library ALICE/INRIA Nancy (2018) is used to generate isotropic and adaptive meshes (both in sequential and paral-
lel). When reconstructing anisotropic meshes, the dual of anisotropic Voronoi diagram (AVD) Du and Wang (2005) restricted 
on point clouds is generated. We implement it by modifying the Geogram library in anisotropic case (both in sequential and 
parallel).

4.4.2. Quad-dominant meshing
After the Lp particle optimization, the quad-dominant mesh is extracted from the RDT (computed in the previous sub-

section) by merging pairs of triangles. Firstly, for every triangle 
i , all its neighbors 
i j are found. The neighbors and itself 
can construct the potential quads. All of those pairs are sorted by the angles at the corners of the so-obtained quads. Then, 
the triangles are merged in the priority order, as suggested by Lévy and Liu (2010). Finally, we can apply the all-quad mesh 
conversion technique Itoh and Shimada (2002) to clean all non-quad elements if necessary (which is beyond the scope of 
this paper).

In conclusion, our parallel particle-based resampling and reconstruction can be summarized in Algorithm 1.

5. Evaluations

5.1. Triangular mesh quality

To measure the isotropic triangular mesh quality, we use the criteria as follows Frey and Borouchaki (1999). The quality 
of a triangle is measured by G = 2

√
3 S

ph , where S is the triangle area, p is its half-perimeter, and h is the length of its 
longest edge. Gmin , Gavg are the minimal and average qualities of all triangles. θmin , θavg are the smallest and average 
angles of the minimal angles of all triangles. %<30 is the percentage of triangles with their minimal angles smaller than 
30 degrees. The angle histogram is also provided. It is noted that θavg should be 60 degrees if it is a regular triangle. G is 
between 0 and 1, where 0 denotes a skinny triangle and 1 denotes a regular triangle.

In the anisotropic triangular meshing, for each triangle 
abc in the final mesh, we use its approximated metric Q(
abc) =
(Q(xa) + Q(xb) + Q(xc))/3 to affine-transform it from the original anisotropic space into the Euclidean space. After that, we 
employ the previous isotropic triangular criteria, used in Zhong et al. (2013) and Fu et al. (2014)’s recent work, to evaluate 
the quality of generated anisotropic triangular mesh.
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Fig. 2. Comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-based 
method on Cute Spocktopus, Hand Skeleton, Sapphos Head, and Stonehaus1 point cloud models.

5.2. Quad-dominant mesh quality

To measure the quad-dominant mesh quality, we use the criteria as follows: %� is the percentage of the quads in all 
mesh elements. θmin , θavg are the smallest and average angles of the minimal angles of all elements. %<30 is the percentage 
of elements with their minimal angles smaller than 30 degrees. The angle histogram is given as well. It is noted that θavg
should be 90 degrees if it is a regular quad.

6. Results

We develop our algorithms by using Microsoft Visual C++ 2015 in sequential implementation, and OpenMP 2.0 in the 
parallel implementation. The mesh quality evaluations are implemented with Matlab R2015a. For the hardware platform, 
the experiments are run on a desktop computer with Intel(R) Core(TM) i7-6850K Processor with 12 threads (6 cores), 15MB 
Cache, 4.0 GHz, 32GB DDR4 RAM. Users provide the desired numbers of output samples for all the experiments.

6.1. Isotropic hexagonal resampling and mesh reconstruction

Comparison with CVT-based method: In this subsection, we first evaluate and compare our method with a recent state-
of-the-art resampling approach on point clouds, i.e., a CVT-based method Chen et al. (2018), which is most close to our 
work. Fig. 2 shows the visualization comparison with the CVT-based method and our method (in L2-Gaussian kernel), on 
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Table 1
Comparisons with CVT-based method Chen et al. (2018) and our particle-based method on statistics and timings for resampling and surface reconstruction.

Model Method #Points #Samples Gmin Gavg θmin θavg %<30◦ T R (Seq.) T M (Seq.) T R (Para.) T M (Para.)

Cute Spocktopus CVT 182,351 30,000 0.38 0.88 17.24◦ 51.11◦ 0.01% 37.72 s 0.48 s − −
Cute Spocktopus Particle 182,351 30,000 0.49 0.89 25.47◦ 52.16◦ 0.008% 14.97 s 0.48 s 3.07 s 0.31 s

Hand Skeleton CVT 269,889 50,000 0.05 0.87 2.02◦ 50.16◦ 0.2% 54.79 s 0.70 s − −
Hand Skeleton Particle 269,889 50,000 0.14 0.89 4.92◦ 51.91◦ 0.1% 24.13 s 0.70 s 4.24 s 0.50 s

Sapphos Head CVT 271,937 50,000 0.44 0.88 19.74◦ 50.93◦ 0.022% 65.87 s 0.74 s − −
Sapphos Head Particle 271,937 50,000 0.50 0.89 23.43◦ 52.34◦ 0.007% 26.73 s 0.74 s 5.53 s 0.48 s

Stonehaus1 CVT 639,842 80,000 0.51 0.88 21.42◦ 51.07◦ 0.003% 133.36 s 1.09 s − −
Stonehaus1 Particle 639,842 80,000 0.42 0.90 27.22◦ 52.55◦ 0.003% 56.33 s 1.09 s 10.43 s 0.67 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. T R (Seq.) and T R (Para.): timings for resampling computations in 
sequential and parallel designs with 35 iterations. T M (Seq.) and T M (Para.): timings for meshing computations in sequential and parallel designs. The best values are highlighted 
in bold for each group. It is noted that the timings T M (Seq.) for meshing computations on CVT and Particle methods are the same, since both of them use Geogram to compute 
the final mesh.

several point clouds (e.g., Cute Spocktopus, Hand Skeleton, Sapphos Head, and Stonehaus1 models). The final mesh an-
gle histograms show that our method has more regular triangles (i.e., more number of angles close to 60◦/more regular 
hexagonal sampling patterns). In essence, the particle method is a physically-based system, which can lead to the force 
equilibrium of particles in the nature, so as to generate the nice sampling and meshing results. Table 1 shows the statistics 
and timings for resampling computation and surface reconstruction with CVT-based method Chen et al. (2018) and our 
particle-based method. In quantitative, we can clearly see that our particle-based method has better sampling and mesh 
quality (especially Gavg , θavg ). Meanwhile, our method also has the faster convergence speed, since the CVT-based method 
needs to compute Voronoi diagram iteratively during the energy optimization and particle-based method only needs to 
compute the inter-particle energy and force in each iteration, which is much more efficient. Theoretically, the computa-
tional complexity of CVT-based method by using Lloyd’s algorithm is O (m log n) for each iteration, where m is the number 
of points in the original point clouds Secord (2002), Chen et al. (2018); while our particle-based method is O (n log n) for 
each iteration, where n is the number of output samples. Note that, m is always much greater than n in our point cloud 
applications. We have developed and implemented our particle-based resampling and meshing computations both in se-
quential and parallel ways. Our method is several times faster than CVT-based method in the sequential design, not to 
mention that in the parallel design, our method is even faster. In the implementation of CVT-based method, each RVD is ob-
tained by using the clipping method Lévy and Bonneel (2012), Chen et al. (2018) from Geogram library ALICE/INRIA Nancy 
(2018).

Due to the page limit, there are some more uniform hexagonal resampling and isotropic triangular meshing results and 
comparisons on different 3D point clouds given in Appendix.

Large-size point clouds: In order to demonstrate the scalability of the proposed method on large-size resampling and 
meshing of point clouds, Fig. 3 shows the final results with resamplings ranging from 150K to 200K of the original point 
clouds with more than 1M points. It is noted that our particle-based method is quite efficient on the large-size models, and 
it takes 47.96 s (100 iterations and meshing) and 47.84 s (60 iterations and meshing) for Arch and Lucy models (in parallel 
implementation), respectively. The final resampling and mesh quality are quite good as well.

6.2. Anisotropic and adaptive resampling and mesh reconstruction

Anisotropic metric on point clouds: For the anisotropic resampling and meshing on 3D point clouds, we use the fol-
lowing 3 × 3 metric tensor: M = [vmin, vmax, n]diag(1, ( s2

s1
)2, 0)[vmin, vmax, n]T , where vmin and vmax are the directions of the 

principal curvatures, n is the unit point normal. s1 and s2 are two user-specified stretching factors along principal curvature 
directions. Since the resampling and meshing are computed by curvature-based metric tensor fields, we use the above met-
ric with s1 = √

Kmin and s2 = √
Kmax , where Kmin and Kmax are the principal curvatures. We set small thresholds to preserve 

both Kmin and Kmax not vanishing. The principal curvatures and normals of original dense point clouds are estimated by 
PCL library Rusu and Cousins (2011). Then, Laplacian smoothing is applied to both the stretching factors and directions, to 
ensure smoothness of the input metric field on the point cloud surface. s2

s1
is defined as stretching ratio (≥ 1) in the metric 

field M of the point clouds. The adaptive metrics are computed based on the mean curvatures of the original dense point 
clouds as the density function.

Anisotropic results: Fig. 4 shows the visualization results of our method (in anisotropic L2-Gaussian kernel) on 
anisotropic resampling and mesh reconstruction on several point cloud models with curvature-based anisotropic metrics, 
such as Duck, Kitten, Fertility, Gargo, Genus3, and Rocker Arm. By using our method, samples are denser along the maximal 
principal curvature directions and stretched along the minimal principal curvature directions. While in the low stretching 
regions (i.e., isotropic metric regions), the regular sampling distributions are obtained. The final mesh angle histograms 
show that our method has good mesh quality to match the input curvature-based anisotropy. Table 2 shows the statistics 
and timings for anisotropic resampling computation and surface reconstruction by using our particle-based method. We can 
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Fig. 3. More uniform hexagonal resampling and isotropic triangular meshing results on large-size Arch and Lucy point cloud models (more closeups of Lucy 
result are given in Appendix).

Fig. 4. Anisotropic resampling and anisotropic triangular meshing results on several point cloud models with curvature-based anisotropies.
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Table 2
Statistics and timings for anisotropic resampling and surface reconstruction by our 
particle-based method.

Model #Points #Samples Stretch T R (Para.) T M (Para.)

Duck 95,990 8000 [1,7.4] 7.48 s 0.23 s
Kitten 96,000 10,000 [1,7.2] 8.76 s 0.23 s
Fertility 268,357 10,000 [1,8.3] 12.52 s 0.25 s
Gargo 240,144 15,000 [1,6.5] 12.61 s 0.30 s
Genus3 141,994 10,000 [1,6.2] 8.21 s 0.23 s
Rocker Arm 172,032 13,000 [1,6.9] 9.62 s 0.29 s

Note: #Points: the number of points in the input point clouds. #Samples: the num-
ber of output samples. T R (Para.): timings for resampling computation in parallel 
design with 50 iterations. T M (Para.): timings for meshing computation in parallel 
design.

Fig. 5. Comparisons on computational time (50 iterations) with CVT-based method Chen et al. (2018) and our particle-based method on Kitten point cloud 
models (with different resolutions) for adaptive resampling and adaptive triangular meshing results with 7000 samples.

see that our method is quite efficient on anisotropic resampling and meshing. There are some more anisotropic resampling 
and meshing results given in Appendix.

Comparison with CVT-based method: Fig. 5 shows the comparisons on computational time with CVT-based method Chen 
et al. (2018) and our particle-based method (in adaptive L2-Gaussian kernel) on Kitten point cloud model for adaptive 
resampling and adaptive triangular meshing results. The number of the output samples is fixed at 7000 and the point 
numbers of the input cloud points range from 96,000 to 960,000. In CVT-based methods with density function (e.g., Du and 
Wang (2005), Chen et al. (2018)), they need to compute the Voronoi cells with density in each iteration, whose accuracy 
highly depends on the numerical computation of the quadrature/integral rule on cells. It is easy to note in Fig. 5 that the 
denser the input cloud points are, the higher resampling and meshing qualities are. However, our particle-based method 
does not need to compute the integral, and we only need to compute the inter-particle energy and force, which is much 
faster with a stable higher accuracy in different resolutions of cloud points. For instance, in order to achieve competitive 
results, CVT-based method is about 15x times slower than our particle-based method in sequential design (about 80x in 
parallel design) as shown in Fig. 5 on Kitten model.

6.3. Quadrilateral resampling and mesh reconstruction

In the quadrilateral resampling, we use multi-scale strategy for sampling optimization to achieve better results, due to the 
L∞-Gaussian kernel function is easier to be trapped in its local minima compared with L2-Gaussian kernel function. In all 
our quad experiments, we use L4-Gaussian kernel function and two-level multi-scale sampling strategy. The sampling points 
at first level are split into four subsampling points at the next level. We found that multi-scale strategy can improve both 
the mesh quality as well as the computational speed. Fig. 6 shows the visualization results of our method on quadrilateral 
resampling and mesh reconstruction on several point cloud models by using the proposed L4-Gaussian kernel. Table 3 shows 
the statistics and timings for quadrilateral resampling computation and surface reconstruction. We can see that our method 
can efficiently generate high-quality quad-dominant meshes with high quad-element percentages. There are some more 
(large-size) quadrilateral resampling and quad-dominant meshing results on different 3D point clouds given in Appendix.
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Fig. 6. Quadrilateral resampling and quad-dominant meshing results on several point cloud models.

Table 3
Statistics and timings for quadrilateral resampling and surface reconstruction by our particle-based method.

Model #Points #Samples #Quad% θmin θavg %<30◦ T R (Para.) T M (Para.) Tri2Quad

Duck 32,000 6000 91.63% 34.17◦ 80.71◦ 0 1.89 s 0.23 s 0.10 s
Bunny 83,191 18,000 91.14% 32.24◦ 80.23◦ 0 3.40 s 0.26 s 0.26 s
Kitten 96,000 16,000 93.43% 30.11◦ 82.07◦ 0 3.66 s 0.24 s 0.23 s
Bimba 254,309 50,000 93.21% 30.60◦ 81.89◦ 0 8.24 s 0.50 s 0.71 s
Lion 575,573 100,000 90.18% 19.74◦ 79.61◦ 0.01% 19.12 s 0.80 s 1.51 s
Buddha 687,347 100,000 90.02% 15.91◦ 79.44◦ 0.009% 15.50 s 0.69 s 1.46 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. #Quad%: the percentage of quad 
elements in the output meshes. T R (Para.): timings for resampling computation in parallel design with 75 iterations (i.e., multi-scale strategy 
including 40 iterations in the first level and 35 iterations in the second level). T M (Para.): timings for triangular meshing computation in 
parallel design. Tri2Quad: timings for merging the triangles into quad-dominant meshes (in sequential).
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Fig. 7. More comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-
based method on: Bunny, Bimba, Buddha, Distcap, and Fertility point cloud models.
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Fig. 8. More comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-
based method on: Left Lung, Right Lung, GOYLE, Lectroid1, and Mumble Sitting point cloud models.
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Fig. 9. More comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-
based method on: Koolaidman, Thundercrab, and Treefrog point cloud models.

7. Discussion and future work

In this work, we have proposed a unified Lp particle-based method to resample the points with different sampling 
patterns, and generalized the particle-based framework from surface meshes to point clouds, and from the sequential to 
the parallel. Finally, we can efficiently generate the high-quality isotropic/adaptive/anisotropic hexagonal and quadrilateral 
samplings and meshes. We can further improve the computational speed by using GPU-based parallel algorithm and im-
plementation, since the current GPUs have thousands of CUDA cores, especially beneficial to the parallel computations. In 
practice, if the point cloud model has sharp features, such as feature edges or feature corners in CAD models, this requires 
the user’s tagging as an extra input, due to the difficulty of detecting accurate sharp features from the raw point clouds. We 
will consider these cases in our future work. Moreover, we will also investigate the approaches to further optimize current 
quad-dominant meshing framework for generating the high-quality all-quad (anisotropic) meshes.
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Appendix A. Appendix of surface reconstruction by parallel and unified particle-based resampling from point clouds

A.1. More results

A.1.1. Isotropic hexagonal resampling and mesh reconstruction
In order to further demonstrate the better performance of our method compared with CVT-based method Chen et al. 

(2018), we provide more experiments including different topology genera and point sizes, in addition to results in the paper.
Fig. 7, Fig. 8, and Fig. 9 show the visualization and mesh angle histogram comparisons with the CVT-based method 

and our method (in L2-Gaussian kernel) on several point clouds. Table 4 shows the statistics and timings for resampling 
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Table 4
More comparison results with CVT-based method Chen et al. (2018) and our particle-based method on statistics and timings for resampling computation 
and surface reconstruction.

Model Method #Points #Samples Gmin Gavg θmin θavg %<30◦ T R (Seq.) T M (Seq.) T R (Para.) T M (Para.)

Bunny CVT 83,191 15,000 0.56 0.88 32.52◦ 51.21◦ 0 13.85 s 0.20 s − −
Bunny Particle 83,191 15,000 0.58 0.90 31.59◦ 52.45◦ 0 5.87 s 0.20 s 1.03 s 0.14 s

Bimba CVT 254,309 50,000 0.57 0.88 31.56◦ 51.20◦ 0 54.16 s 0.69 s − −
Bimba Particle 254,309 50,000 0.49 0.89 22.51◦ 52.33◦ 0.005% 22.01 s 0.69 s 4.11 s 0.45 s

Buddha CVT 687,347 100,000 0.41 0.88 21.56◦ 50.87◦ 0.023% 91.06 s 1.15 s − −
Buddha Particle 687,347 100,000 0.44 0.89 19.43◦ 51.73◦ 0.012% 36.75 s 1.15 s 7.52 s 0.64 s

Distcap CVT 208,578 35,000 0.02 0.87 0.56◦ 50.20◦ 0.28% 24.71 s 0.53 s − −
Distcap Particle 208,578 35,000 0.09 0.88 5.10◦ 51.31◦ 0.25% 11.25 s 0.53 s 2.11 s 0.32 s

Fertility CVT 110,209 20,000 0.55 0.88 30.54◦ 51.06◦ 0 25.10 s 0.31 s − −
Fertility Particle 110,209 20,000 0.44 0.89 18.97◦ 52.26◦ 0.012% 10.17 s 0.31 s 1.75 s 0.18 s

Left Lung CVT 199,533 40,000 0.16 0.87 5.76◦ 50.40◦ 0.1% 37.02 s 0.59 s − −
Left Lung Particle 199,533 40,000 0.23 0.89 8.87◦ 51.88◦ 0.03% 15.55 s 0.59 s 2.94 s 0.39 s

Right Lung CVT 191,471 40,000 0.38 0.88 19.88◦ 50.61◦ 0.1% 37.77 s 0.52 s − −
Right Lung Particle 191,471 40,000 0.32 0.89 12.48◦ 51.86◦ 0.01% 15.62 s 0.52 s 2.94 s 0.31 s

GOYLE CVT 136,132 20,000 0.31 0.88 17.44◦ 50.93◦ 0.03% 16.45 s 0.40 s − −
GOYLE Particle 136,132 20,000 0.44 0.90 20.09◦ 52.36◦ 0.02% 5.76 s 0.40 s 1.54 s 0.26 s

Lectroid1 CVT 195,639 30,000 0.19 0.88 8.54◦ 50.84◦ 0.08% 36.16 s 0.52 s − −
Lectroid1 Particle 195,639 30,000 0.17 0.89 10.10◦ 51.99◦ 0.06% 14.42 s 0.52 s 3.03 s 0.37 s

Mumble Sitting CVT 198,023 35,000 0.08 0.88 5.17◦ 50.88◦ 0.2% 39.89 s 0.59 s − −
Mumble Sitting Particle 198,023 35,000 0.10 0.89 5.00◦ 52.01◦ 0.2% 16.44 s 0.59 s 3.42 s 0.41 s

Koolaidman CVT 129,623 25,000 0.46 0.88 22.44◦ 51.10◦ 0.01% 28.05 s 0.43 s − −
Koolaidman Particle 129,623 25,000 0.26 0.90 9.36◦ 52.39◦ 0.01% 11.78 s 0.43 s 2.41 s 0.31 s

Thundercrab CVT 178,540 30,000 0.37 0.88 18.65◦ 50.95◦ 0.05% 25.87 s 0.48 s − −
Thundercrab Particle 178,540 30,000 0.24 0.89 12.24◦ 52.08◦ 0.03% 9.10 s 0.48 s 2.34 s 0.31 s

Treefrog CVT 154,975 35,000 0.07 0.88 2.45◦ 50.86◦ 0.4% 49.11 s 0.64 s − −
Treefrog Particle 154,975 35,000 0.10 0.89 5.21◦ 51.88◦ 0.3% 19.54 s 0.64 s 4.06 s 0.41 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. T R (Seq.) and T R (Para.): timings for resampling computations in 
sequential and parallel designs with 35 iterations. T M (Seq.) and T M (Para.): timings for meshing computations in sequential and parallel designs. The best values are highlighted 
in bold for each group. It is noted that the timings for meshing computations on CVT and Particle methods are the same, since both of them use Geogram to compute the final 
mesh.

computation and surface reconstruction with CVT-based method Chen et al. (2018) and our particle-based method. Our 
results demonstrate that we can consistently yield better sampling, mesh angle, and triangle quality (especially Gavg , θavg ), 
as well as the faster computational speed.

Fig. 10 shows more closeup visualization of the uniform hexagonal resampling and isotropic triangular meshing results 
on large-size Lucy point cloud model.

A.1.2. Anisotropic resampling and mesh reconstruction
Fig. 11 shows two more visualization results of our method (in anisotropic L2-Gaussian kernel) on anisotropic resam-

pling and mesh reconstruction on Bunny and GOYLE point cloud models with curvature-based anisotropic metrics. The 
final mesh angle histograms show that our method has good mesh quality to match the input curvature-based anisotropy. 
Table 5 shows the statistics and timings for anisotropic resampling computation and surface reconstruction by using our 
particle-based method.

A.1.3. Quadrilateral resampling and mesh reconstruction
Fig. 12 shows the visualization results of our method on quadrilateral resampling and mesh reconstruction on some 

more point cloud models by using the proposed L4-Gaussian kernel. Table 6 shows the statistics and timings for quadrilat-
eral resampling computation and surface reconstruction. We can see that our method can efficiently generate high-quality 
quad-dominant meshes with high quad-element percentages.

In order to demonstrate the scalability of the proposed method on large-size resampling and meshing of point clouds, 
Fig. 13 shows the final results with quadrilateral resamplings ranging from 160K to 220K of the original point clouds with 
more than 1M points. It is noted that our particle-based method is quite efficient on the large-size models, and it takes 
66.42 s and 77.33 s totally for resampling and meshing (using three-level multi-scale strategy with 150 iterations) for Arch 
and Lucy models (in parallel implementation), respectively. The final resampling and mesh quality are quite good as well.
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Fig. 10. More closeup visualization of the uniform hexagonal resampling and isotropic triangular meshing results on large-size Lucy point cloud model.

Fig. 11. More anisotropic resampling and anisotropic triangular meshing results on Bunny and GOYLE point cloud models with curvature-based anisotropies.
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Table 5
More statistics and timings for anisotropic resampling and reconstruction by our 
particle-based method.

Model #Points #Samples Stretch T R (Para.) T M (Para.)

Bunny 124,800 10,000 [1,6.1] 10.90 s 0.28 s
GOYLE 95,966 25,000 [1,5.4] 21.84 s 0.36 s

Note: #Points: the number of points in the input point clouds. #Samples: the 
number of output samples. T R (Para.): timings for resampling computation in 
parallel design with 50 iterations. T M (Para.): timings for meshing computation 
in parallel design.

Fig. 12. More quadrilateral resampling and quad-dominant meshing results on point cloud models.

Table 6
More statistics and timings for quadrilateral resampling and reconstruction by our particle-based method.

Model #Points #Samples #Quad% θmin θavg %<30◦ T R (Para.) T M (Para.) Tri2Quad

Eight 79,999 8000 92.65% 32.46◦ 81.57◦ 0 1.94 s 0.19 s 0.14 s
Fertility 110,209 20,000 91.83% 30.08◦ 80.76◦ 0 6.01 s 0.25 s 0.29 s
Gargo 90,898 24,000 88.29% 23.04◦ 78.24◦ 0.01% 5.04 s 0.31 s 0.38 s
Sapphos Head 271,937 60,000 92.85% 29.94◦ 81.56◦ 0.005% 10.67 s 0.53 s 0.86 s
GOYLE 136,132 28,000 89.24% 26.17◦ 79.22◦ 0.01% 6.96 s 0.40 s 0.40 s
Koolaidman 129,623 30,000 93.27% 31.61◦ 80.59◦ 0 6.71 s 0.36 s 0.48 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. #Quad%: the percentage 
of quad elements in the output meshes. T R (Para.): timings for resampling computation in parallel design with 75 iterations (i.e., 
multi-scale strategy including 40 iterations in the first level and 35 iterations in the second level). T M (Para.): timings for triangular 
meshing computation in parallel design. Tri2Quad: timings for merging the triangles into quad-dominant meshes (in sequential).
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Fig. 13. More quadrilateral resampling and quad-dominant meshing results on large-size Arch and Lucy point cloud models.
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