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This paper presents an improved Euclidean Ricci flow method for spherical parameterization. We subse-
quently invent a scale space processing built upon Ricci energy to extract robust surface features for accu-
rate surface registration. Since our method is based on the proposed Euclidean Ricci flow, it inherits the
properties of Ricci flow such as conformality, robustness and intrinsicalness, facilitating efficient and
effective surface mapping. Compared with other surface registration methods using curvature or sulci
pattern, our method demonstrates a significant improvement for surface registration. In addition, Ricci
energy can capture local differences for surface analysis as shown in the experiments and applications.
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1. Introduction

Image registration is the process of finding the optimal transfor-
mation that aligns different imaging data into spatial correspon-
dence. As a result, the same anatomic structures occupy the
same spatial locations in different images [40]. It is the building
block for a variety of medical image analysis tasks, such as motion
correction, multi-modality information fusion, atlas-based image
segmentation, population-based studies, longitudinal studies,
computational anatomy and image-guided surgery [8,23,28]. Usu-
ally, the image registration can be categorized into two categories,
volume-based registration and surface-based registration [10].
Since the brain cortex is highly folded, cortical surface model can
explicitly preserve geometric property of the cortex compared to
volume space [8,26,34]. Thus, surface-based approaches have re-
cently received great attention and been applied in brain mor-
phometry for exploring abnormalities [4,28,31]. Many related
comparisons and surveys have also been presented, as in
[23,29,38].

Usually, surface is parameterized and represented in the spher-
ical domain. There are many different methods of surface parame-
terization proposed in the past years [9,14,24,30]. In order to
achieve spherical parameterization, some methods cut the surface
into pieces and turn the problem into planar parameterization
[14,21]. These methods are highly dependent on the cutting qual-
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ity. Others perform the parameterization directly on the sphere by
minimizing certain energy function. Gotsman et al. [11] show a
nice relationship between spectral graph theory and spherical
parameterization, embedding simple meshes on the sphere by
solving a quadratic system.

Once the spherical representation of the surface is constructed,
many image registration algorithms can be used with spherical
coordinates. For cortical surface analysis, the methods usually
make use of some landmark to guide the registration process. For
example, manually identified cortical sulci landmarks were used
in [34,39]. Surface properties such as mean curvature, or sulcal
depth have also been utilized in [8,26,36]. Though the registrations
with manually landmarks are more accurate than that using nor-
mal surface properties, it requires medical background and is hard
to be applied on large scale data. Therefore, many studies focus on
the landmark-free approach with different surface properties for
surface registration [25,36].

Like Gaussian curvature, Ricci energy is an intrinsic property of
surfaces, which can be used for landmark-free surface registration
and analysis [12,35]. Ricci energy is computed from Ricci flow. Ric-
ci flow was first introduced in differential geometry by Hamilton
[15] for the purpose of proving Poincaré conjecture. It is also a
powerful curvature flow method in geometric analysis. Unlike
mean curvature flow [18], the Ricci flow is performed purely on
the intrinsic geometry of the surface shape as a process of metric
diffusion. With the circle packing algorithm [5,17,33], discrete sur-
face Ricci flow theory was developed by Chow and Luo [3] and a
computational algorithm was introduced in [19]. The conventional
Ricci flow can be highly generalized to the three canonical back-
ground geometries, namely, the Euclidean geometry, hyperbolic
arameterization and surface registration, Comput. Vis. Image Understand.
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geometry and spherical geometry. The Ricci energy is convex for
Euclidean and hyperbolic geometries. With spherical geometry,
however, Ricci energy is not strictly convex but converges to a local
optimum [3,20]. Since the conventional circle packing is too
restrictive, the Ricci flow algorithm has limitations. For meshes
with low quality triangulations, if high conformality is required,
the flow tends to be numerically unstable. If convergence to the
global optimum is enforced, the conformality may be sacrificed.
In order to solve this problem, inversive distance metric [1] was
introduced to Ricci flow with euclidean and hyperbolic geometry
in [37]. Guo proved the convexity of discrete Ricci energy with
the inversive distance circle packing for Euclidean and Hyperbolic
case [13]. Thus, Guo’s method is more flexible, more robust and
conformal for meshes with low quality triangulations. However,
the algorithm does not cover the spherical geometry. From [19],
we can see that spherical Ricci flow is not strictly convex, which
merely settles at a local minimum. In addition, no packing algo-
rithm intrinsic to the spherical geometry has been found yet. Thus,
it is difficult to perform the spherical Ricci flow with inversive dis-
tance metric.

In this paper, we present a framework for spherical parameter-
ization and registration using Euclidean Ricci flow. The major con-
tributions are summarized as follows: (1) We propose the discrete
Euclidean Ricci flow for efficient and effective computation of
spherical parameterization; (2) A scale space is designed with
Euclidean Ricci energy, which offers robust scale dependent sur-
face features; (3) We present an energy function in the combina-
tion of local scale dependent geometry features and global Ricci
energy for accurate surface registration; and (4) Applications to
the brain surface registration and hippocampus surface analysis
demonstrate the efficacy of the proposed framework.

The rest of the paper is organized as follows: mathematical
background is introduced in Section 2. Discrete euclidean Ricci
flow algorithms are explained in Section 3. Scale dependent feature
extraction and surface registration are shown in Section 4. The
parameter and registration results are discussed in Section 5. We
also apply Ricci energy to surface analysis of hippocampus in Sec-
tion 6. The concluding remarks are given in Section 7.
2. Mathematical background

In this section, we briefly introduce the most related theoretical
background of discrete geometry and Ricci flow. For more informa-
tion, please refer to [3,15].

2.1. Riemannian metric and curvature

Suppose S is a surface, the Riemannian metric is a tensor g = (gij)
which is positive definite and defines an inner product for the tan-
gent space of S.

Two Riemannian metrics on S are conformal if there is a func-
tion defined on the surface u : S! R such that �g ¼ e2ug, where u
is called the conformal factor.

Curvature is determined by the Riemannian metric, and differ-
ent metrics induce different curvatures. But, the total curvature is
solely determined by the topology and holds the Gauss–Bonnet
theorem: Let (S,g) be a metric surface, the total curvature is
Z

S
KdAg þ

Z
@S

kgds ¼ 2pvðSÞ; ð1Þ

where Ag is the area of metric g,v(S) is the Euler number of the
surface.

The Uniformization theorem [19] ensures that all genus zero
surfaces in R3 admits a uniformization metric, which is conformal
to the original metric and induces constant Gaussian curvature.
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2.2. Surface Ricci flow

Ricci flow is a powerful curvature flow method, invented by
Hamilton [15] for the proof of the Poincaré conjecture. Intuitively,
it describes the process to deform the Riemannian metric accord-
ing to curvature such that the curvature evolves like a heat diffu-
sion process:

dg
dt
¼ �2kg: ð2Þ

Hamilton [15] and Chow [2] proved the convergence of surface Ricci
flow. Thus, for a closed surface, if the total area of the surface is pre-
served during the flow, the Ricci flow will converge to a metric such
that the final metric is compatible with a sphere and can be embed-
ded in S2.

2.3. Discrete geometry and Ricci flow

In engineering fields, smooth surfaces are often approximated
by simplicial complexes. Major concepts such as curvature and
conformal deformation in the continuous setting can be general-
ized to the discrete setting. In the following, we specifically focus
on the Euclidean geometric setting, as it is the background geom-
etry of our Ricci flow computation.

Suppose M(V,E,F) is a triangle mesh with vertex set V, edge set E
and face set F, respectively. We use vi to denote the ith vertex. [vi, -
vj] is the edge between vi and vj, [vi,vj,vk] is the face fi,j,k formed by
vi, vj, vk.

A discrete matrix on M is a function l:E ? R+, such that on each
face [vi,vj,vk], the triangle inequality holds lij + ljk 6 lki.

The discrete metric determines the corner angles on each face
by the cosine law,

hi ¼ arccos
l2
ij þ l2

ki � l2
jk

2lijlki
: ð3Þ

Then, we could get the discrete Gaussian curvature Ki. In general,
the discrete Gaussian curvature Ki on a vertex i can be computed
from the angle deficit:

Ki ¼ 2p�
X
fi;j;k

hjk
i ; ð4Þ

where hjk
i represents the corner angle attached to vertex vi in the

face fi,j,k.
A circle packing associates each vertex with a circle. The circle

at vertex vi is denoted as ci (Fig. 1). Suppose the length of [vi,vj]
is li,j, the radii of ci and cj are ci and cj, respectively. Then, the inver-
sive distance between ci and cj is given by

Iðci; cjÞ ¼
l2
ij � c2

i � c2
j

2cicj
: ð5Þ

A generalized circle packing metric on a mesh M is to associate each
vertex vi with a circle ci, whose radius is ci, and to associate each
edge [vi,vj] with a nonnegative number Iij. The edge length is given
by

lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i þ c2
i þ 2Iijcicj

q
: ð6Þ

The circle packing metric is denoted as (C, I,M), where C = {ci},
I = {Iij}.

A discrete conformal deformation is to change radii ci only, and
preserve inversive distance Iij. Let

ui ¼ log ci;

then, the discrete Ricci flow is
arameterization and surface registration, Comput. Vis. Image Understand.

http://dx.doi.org/10.1016/j.cviu.2013.02.010


Fig. 1. Conventional circle packing (left) and inversive distance circle packing (right).
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dui

dt
¼ Ki � Ki; ð7Þ

where Ki is the user-defined curvature at vertex vi.
Let u represent the vector (u1,u2, . . . , un) and K represent the

vector (K1,K2, . . . , Kn), where n = jVj. The discrete Euclidean Ricci
energy is defined as

EðuÞ ¼
Z u

u0

X
i

ðKi � KiÞdui; ð8Þ

where u0 = (0,0, . . . , 0).
The discrete Euclidean Ricci flow in (7) is the negative gradient

flow of the Ricci energy. It is convex on the hyperplane
P

iui ¼ 0 in
the admissible metric space. Detailed proof can be found in [3,13].
The metric inducing the target curvature is the unique global opti-
mum of the Ricci energy. Therefore, it, unlike spherical Ricci flow,
converges to the global optimum.

We use Euclidean Ricci flow for the computation of spherical
parameterization. Therefore, the Ricci energy is convex and
converges to the global minimum. Because the surface is
approximated by a piecewise linear triangular mesh in practice,
it is crucial to make certain that the curvature approximation
is accurate and robust, with respect to the continuous
counterpart.

From Fig. 2, we can see that (4) cannot compute the Gaussian
curvature accurately when mesh vertices’ distribution is non-uni-
form on the sphere. Thus, (4) does not satisfy the accuracy require-
ment. In order to solve this problem, we use Meyer’s method [27]
instead.

The main idea of Meyer’s method is using a local spatial
average over the immediate 1-ring neighborhood to optimize the
discrete results. In this method, Gaussian curvature is calculated
as:
Fig. 2. Comparison between traditional discrete Gaussian curvature computing and Me
Middle: Traditional Gaussian curvatures on an irregularly sampled sphere. Right: Gaus
correspond to low curvatures while high curvature is shown in red. (For interpretation of
of this article.)
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Ki ¼
1

Ai
M

2p�
X
fi;j;k

hjk
i

0
@

1
A; ð9Þ

where fi,j,k is 1-ring neighbor face of vertex vi. Ai
M is the mixed area

of vi(Fig. 3). Fore more details, please refer to [27].
Compared with conventional discrete Gaussian curvature, (9)

can be more accurate when computing the Gaussian curvature
on a sphere with less computational cost (Fig. 2). Besides, the cur-
vature by using Meyer’s method satisfies the Gauss–Bonnet theo-
rem. Thus, when we compute Euclidean Ricci flow with Meyer’s
method, it is still a heat diffusion flow, and converges to the global
optimum.
3. Ricci flow based spherical parameterization

This section provides the algorithm for spherical parameteriza-
tion using Euclidean Ricci flow.
3.1. Circle packing matrix and target curvature

Here, we use (9) to calculate the Gaussian curvature. In order to
get the appropriate spherical parameterization, we set the target
curvature equally everywhere since the Gaussian curvature on a
sphere is uniform. According to Gauss–Bonnet theorem, we can
get the target curvature:

ctarget ¼
4pP

iA
i
M

ð10Þ

where Ai
M is the mixed area of vi. Then, we use the method in [37] to

calculate the inversive distance circle packing metric.
yer’s method. Left: Traditional Gaussian curvatures on a regularly sampled sphere.
sian curvatures by Meyer’s method on an irregularly sampled sphere. Blue areas
the references to color in this figure legend, the reader is referred to the web version

arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 3. Left: The definition of aij and bij. Right: The mixed area.
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3.2. Ricci energy optimization

After the inversive distance circle packing metric is calculated,
the conformal metric which induces the target curvature is com-
puted as Algorithm 1.

Algorithm 1. Ricci energy optimization

Input: Initial radii C, edge weight I, target curvature ctarget,
step length d, error tolerance s

Output: Gaussian curvature metrics fK0;...;nðtÞg, edge length
metrics fL0;...;nðtÞg, diffused metrics {l0,. . .,n(t)}. Here t is the
scale factor.

1. For each vertex v, set current target curvature
Ki ¼ ctarget .

2. Initialize t = 0 and ui = lnci

3. Repeat
(a) Compute the edge length lij from current vertex

radii ci,cj and inversive distance Iij. lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i þ c2
j þ 2Iijcicj

q
(b) Compute the corner angles on each face [vi,vj,vk]

using current edge length: hjk
i ¼ arccos l2ijþl2ki�l2jk

2lij lki

� �

(c) Compute the mixed area Ai
M of each vertex vi.

(d) For each vertex vi, compute current curvature

Ki ¼ 1
Ai

M
2p�

P
jkh

jk
i

� �

(e) Update ui of each vertex vi. ui ¼ ui þ dðKi � KiÞ
(f) Normalize the metrics, set

P
iui ¼ 0

(g) Update the radius ci of vi. ci = exp (ui)
(h) Update the target curvature Ki ¼ 4pP

i
Ai

M
.

(i) Save the edge lengths LðtÞ : flijg, Gaussian
curvature KðtÞ : fKig, diffused metrics l(t):ui as the scale-
space representation at scale t.

(j) t = t + 1
4. Until max jKi � Kij 6 s
3.3. Embedding

After computing the discrete metric of the mesh, we can
embed the mesh onto S2. Basically, we isometrically embed the
mesh triangle by triangle using the Euclidean cosine law (Algo-
rithm 2).

Algorithm 2. Sphere embedding

Input: Final diffused edge length L
Output: Embedding sphere mesh

1. Calculate the corresponding spherical radii R ¼
ffiffiffiffiffiffiffiffiffiffiffiP

i
Ai

M

4p

r

2. Flatten a seed face [vi,vj,vk].
3. Put all the neighbored faces of seed face [vi,vj,vk] to a face
queue.
4. Repeat

(a) Pop the first face [vi,vj,vk] from queue.
(b) Suppose vi and vj have been embedded, compute the

position of vk by using Euclidean cosine law and keep the
orientation of the face.

(c) Put the neighbor faces of [vi,vj,vk], which haven’t been
accessed yet, to the queue.
5. Until the face queue is empty.
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
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Fig. 4 shows the spherical parameter result of left cortical
surface.
4. Surface registration based on Ricci energy

4.1. Scale-dependent feature extraction

Since Ricci flow energy distribution could be seen as heat diffu-
sion, the scale-space representation of the surface geometry can be
formulated as a family of diffused metrics, parameterized by time t.
Consider a surface as a Riemannian manifold, the intrinsic geome-
try of surfaces can be presented by the pointwise Ricci energy. For
a triangle mesh M(V,E,F), the scale-space is retained by an n � jVj
matrix:

MatðMÞ ¼

Et0
v0

Et1
v0
� � � Etn�1

v0

Et0
v1

Et1
v1
� � � Etn�1

v1

..

. ..
. . .

. ..
.

Et0
vm

Et1
vm
� � � Etn�1

vm

0
BBBBB@

1
CCCCCA
: ð11Þ

Here, E is calculated by (8) with the discrete method on each vertex.
Compared to the simple differential of Gaussian curvature [41], the
Ricci energy also takes the evolving conformal factor into account.
Thus, the scale space constructed with Ricci energy (Euclidean) con-
tains more characteristic information and lead to a better feature
representation of the shape data. Each column of the matrix stands
for the surface Ricci energy at scale t. The scale-space has the fol-
lowing properties:

Causality. For 3D objects, recent research in visual saliency sug-
gests that shape features usually appear as curvature variance [41].
For this reason, we identify geometric features as diffused energy
extrema in the scale space. The causality criterion can be estab-
lished by requiring that all minima and maxima of the energy func-
tion belong to the original shape with the scale space.

Scale invariance. In the spirit of discrete geometry, the curva-
tures are defined as vertices, edges and faces. With the Euclidean
background geometry, the edges and faces have no curvature. This
setting let the scale space invariant to the similarity transforma-
tion of the objects.

Besides, based on the parallel structure of the algorithm, the
scale space has the properties of parallelism and flexibility. Thus,
we can introduce image scale space analytical method to process
the geometric scale space [16,22,41].

Once shapes are represented at multiple scales, meaningful fea-
tures can be extracted in a scale-invariant manner which are adap-
tive to the surface geometry. For 2D images, the Laplacian
normalized with the scale parameter t has proved to be a more sta-
ble feature detector, compared to a range of other possible
arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 4. Ricci flow parameterization result of left cortical surface.
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candidates, such as the gradient or Hessian. Let Et be the geometric
representation at scale t. The scale-normalized Laplacian operator
is defined as

DnormEt ¼ t � DgðtÞE
t : ð12Þ

To detect scale-dependent features, DnormEt is required to be the lo-
cal extrema with respect to both space and scale simultaneously.
For a triangular mesh, the discrete Laplacian at vertex vi can be cal-
culated as follows:

DEt
v i
¼ 1

2

X
v j2N1ðv iÞ

ðcot aij þ cot bijÞ Et
v i
� Et

v j

� �
ð13Þ

where N1(vi) is the 1-ring neighbors of vi. aij and bij are the two an-
gles opposite to edge eij.

Consequently, we obtain

DnormMat ¼

t0DEt0
v0

t1DEt1
v0
� � � tn�1DEtn�1

v0

t0DEt0
v1

t1DEt1
v1
� � � tn�1DEtn�1

v1

..

. ..
. . .

. ..
.

t0DEt0
vm

t1DEt1
vm
� � � tn�1DEtn�1

vm

0
BBBBB@

1
CCCCCA
: ð14Þ

Then the feature points are identified as local extrema of the nor-
malized Laplacian of the scale space representation across scale t.
Specifically, it is done by comparing each vertex in the mesh struc-
ture to its 1-ring neighbors at the same scale t and also itself as well
as its 1-ring neighbors at the neighboring scales t � 1 and t + 1. Be-
cause features at small scales could be possibly due to the noise,
those features have been suppressed. Also, we set a threshold of
the magnitude of the scale-normalized Laplacian for another level
of feature selection, when too many features cause visual cluttering.

Taking geodesic scale into consideration, all the feature points
in the geodesic scale of one single coarse feature point at coarse
scales will be treated as one feature point. The scale is delineated
by a center-surrounded geodesic neighborhood UðvÞ of vertex v
under original metric g(0), which is formulated as

Uðv ; tÞ ¼ xjdistðx;vÞ <
ffiffiffiffiffi
2t
p

; x 2 SðtÞ; ð15Þ

where S(t) is the diffused surface at time t, and v is detected as a fea-
ture point at S(t). dist(x,v) is the geodesic distance between point x
and v, estimated under the original metric. Fig. 5 shows the feature
point at different scales on a left hemisphere.
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
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4.2. Ricci energy and feature point based surface registration

Since Ricci energy is an intrinsic property of surface, it is not re-
lated to the position or rotation [3]. Through the algorithm, we can
get the parameterization result with decreased Ricci energy and
conformal factor for each vertex.

For surface registration, we need to seek a mapping P:S1 ? S2

between two surfaces S1 and S2. Instead of seeking a mapping by
using the surfaces directly, we use Ricci energy to represent the
surface. Thus, we can find a mapping by reducing an scale function
between two surfaces:
EshapeðPÞ ¼ ajE1 � E2 � Pj2 þ bjF1 � F2 � Pj2: ð16Þ
Here, E1 and E2 are the Ricci energy calculated from (8) of S1 and S2,
respectively. F1 and F2 are the feature point positions of S1 and S2. a
and b provide a trade-off among the different terms of the function.
The first term measures the geometric information differences be-
tween the shapes, which we define as

P
iðE1ðv iÞ � E2ðv i � PÞÞ2;v i is

the vertex on surface S1, Ei(vi) is the Ricci energy of vi on the surface
Si. The second term measures the feature point differences by using
a scale-dependent representation as the local shape descriptor.
Thus, Eshape measures the difference distance between S1 and S2.
Especially, when Eshape = 0, S1 and S2 become equal up to a rigid
rotation. Besides, by adjusting the parameters (a and b), we can re-
late Eshape with other methods. When b = 0, Eshape measures the Ricci
energy differences between shapes. With a = 0, Eshape is the same as
shape matching with scale-dependent shape descriptor. In our
work, we set a = 1 and b = 0.5 to measure the complex shape varia-
tion. Therefore, the surface map P minimizing Eshape(P) is the best
registration, given the geometry of the surfaces.

In order to simplify the calculation of registration, we use the
Ricci flow-based spherical parameterization to map the surface S
to a simple domain D while keeping the topological connectivity
and the geometrical property. Denoting the parameterizations by
/1:S1 ? D1 and /2:S2 ? D2, D1, D2 2 D, the mapping P minimizing
Eshape can be transferred to a composition mapping
P0 ¼ /2 � P � /�1

1 : D1 ! D2 (Fig. 6). Then, the registration transfers
to a sphere registration problem on the spherical domain D using
(16) as the scale function.

In practice, we introduce Spherical Demons algorithm to solve
our registration problem. It is based on the two-step optimization
of the Demons algorithm and can conduct a good registration in
the spherical domain. In order to minimizing the scale function
arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 5. Feature points distribution on left cortical surface with different scales. Small scale feature is shown in blue with small radii. Large scale feature is shown in red with
big radii. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Mapping relationship between S1 and S2.
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(16), we modify demons objective function to a different
interpretation:

ð� ; P0Þ ¼ arg min
� ;P0

akRðEðS1Þ � EðS2Þ � P0Þk2 þ bkF1 � F2 � P0k2

þ 1
r2

x
distð� ; P0Þ þ 1

r2
T

Regð� Þ ð17Þ

where P0 is the transformation from D1 to D2 and � is a hidden
transformation used in demons algorithm. Then, we can apply the
registration process based on [36].
5. Experimental results

5.1. Spherical parameterization results and discussion

In this section, we evaluate our parameterize algorithm on left
cortical surface with different quality triangulations to show the
conformality and robustness of the parameterization results.

Conformality. From Fig. 4, we can easily see that the topological
connection of vertices keeps the same between original surface and
parameterize sphere. In order to quantitatively measure the con-
formality, we compute the ratio between each corner angle of
the cortical surfaces. The histogram of the ratios is illustrated in
Fig. 7. The ratio is highly concentrated around 1, which means
the algorithm we used achieves a conformal mapping.
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
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Robustness. Fig. 8 shows the Ricci energy distribution on a left
cortical surface with different sampling vertices. We can see that
although the resolution changes, the whole energy distribution
has little change. Our method is robust to capture shape character-
istics for surface matching and registration.

Convergence and Speed. Although the target curvature changes
every step in the method, the whole Ricci energy can still get a
unique global minimum and can converge stably. To show the
computation speed and convergence of our method, we compare
our method with traditional Euclidean Ricci flow [37] with sev-
eral models. In order to process the Euclidean Ricci flow, we se-
lect a vertex as the cutting edge and process the planar
parameterization. All the computation are implemented using
Matlab on a Windows platform desktop with a 2.33-GHz CPU In-
tel Core2 Duo, 2 Gbytes of RAM. Fig. 9 shows the convergence
and computation speed comparison between our method and
the traditional method. From the figure, we can easily see that
the convergence of our method is much faster than the tradi-
tional method.

Our Euclidean Ricci flow method is suitable for spherical
parameterization. Since it is based on Euclidean geometry, we
can easily get the inversive distance matrix while avoiding the
complex calculation of spherical geometry. Based on [3], the
Euclidean Ricci energy is strictly convex, which means our method
can avoid the limitations of the spherical Ricci energy, while
retaining the properties of surface Ricci flow, such as intrinsical-
ness and robustness.

5.2. Scale-dependent feature extraction

Fig. 5 shows the geometric features extracted from the left cor-
tical surface. Each feature is visualized by a sphere centered at the
key points, whose radius is proportional to the corresponding scale
of the feature. Because features at small scales can be possibly due
to the noise, those features have been suppressed.
arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 7. The corner angle ratio between the original angle and the new one after mapping.

Fig. 8. Ricci energy distribution on a left cortical surface with different number of vertices. Left: 11,000. Middle: 7500. Right: 5000.

Fig. 9. Average convergence speed compared between our method and traditional
method using cortical surfaces.
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We test the changes of feature detection under different noises.
Random noises are injected to the surface of the left cortical sur-
face along the normal direction. The noise magnitudes are chosen
from 0%, 10% and 20% of the bounding ball radius. As shown by
Fig. 10, although that small features may vary in locations because
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
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of the injected noises, features detected at larger scales are highly
consistent across all cases, and are robustly detected at same loca-
tions and scales.

5.3. Surface registration results

5.3.1. Experiments
In order to measure the accuracy of the registration, we use a

set of 39 left and right cortical surface models from the NAMIC
public data (http://hdl.handle.net/1926/1728) which are ex-
tracted from in vivo MRI [7]. Both hemispheres are manually
parcellated by a neuroanatomist into 35 major sulci and gyri
(Table 1).

We co-register all 39 cortical surfaces using our framework
by iteratively building an atlas and registering the surfaces to
the atlas. Fig. 11 shows the registration results of four different
left cortical surfaces. Different colors show different cortex la-
bels. From the figure, we can see that our method can register
the cortical surface well. We compute the average dice measure
between each pair of registered subjects. Dice is defined as the
ratio of overlapped cortical surface area with corresponding la-
bels to the total surface area. In another word, Dice between
S1 and S2 is defined as

Dice ¼ AS1\S2

AS1[S2

: ð18Þ

We compare our method with the registration method using sulci
patterns and curvature measures [36]. On the left hemisphere, the
arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 10. Scale-dependent feature extraction at the presence of noise: Left: 0, Middle: 10%, Right: 20%.

Table 1
List of parcellation structures.

1. Sylvian Fissure/Unknown 2. Bank of the Superior Temporal Sulcus 3. Caudal Anterior Cingulate
4. Caudal Middle Frontal Gyrus 5. Corpus Callosum 6. Cuneus
7. Entorhinal 8. Fusiform Gyrus 9. Inferior Parietal Complex
10. Inferior Temporal Gyrus 11. Isthmus Cingulate 12. Lateral Occipital
13. Lateral Orbito Frontal 14. Lingual 15. Medial Orbito Frontal
16. Middle Temporal Gyrus 17. Parahippocampal 18. Paracentral
19. Parsopercularis 20. Parsorbitalis 21. Parstriangularis
22. Peri-calcarine 23. Post-central Gyrus 24. Posterior Cingulate
25. Pre-central Gyrus 26. Pre-cuneus 27. Rostral Anterior Cingulate
28. Rostral Middle Frontal 29. Superior Frontal Gyrus 30. Superior Parietal Complex
31. Superior Temporal Gyrus 32. Supramarginal 33. Frontal Pole
34. Temporal Pole 35. Transverse Temporal

Fig. 11. Registration results of left cortical surface with cortex label mapping.
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Dice is 78.89 for our method and 76.25 for sulci and curvature
data. On the right hemisphere, our method obtains a Dice of
75.20 while the sulci and curvature-based method achieve
74.27. The results confirm that our method provides an improve-
ment on accuracy compared with sulci and curvature-based
method.

We also analyze the registration accuracy for each structure,
respectively. Fig. 12 displays the average Dice per structure for
our method and the sulci and curvature-based method for the left
and right hemispheres. Standard errors of the mean are displayed
as well. Fig. 13 show the percentage Dice improvement over the
sulci and curvature-based method on each structure.

5.3.2. Discussion
These results suggest that our method can statistical signifi-

cantly improve the registration results, especially on the structures
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
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with rich geometry feature points like cuneus (Label 6), Lateral
Occipital (Label 12) and frontal pole (Label 33).

Since Ricci energy is intrinsic for surface and contains Gaussian
curvature information, it can also represent the surface curvature
and sulci information correctly. Besides, conformal factor can gives
the diffusion information of a vertex on the surface. By combining
Ricci energy and conformal factor together, we can better repre-
sent the surface and obtain an improved one-to-one mapping from
the original surface to the sphere domain. The globally optimized
registration can be solved in the spherical domain. We also take lo-
cal geometry features into consideration. The multi-scale geomet-
ric features give more details than curvature especially on tiny
structures, which allows our method to register the local tiny
structure much more accurately. From Fig. 13, we can easily find
out that our method can give a nice improvement on frontal, occip-
ital and temporal lobe.
arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 12. Dice measure for each structure in left hemisphere (a) and right hemisphere (b). Blue columns correspond to our method. Green columns correspond to the sulci and
curvature-based method. ⁄ Indicates structures where our method shows statistically significant improvements. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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6. Surface analysis application

Since our method is dependent only on the surface geometry, it
is suitable to register surfaces which are hard to define the land-
marks, like hippocampus. Here we evaluate our method with 33
hippocampus surfaces from [32], which are from an adult schizo-
phrenia study (mean age 32, all male gender). All cases have been
fully randomized and the group association has been performed
qualitatively/visually to create 2 different groups.

Hippocampus (HP) was first parameterized to sphere and then
registered to each other. Fig. 14 shows the registration results of
two different hippocampi. Fig. 15 shows the Ricci energy distribu-
tion of two groups. We can see that Ricci energy can collectively
capture the global shape information while feature points and their
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
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scale factors can express the local significant property with local
geometry.

After the registration, we construct a GLM to test the group ef-
fect and perform T-test on Ricci energy of each HP surface to ana-
lyze the shape differences between each other. Fig. 16 shows the
significant different area on HP surfaces. By using Ricci energy
and the feature scale factors, we observe that the HP surfaces have
significant difference at the anterior area and the middle area of
the HP, which are in accordance with the clinical acknowledge
on HP with schizophrenia. In [6], the researchers reported local
shape analysis results of hippocampal abnormalities in schizophre-
nia located mainly in the head region, but also, to a minor extent, in
the tail. While in [32], the pattern of shape abnormality shows a
hippocampal shape change in the tail region due to deformation
arameterization and surface registration, Comput. Vis. Image Understand.
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Fig. 13. Percentage dice improvement over the sulci and curvature-based method. Yellow area means better in accuracy. Blue area corresponds to decrease in accuracy.
White area shows no significant changing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Registration results of hippocampi of two groups.

Fig. 15. Normalized Ricci energy distribution on hippocampus.
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Fig. 16. Significance of group difference on HP surfaces with Ricci energy.
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and suggests deformation of the hippocampal tail at a position
where it connects to the fimbria. Our results shows abnormalities
on both head and tail of hippocampus, which indicates that our
method constitutes a very sensitive and accurate shape analysis.
7. Conclusion

In this paper, we have proposed a new way to calculate spher-
ical parameterization based on Euclidean Ricci flow. By adapting
the Gaussian curvature calculation, the computation is much more
efficient and effective than conventional Ricci flow methods while
still retaining the basic properties of the Ricci energy such as
intrinsicalness, robustness and convergence. Built upon the Ricci
energy, we have designed a scale space processing for the extrac-
tion of scale dependent geometry feature points. An integrated
objective function that combines Ricci energy and geometry fea-
tures has been presented for surface matching and registration.
From the experimental results, we can see that our method can
register the cortical surface accurately. We have also applied Ricci
energy to shape analysis on hippocampus. The experimental re-
sults show that Ricci energy is an intrinsic property of surface
and can be used for statistical group analysis of shapes. In the fu-
ture, we will take more surface intrinsic properties into account
for surface feature extraction, registration and analysis. One future
task is to use multivariate scale space instead of Ricci energy alone,
which will locate the surface feature point more precisely and
make the registration for each structure much more accurately.
Acknowledgments

This work is supported in part by 863 Project (2013AA013803),
NSFC (61271151,61228103), NSF (IIS-0915933, IIS-0937586, IIS-
0713315), and NIH (1R01NS058802-01, 2R01NS041922-05). The
author also gratefully acknowledges the support of K.C.Wong Edu-
cation Foundation, Hong Kong.
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
(2013), http://dx.doi.org/10.1016/j.cviu.2013.02.010
References

[1] P. Bowers, K. Stephenson, Uniformizing Dessins and Belyi Maps via Circle
Packing, vol. 170, American Mathematical Society, 2004.

[2] B. Chow, The ricci flow on the 2-sphere, J. Differen. Geomet. 33 (2) (1991) 325–334.
[3] B. Chow, F. Luo, Combinatorial ricci flows on surfaces, J. Differen. Geomet. 63

(1) (2003) 97–129.
[4] M.K. Chung, S.M. Robbins, K.M. Dalton, R.J. Davidson, A.L. Alexander, A.C.

Evans, Cortical thickness analysis in autism with heat kernel smoothing,
NeuroImage 25 (4) (2005) 1256–1265.

[5] C.R. Collins, K. Stephenson, A circle packing algorithm, Comput. Geomet. 25 (3)
(2003) 233–256.

[6] J. Csernansky, L. Wang, D. Jones, D. Rastogi-Cruz, J. Posener, G. Heydebrand, J.
Miller, M. Miller, Hippocampal deformities in schizophrenia characterized by
high dimensional brain mapping, Am. J. Psychiatry 159 (12) (2002) 2000–2006.

[7] A. Dale, B. Fischl, M. Sereno, Cortical surface-based analysis: I. Segmentation
and surface reconstruction, NeuroImage 9 (2) (1999) 179–194.

[8] B. Fischl, M.I. Sereno, A.M. Dale, Cortical surface-based analysis: II. Inflation,
flattening, and a surface-based coordinate system, NeuroImage 9 (2) (1999)
195–207.

[9] M.S. Floater, K. Hormann, Surface parameterization: a tutorial and survey, in:
N.A. Dodgson, M.S. Floater, M.A. Sabin (Eds.), Advances in Multiresolution for
Geometric Modelling. Mathematics and Visualization, Springer, Berlin,
Heidelberg, 2005, pp. 157–186.

[10] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, K. Gopinath, Brain
functional localization: a survey of image registration techniques, IEEE
Trans. Med. Imaging 26 (4) (2007) 427–451.

[11] C. Gotsman, X. Gu, A. Sheffer, Fundamentals of spherical parameterization for
3 d meshes, ACM Trans. Graph. 22 (3) (2003) 358–363.

[12] X. Gu, Y. Wang, T. Chan, P. Thompson, S. Yau, Genus zero surface conformal
mapping and its application to brain surface mapping, IEEE Trans. Med.
Imaging 23 (8) (2004) 949–958.

[13] R. Guo, Local rigidity of inversive distance circle packing, 2009.
arXiv:0903.1401v2.

[14] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, M. Halle,
Conformal surface parameterization for texture mapping, IEEE Trans. Visual.
Comput. Graph. 6 (2) (2000) 181–189.

[15] R. Hamilton, The ricci flow on surfaces, Mathematics and General Relativity:
Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, vol. 71,
American Mathematical Society, 1988, p. 237.

[16] J. Hua, Z. Lai, M. Dong, X. Gu, H. Qin, Geodesic distance-weighted shape vector
image diffusion, IEEE Trans. Visual. Comput. Graph. 14 (2008) 1643–1650.

[17] M.K. Hurdal, K. Stephenson, Cortical cartography using the discrete conformal
approach of circle packings, NeuroImage 23 (Supplement 1) (2004) S119–
S128.

[18] A. Imiya, U. Eckhardt, Discrete mean curvature flow, in: M. Nielsen, P.
Johansen, O. Olsen, J. Weickert (Eds.), Scale-Space Theories in Computer
Vision, Lecture Notes in Computer Science, vol. 1682, Springer, Berlin,
Heidelberg, 1999, pp. 477–482.

[19] M. Jin, J. Kim, X. Gu, Discrete surface ricci flow: theory and applications, in: R.
Martin, M. Sabin, J. Winkler (Eds.), Mathematics of Surfaces XII. Lecture Notes in
Computer Science, vol. 4647, Springer, Berlin, Heidelberg, 2007, pp. 209–232.

[20] M. Jin, J. Kim, F. Luo, X. Gu, Discrete surface ricci flow, IEEE Trans. Visual.
Comput. Graph. 14 (2008) 1030–1043.

[21] L. Ju, M.K. Hurdal, J. Stern, K. Rehm, K. Schaper, D. Rottenberg, Quantitative
evaluation of three cortical surface flattening methods, NeuroImage 28 (4)
(2005) 869–880.

[22] R. Kimmel, Intrinsic scale space for images on surfaces: the geodesic curvature
flow, in: B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.),
Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science,
vol. 1252, Springer, Berlin, Heidelberg, 1997, pp. 212–223.

[23] A. Klein, J. Andersson, B.A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G.E.
Christensen, D.L. Collins, J. Gee, P. Hellier, J.H. Song, M. Jenkinson, C. Lepage, D.
Rueckert, P. Thompson, T. Vercauteren, R.P. Woods, J.J. Mann, R.V. Parsey,
Evaluation of 14 nonlinear deformation algorithms applied to human brain
MRI registration, NeuroImage 46 (3) (2009) 786–802.

[24] B. Lévy, S. Petitjean, N. Ray, J. Maillot, Least squares conformal maps for
automatic texture atlas generation, ACM Trans. Graph. 21 (3) (2002) 362–371.

[25] L. Lui, T. Wong, P. Thompson, T. Chan, X. Gu, S.-T. Yau, Shape-based
diffeomorphic registration on hippocampal surfaces using beltrami
holomorphic flow, in: T. Jiang, N. Navab, J. Pluim, M. Viergever (Eds.),
Medical Image Computing and Computer-Assisted Intervention C MICCAI
2010, Lecture Notes in Computer Science, vol. 6362, Springer, Berlin,
Heidelberg, 2010, pp. 323–330.

[26] O. Lyttelton, M. Boucher, S. Robbins, A. Evans, An unbiased iterative group
registration template for cortical surface analysis, NeuroImage 34 (4) (2007)
1535–1544.

[27] M. Meyer, M. Desbrun, P. Schröder, A. Barr, Discrete differential-geometry
operators for triangulated 2-manifolds, in: VisMath, vol. 2, 2002, pp. 35–57.

[28] K.L. Narr, R.M. Bilder, E. Luders, P.M. Thompson, R.P. Woods, D. Robinson, P.R.
Szeszko, T. Dimtcheva, M. Gurbani, A.W. Toga, Asymmetries of cortical shape: effects
of handedness, sex and schizophrenia, NeuroImage 34 (3) (2007) 939–948.

[29] D. Pantazis, A. Joshi, J. Jiang, D. Shattuck, L. Bernstein, H. Damasio, R. Leahy,
Comparison of landmark-based and automatic methods for cortical surface
registration, NeuroImage 49 (3) (2010) 2479–2493.
arameterization and surface registration, Comput. Vis. Image Understand.

http://refhub.elsevier.com/S1077-3142(13)00065-9/h0005
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0005
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0005
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0010
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0015
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0015
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0020
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0020
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0020
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0025
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0025
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0030
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0030
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0030
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0035
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0035
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0040
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0040
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0040
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0050
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0050
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0050
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0055
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0055
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0060
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0060
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0060
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0065
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0065
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0065
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0075
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0075
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0080
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0080
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0080
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0095
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0095
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0100
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0100
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0100
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0110
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0110
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0110
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0110
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0110
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0115
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0115
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0120
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0125
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0125
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0125
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0130
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0130
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0130
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0135
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0135
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0135
http://dx.doi.org/10.1016/j.cviu.2013.02.010


12 X. Chen et al. / Computer Vision and Image Understanding xxx (2013) xxx–xxx
[30] A. Sheffer, E. Praun, K. Rose, Mesh parameterization methods and their
applications, Found. Trends. Comput. Graph. Visual. 2 (2006) 105–171.

[31] E.R. Sowell, B.S. Peterson, P.M. Thompson, S.E. Welcome, A.L. Henkenius, A.W.
Toga, Mapping cortical change across the human life span, Nat. Neurosci. 6 (3)
(2003) 309–315.

[32] M. Styner, J.A. Lieberman, D. Pantazis, G. Gerig, Boundary and medial shape
analysis of the hippocampus in schizophrenia, Med. Image Anal. 8 (3) (2004)
197–203 (Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2003).

[33] W. Thurston, The Geometry and Topology of Three-Manifolds, Princeton
University, 1979.

[34] D.C. Van Essen, H.A. Drury, S. Joshi, M.I. Miller, Functional and structural
mapping of human cerebral cortex: solutions are in the surfaces, Proc. Nat.
Acad. Sci. 95 (3) (1998) 788–795.

[35] Y. Wang, X. Gu, T. Chan, P. Thompson, S.-T. Yau, Brain surface conformal
parameterization with the ricci flow, IEEE Int. Symp. Biomed. Imag.: From
Nano to Macro (2007) 1312–1315.
Please cite this article in press as: X. Chen et al., Ricci flow-based spherical p
(2013), http://dx.doi.org/10.1016/j.cviu.2013.02.010
[36] B. Yeo, M. Sabuncu, T. Vercauteren, N. Ayache, B. Fischl, P. Golland, Spherical
demons: fast diffeomorphic landmark-free surface registration, IEEE Trans.
Med. Imaging 29 (3) (2010) 650–668.

[37] W. Zeng, D. Samaras, D. Gu, Ricci flow for 3d shape analysis, IEEE Trans. Pattern
Anal. Mach. Intell. 32 (4) (2010) 662–677.

[38] J. Zhong, D.Y.L. Phua, A. Qiu, Quantitative evaluation of lddmm,
freesurfer, and caret for cortical surface mapping, NeuroImage 52 (1) (2010)
131–141.

[39] J. Zhong, A. Qiu, Multi-manifold diffeomorphic metric mapping for aligning
cortical hemispheric surfaces, NeuroImage 49 (1) (2010) 355–365.

[40] B. Zitova, J. Flusser, Image registration methods: a survey, Image Vision
Comput. 21 (11) (2003) 977–1000.

[41] G. Zou, J. Hua, Z. Lai, X. Gu, M. Dong, Intrinsic geometric scale space by shape
diffusion, IEEE Trans. Visual. Comput. Graph. 15 (2009) 1193–1200.
arameterization and surface registration, Comput. Vis. Image Understand.

http://refhub.elsevier.com/S1077-3142(13)00065-9/h0140
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0140
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0145
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0145
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0145
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0150
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0150
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0150
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0150
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0155
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0155
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0155
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0160
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0160
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0160
http://refhub.elsevier.com/S1077-3142(13)00065-9/h00151
http://refhub.elsevier.com/S1077-3142(13)00065-9/h00151
http://refhub.elsevier.com/S1077-3142(13)00065-9/h00151
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0165
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0165
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0165
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0170
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0170
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0175
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0175
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0175
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0180
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0180
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0185
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0185
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0190
http://refhub.elsevier.com/S1077-3142(13)00065-9/h0190
http://dx.doi.org/10.1016/j.cviu.2013.02.010

	Ricci flow-based spherical parameterization and surface registration
	1 Introduction
	2 Mathematical background
	2.1 Riemannian metric and curvature
	2.2 Surface Ricci flow
	2.3 Discrete geometry and Ricci flow

	3 Ricci flow based spherical parameterization
	3.1 Circle packing matrix and target curvature
	3.2 Ricci energy optimization
	3.3 Embedding

	4 Surface registration based on Ricci energy
	4.1 Scale-dependent feature extraction
	4.2 Ricci energy and feature point based surface registration

	5 Experimental results
	5.1 Spherical parameterization results and discussion
	5.2 Scale-dependent feature extraction
	5.3 Surface registration results
	5.3.1 Experiments
	5.3.2 Discussion


	6 Surface analysis application
	7 Conclusion
	Acknowledgments
	References


