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Abstract—With the rapid growth of the World Wide Web and electronic information services, text corpus is becoming available on-
line at an incredible rate. By displaying text data in a logical layout (e.g., color graphs), text visualization presents a direct way to
observe the documents as well as understand the relationship between them. In this paper, we propose a novel technique, Exemplar-
based Visualization (EV), to visualize an extremely large text corpus. Capitalizing on recent advances in matrix approximation and
decomposition, EV presents a probabilistic multidimensional projection model in the low-rank text subspace with a sound objective
function. The probability of each document proportion to the topics is obtained through iterative optimization and embedded to a low
dimensional space using parameter embedding. By selecting the representative exemplars, we obtain a compact approximation of the
data. This makes the visualization highly efficient and flexible. In addition, the selected exemplars neatly summarize the entire data
set and greatly reduce the cognitive overload in the visualization, leading to an easier interpretation of large text corpus. Empirically,
we demonstrate the superior performance of EV through extensive experiments performed on the publicly available text data sets.

Index Terms—Exemplar, large-scale document visualization, multidimensional projection.

1 INTRODUCTION

With the rapid growth of the World Wide Web and electronic informa-
tion services, text corpus is becoming available on-line at an incredible
rate. No one has time to read everything, yet in many applications we
often have to make critical decisions based on our understanding of
large document collections. For example, when a physician prescribes
a specific drug, he frequently needs to identify and understand a com-
prehensive body of published literature describing an association be-
tween the drug of interest and an adverse event of interest. Thus, text
mining, a technique of deriving high-quality knowledge from text, has
recently drawn great attention in the research community. Research
topics in text mining include, but not limited to, language identifica-
tion, document clustering, summarization, text indexing and visualiza-
tion. In particular, text visualization refers to the technology that dis-
plays text data or mining results in a logical layout (e.g., color graphs)
so that one can view and analyze documents easily and intuitively. It
presents a direct way to observe the documents as well as understand
the relationship between them. In addition, visualization allows peo-
ple to explore the inside logic of the model and offers users a chance
to interact with the mining model so that questions can be answered.

In general, it is convenient to transform document collections into
a data matrix [5], where the columns represent documents and the row
vectors denote keyword counting after pre-processing. Thus, textual
data sets have a very high dimensionality. A common way of visual-
izing text corpus is to map the raw data matrix into a d-dimensional
space with d = 1,2,3 by employing dimensionality reduction tech-
niques. The objective is to preserve in the projected space the distance
relationships among the documents in their original space. Depend-
ing on the choice of mapping functions, both linear (e.g., principle
component analysis (PCA) [13]) and nonlinear (e.g., ISOMAP [24])
dimensionality reduction techniques have been proposed in the liter-
ature. Facing the ever-increasing amount of available documents, a
major challenge of text visualization is to develop scalable approaches
that are able to process tens of thousands of documents. First, from
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a computational point of view, large text corpus significantly raises
the bar on the efficiency of an algorithm. For a collection of more
than ten thousand documents, typical data projection methods, such
as PCA, will fail to run due to insufficient memory. Second, since
all documents are shown at once in the resulting space, overlaps of
highly related documents are inevitable. Hierarchical clustering-based
methods can partially solve the memory problem and produce a tree
structure for document exploration. However, these algorithms run ex-
tremely slow. More important, they are not mathematically rigorous
due to lacking a well defined objective function. Finally, knowledge
or information is usually sparsely encoded in document collections.
Thus, main topics of a text corpus are more accurately described by a
probabilistic model [10]. That is, a document is modeled as a mixture
of topics, and a topic is modeled based on the probabilities of words.

In the paper, we propose an Exemplar-based approach to Visual-
ize (EV) extremely large text corpus. Capitalizing on recent advances
in matrix approximation and decomposition, our method provides a
means to visualize tens of thousands of documents with high accu-
racy (in retaining neighbor relations), high efficiency (in computa-
tion), and high flexibility (through the use of exemplars). Specifically,
we first computes a representative text data subspace C and a low-
rank approximation X̃ by applying the low-rank matrix approximation
method. Next, documents are clustered through the matrix decompo-
sition: X̃ = CWGT , where W is the weight matrix, and G is the cluster
indicator matrix. To reduce the clutter in the visualization, the exem-
plars in each cluster are first visualized through Parameter Embedding
(PE) [11], providing an overview of the distribution of the entire doc-
ument collection. When desired, on the clicking of an exemplar, doc-
uments in the associated cluster or in a user-selected neighborhood are
shown to provide further details. In addition, hierarchical data explo-
ration can also be implemented by recursively applying EV in an area
of interest.

In summary, a novel method is proposed here to visualize large doc-
ument data sets in the low-rank subspace. From a theoretical perspec-
tive, EV presents a probabilistic multidimensional projection model
with a sound objective function. Based on the rigorous derivation, the
final visualization is obtained through iterative optimization. By se-
lecting the representative rows and columns, EV obtains a compact
approximation of the text data. This makes the visualization efficient
and flexible. In addition, the selected exemplars neatly summarize the
document collection and greatly reduce the cognitive overload in the
visualization, leading to an easier interpretation of the text mining re-
sults. Through extensive experiments performed on the publicly avail-
able text data sets, we demonstrate the superior performance of EV
when compared with existing techniques. The remainder of the pa-
per is organized as follows. We first review related work in Section 2.
Then, we present our algorithm in Section 3. In Section 4, we provide



thorough experimental evaluation. Finally, we conclude in Section 5.

2 RELATED WORK

Visualization enables us to browse intuitively through huge amounts of
data and thus provides a very powerful tool for expanding the human
ability to comprehend high dimensional data. A number of different
techniques [21, 3, 5] were proposed in the literature for visualizing a
large data set, among which multidimensional projection is the most
popular one. In document visualization, let X = {x1,x2, ..xn} ∈ Rm×n

be a word-document matrix where columns represent the documents
and rows denote the words appearing in them. In other words, the
documents are treated as vectors with word frequency as their fea-
tures. Multidimensional projection is to find the embedding of doc-
uments Y = {y1,y2, ..yn} ∈ Rd×n in the visualization space, usu-
ally d = {1,2,3} and minimize |δ (xi,x j)−D( f (xi), f (x j))|, where
δ (xi,x j) is the original dissimilarity distance and D( f (xi), f (x j)) is
the Euclidean distance between the corresponding two points in the
projected space, and f : X→ Y is a mapping function [23].

In general, multidimensional projection techniques [13, 4, 24, 20]
can be divided into two major categories based on the function f em-
ployed: Linear Projection methods and Non-linear Projection meth-
ods. Linear projection creates an orthogonal linear transformation that
transforms the data to a new coordinate system such that the new
variable is a linear combination of the original variables. Among
such techniques, the widely known is PCA [13]. PCA finds a low-
dimensional embedding of the data points that best preserves their
variance as measured in the high-dimensional input space.

However, many data sets contain essential nonlinear structures that
are invisible to PCA. For those cases, non-linear projection methods,
using information not contained in the covariance matrix, are more
appropriate. Several approaches, such as multidimensional scaling
(MDS) [4] and ISOMAP [24], have been proposed for reproducing
nonlinear higher-dimensional structures on a lower-dimensional dis-
play, and they differ in how the distances are weighted and how the
functions are optimized. Classical MDS produces a low-dimensional
representation of the objects such that the distances (e.g., the Eu-
clidean distance (L2 norm), the manhattan distance (L1, absolute
norm), and the maximum norm) among the points in the new space
reflect the proximities of the data in the original space. MDS is equiv-
alent to PCA when the distance measure is Euclidean. ISOMAP ex-
tends metric MDS by incorporating the geodesic distances defined as
the sum of edge weights along the shortest path between two nodes in
a weighted graph (e.g., computed using Dijkstra’s algorithm). Then,
the top d eigenvectors of the geodesic distance matrix are used to rep-
resent the coordinates in the new d-dimensional Euclidean space. The
most recently developed text visualization systems based on the above
traditional projection techniques include Infosky 1 and IN-SPIRE 2.

Although current multidimensional projection techniques can ex-
tract a low-dimensional representation of a document based on the
word frequency, most of them take no account of the latent struc-
ture in the given data, i.e., topics in the document collection. To this
end, Least Square Projection (LSP) [17] first chooses a set of control
points using k-medoids method [1] based on the number of topics and
then obtains the projection through the least square approximation, in
which the data are projected following the geometry defined by the
control points. Recently, incorporating probabilistic topic models into
analyzing documents has attracted great interest in the research com-
munity [12] since it can provide a higher quality (i.e., more meaning-
ful) visualization. In Probabilistic Latent Semantic Analysis (PLSA)
[10], a topic is modeled as a probability distribution over words, and
documents with similar semantics (i.e., topics) are embedded closely
even if they do not share any words. The topic proportions estimated
by PLSA can be embedded in the Euclidean space by Parametric Em-
bedding (PE) [11], which employs a set of topic proportions as the
input. Consequently, the documents that tend to be associated with the

1http://www.infovis-wiki.net/index.php?title=InfoSky
2http://in-spire.pnl.gov

same topic would be embedded nearby, as would topics that tend to
have the similar documents associated with them.

Unfortunately, all the aforementioned methods are inapplicable to
visualize an extremely large-scale text corpus. When dealing with tens
of thousands of documents, for example, PCA will fail to run due to
insufficient memory and the high computational cost of solving the
eigen problem. Similarly, PLSA model is also computationally ex-
pensive. Actually, all of the above models have a time complexity
greater than O(n). The ever-increasing online document collections
present unprecedented challenges for the development of highly scal-
able methods that can be implemented in a linear polynomial time.
Therefore, hierarchical-clustering based visualization methods [9, 16]
are proposed to partially solve the memory and computation problem,
in which a hierarchical cluster tree is first constructed using a recursive
partitioning process, and then the elements of that tree are mapped to
the d-dimensional space to create a visual representation. However,
these methods are derived intuitively, lacking a mathematically rigor-
ous objective function to minimize f . In addition, all determinations
are strictly based on local decisions, and the deterministic nature of the
hierarchical techniques prevents reevaluation after points are grouped
into a node of tree. Therefore, an incorrect assignment made earlier in
the process may not be modified, and the optimal hierarchy has to be
found through reconstruction.

In order to achieve high accuracy with low computational cost for
visualizing large-scale data sets, we present a novel method, called
Exemplar-based Visualization (EV). In the following, we will derive
a theoretically sound algorithm for EV and apply it to visualize large
document corpus.

3 EXEMPLAR-BASED VISUALIZATION

In this section, we first present the EV model and derive the algorithm
in Section 3.1. Then, we give some theoretical results in Section 3.2,
including the correctness and convergence of the algorithm, time and
space complexity analysis, and advantages of EV when compared with
other visualization models.

3.1 Model Formulation and Algorithm
The proposed EV model takes a three-step approach to visualize large-
scale text corpus. First, low rank matrix approximation is employed
to select the representative subspaces and generate the compact ap-
proximation of the word-document matrix Xm×n. Among various ma-
trix approximation methods, near-optimal low-rank approximation has
gained increasing popularity in recent years due to its great computa-
tional and storage efficiency. The representative ones include Algo-
rithm 844 [2], CUR [18] and CMD [22]. Typically, a near-optimal
low-rank approximation algorithm first selects a set of columns C and
a set of rows R as the left and right matrices of the approximation.
Then, the middle matrix U is computed by minimizing ‖X−CUR‖2

F .
Thus, at the end of the first step, we obtain the low-rank approximation
X̃ = CUR, the representative subspaces C (data exemplar set) and R
(feature set).

In the second step, we need to obtain the “soft” cluster indicators in
the low-rank exemplar subspace, representing the probability of each
document proportion to the topics in the topic model [7]. We formulate
this task as an optimization problem,

J = min
W≥0,G≥0

‖X̃−CWGT ‖2
F (1)

= Tr(X̃T X̃− X̃T CWGT −GWT CT X̃+GWT CT CWGT )

where W is the weight matrix and G is the cluster indicator matrix
with each element gih ∈ [0,1], indicating the probability distribution
over topics for a particular document. In the optimization process,
we propose an iterative algorithm to get non-negative W and G while
fixing arbitrarily signed C and X̃. The updating rules are obtained by
using the auxiliary functions and the optimization theory:

W(i,h) ←W(i,h)

√√√√ (A1
+G)(i,h) +(A3

−WGT G)(i,h)

(A1
−G)(i,h) +(A3

+WGT G)(i,h)

(2)



G(i,h) ←G(i,h)

√√√√ (A2
+W)(i,h) +(GWT A3

−W)(i,h)

(A2
−W)(i,h) +(GWT A3

+W)(i,h)

(3)

where A1 = CT X̃, A2 = X̃T C and A3 = CT C.
The third step is to use PE [11] to embed documents into a low-

dimensional Euclidean space such that the input probabilities G =
p(Lh|xi) (where L is the topic label of a document) are approxi-
mated as closely as possible by the embedding-space probabilities
p(Lh|yi). The objective is to minimize the difference between input
probabilities and the corresponding embedding-space probabilities us-
ing a sum of Kullback-Leibler (KL) divergences for each document:
∑n

i=1 KL(p(Lh|xi)‖p(Lh|yi)). Minimizing this sum ∑z
h=1 p(Lh|yi) is

equivalent to minimizing the following sum of KL divergences:

E(yi,φh) =−
n

∑
i=1

z

∑
h=1

p(Lh|xi) log p(Lh|yi) (4)

The unknown parameters, a set of coordinates of documents yi and
coordinates of topics φh in the embedding space, can be obtained with
a gradient-based numerical optimization method. The gradients of
Equation (4) with respect to yi and φh are:

∂E
∂yi

=
z

∑
h=1

(p(Lh|xi)− p(Lh|yi))(yi−φh) (5)

∂E
∂φh

=
n

∑
i=1

(p(Lh|xi)− p(Lh|yi))(φh−yi) (6)

Thus, we can find the locally optimal solution for embedding coordi-
nates yi for each document given φh.

The complete EV algorithm is given in Algorithm 1.

Algorithm 1 Exemplar-based Visualization
INPUT: word-document matrix X ∈ Rm×n, selected number of documents and words
r,c ∈ Z+ s.t.1≤ r ≤ m, 1≤ c≤ n, number of topics z ∈ Z+ s.t. 1≤ h≤ z, and the label
set of topics Lz

h=1
OUTPUT: Visualization of documents Y = {yi} ∈ Rd×n (1 ≤ i ≤ n) in the embedding
space

1. Use a near-optimal low-rank approximation method to get Cm×c, Uc×r , Rr×n and
X̃m×n;

2. Initialize W and G with non-negative values;

3. Iterate by the following updating rules for each i and h until convergence;

(a) Let A1 = CT X̃, A2 = X̃T C and A3 = CT C, then split each matrix into the
positive and negative parts:

A+
q = (|Aq|+Aq)/2; A−

q = (|Aq|−Aq)/2;

where q ∈ {1,2,3};

(b)

W(i,h) ←W(i,h)

√√√√ (A1
+G)(i,h) +(A3

−WGT G)(i,h)

(A1
−G)(i,h) +(A3

+WGT G)(i,h)

G(i,h) ←G(i,h)

√√√√ (A2
+W)(i,h) +(GWT A3

−W)(i,h)

(A2
−W)(i,h) +(GWT A3

+W)(i,h)

4. Normalize cluster indicator G = p(Lh|xi) such that ∑z
h=1 p(Lh|xi) = 1;

5. Use parameter embedding to obtain the embedding-space coordinates yi for each
document.

3.2 Theoretical Analysis
In this section, we first show that our algorithm is correct and con-
verges under the updating rules given in Equations (2)-(3). In addition,
we show the efficiency of EV by analyzing its space and time require-
ments. Finally, we point out the advantages of EV when compared
with other visualization methods.

3.2.1 Correctness and Convergence of EV
The correctness and convergence of the EV algorithm can be stated as
the following two propositions.

Proposition 1 (Correctness of EV) Given the object function of
Equation (1), the constrained solution satisfies KKT complementary
conditions under the updating rules in Equations (2)- (3).

Proposition 2 (Convergence of EV) The object function of Equation
(1) is monotonically decreasing under the updating rules in Equations
(2)- (3).

Due to the space limit, we give an outline of the proof of the propo-
sitions and omit the details. Motivated by [6], we plan to render
the proof based on optimization theory, auxiliary function and sev-
eral matrix inequalities. First, following the standard theory of con-
strained optimization, we fix one variable G and introduce the La-
grangian multipliers λ1 and λ2 to minimize the Lagrangian function
L(W,G,λ1,λ2) = ‖X̃−CWGT ‖2

F −Tr(λ1W)−Tr(λ2GT ). Second,
based on the KL complementarity condition, we set the gradient de-
scent of ∂L

∂W to be zero while fixing G. Then, we successively up-
date W using Equation (2) until J converges to a local minima. Sim-
ilarly, given W, we can set ∂L

∂G to be zero and update G using Equa-
tion (3) until J converges to a local minima. W and G should up-
date alternatively. Third, we construct auxiliary functions to prove
that Equation (1) decreases monotonically under the updating rules.
An auxiliary function Z(Wt+1,Wt) should satisfy the two conditions:
Z(Wt+1,Wt) ≥ J(Wt), and Z(Wt ,Wt) = J(Wt) for any Wt+1 and
Wt . We define Wt+1 = minW Z(W,Wt), then we obtain the follow-
ing equation J(Wt) = Z(Wt ,Wt) ≥ Z(Wt+1,Wt) ≥ J(Wt+1). Thus,
with a proper auxiliary function, J(Wt) is decreasing monotonically.
Similarly, we can also prove J(Gt) is decreasing monotonically under
an appropriate auxiliary function.

3.2.2 Time and Space Complexity
To visualize a large data set, efficiency in both space and speed is
essential. In the following, we provide detailed analysis on the time
and space complexity of EV. To simplify the analysis, we assume n =
m and r = c though they are not necessarily equal in the algorithm.

In Algorithm 1, the near-optimal matrix approximation is very effi-
cient, having time complexity of O(nc2). Details are given in [2]. In
the decomposition step, even though X̃ is used in the description of
the algorithm, the computation is actually done using the three small
matrices, C, U and R. Specifically, we first need to compute A1, A2
and A3 with the following time,

A1 :c(n× c+ c2 + c×n)

A2 :c(n× c+ c2 + c×n)

A3 :c2n

Then, we need to compute W and G in Equations (2) and (3). Assum-
ing that the number of iteration t = 1, the time for computing W and
G are,

W :2(c2z+ cz2 + z2n+ cnz)

G :2(c2z+ cz2 + z2n+ cnz)

Thus, the total time for matrix decomposition is O(c2n+(c2z+ z2n+
cnz)). In addition, the time complexity of PE is O(nz). Since z ¿
min(c,n) and c¿ n, the overall computational complexity is O(n).

Regarding the space complexity, EV needs 2cn + c2 units to store
C, U and R, and needs cz and nz units for W and G, respectively. In
addition, the temporal storage for computing Aq and updating W and
G require O(cn) units. Since c¿ n, the total space used is O(n).

In summary, both the time and space complexity of EV are linear,
and thus it is highly scalable, suitable for visualizing a very large doc-
ument collection.



3.2.3 Advantages of EV

From a theoretical point of view, EV has the following unique proper-
ties for visualizing large-scale text corpus when compared with other
visualization methods:

• Accuracy: EV is a probabilistic multidimensional projection
model with a well-defined objective function. Through iter-
ative optimization, it can preserve the proximity in the high-
dimensional input space and thus provide accurate visualization
results.

• Efficiency: EV has a high computational and spacial efficiency,
and thus it is especially useful to visualize large document data.
Compared with the time complexity of other visualization ap-
proaches, EV has a linear running time. Moreover, EV only
needs to compute the non-zero entries of the approximation ma-
trix, which further reduces the computational time for a sparse
matrix (e.g., word-document matrix). EV also has the space
complexity of O(n) while other algorithms typically require
O(n2) storage units.

• Flexibility: EV decomposes a word-document matrix into three
matrices with the representative data subspace C, which contains
the exemplar documents from the collection. By choosing the
subspace dimensions, EV can visualize text corpus with different
granularity, effectively reducing the clutter/overlap in the layout
and cognitive overload.

4 EXPERIMENTS

In this section, we compared EV with PLSA+PE, LSP, ISOMAP, MDS
and PCA for visualizing text data sets. Specifically, we implemented
two EV models: EV-844 and EV-CUR, in our experiments. In EV-844,
Algorithm 844 [2] is used to successively select a column or row at a
time with the largest norm from text data, resulting in a unique sub-
space; while EV-CUR uses CUR [18] to pick the representative sam-
ples based on their probability distributions computed by the norms.
Note that duplicates may exist in the CUR subspace because the sam-
ples with large norms are likely to be selected more than once. In the
following, Section 4.1 gives the details of the data sets we used. In
Section 4.2, we discussed the quantitative evaluation methods used to
report the experimental results. On several public text data sets (in-
cluding two large ones with 18,864 and 15,565 documents, respec-
tively), we demonstrated the superior visualization results by EV in
Section 4.3, in which we also compared the computational speed of all
the algorithms.

4.1 Data Sets

For the experiments on document visualization, we used the 20News-
groups data [14] and 10PubMed data.

20Newsgroups data consists of documents in the 20 Newsgroups
corpus. The corpus contains 18,864 articles categorized into 20 dis-
cussion groups 3 with a vocabulary size 26,214. Note that at its full
size the data here is too large to be processed by all the algorithms
except EV. In order to make the comparison with existing methods,
we constructed two subsets of 20Newsgroups through uniform random
sampling: 20Newsgroups-I and 20Newsgroups-II, shown in Table 1.

10PubMed data consists of published abstracts in the MEDLINE
database 4 from 2000 to 2008, relating to 10 different diseases. We
used “MajorTopic” tag along with the disease-related MeSH terms as
queries to MEDLINE. Table 2 shows the 10 document sets (15,565
documents) retrieved. From all the retrieved abstracts, the common
and stop words are removed, and the words are stemmed using Porter’s
suffix-stripping algorithm [19]. Finally, we built a word-document ma-
trix of the size 22437×15565.

3http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
4http://www.ncbi.nlm.nih.gov/pubmed/

Table 1. Summary of data subsets from 20Newsgroups used in the
experiments.

Data Name Groups No. Docs Total
per Group Docs

20Newsgroups-I {comp.sys.ibm.pc.hardware}, 100 300
{rec.sport.baseball},{sci.med}

20Newsgroups-II all 20 groups 50 1000

Table 2. Summary of 10Pubmed data used in the experiments.

Document Name No. of Docs
1 Gout 543
2 Chickenpox 732
3 Raynaud Disease 343
4 Jaundice 503
5 Hepatitis A 796
6 Hay Fever 1517
7 Kidney Calculi 1549
8 Age-related Macular Degeneration 3283
9 Migraine 3703

10 Otitis 2596

4.2 Evaluation Measurement
We evaluated the visualization results quantitatively based on the label
predication accuracy with the k-nearest neighbor (k-NN) method [8] in
the visualization space. Documents are labeled with discussion groups
in the 20Newsgroups data, and with disease names in the 10PubMed
data. Majority voting among the training documents in the k neighbors
of a test document is used to decide its predicted label. The accuracy
generally becomes high when documents with the same label are lo-
cated together while documents with different labels are located far
away from each other in the visualization space.

Quantitatively, the accuracy AC(k) is computed as,

AC(k) =
1
n

n

∑
i=1

I(li, l̂k(yi)), (7)

where n denotes the total number of documents in the experiment, li
is the ground truth label of the ith document, l̂k(yi) is the predicted
label by k-NN in the embedding space, and I is the delta function that
equals one if l̂k(yi) = li, and zero otherwise.

4.3 Results
First, on the data sets 20Newsgroups-I and 20Newsgroups-II we com-
pared the neighbor-preserving accuracy in two-dimensional visual-
ization generated by EV-844, EV-CUR, PLSA+PE, LSP, ISOMAP,
MDS, and PCA. Through uniform random sampling, we created 10
independent evaluation sets for each data set, with given number of
topics (3 for 20Newsgroups-I and 20 for 20Newsgroups-II) and doc-
uments (100 for 20Newsgroups-I and 50 for 20Newsgroups-II). The
average accuracy values are obtained using k-NN over the 10 sets with
k = {1,2, ...,50}, shown in Figure 1.

Generally, the AC values obtained by the seven methods are higher
for a small number of topics (e.g., z=3 in Figure 1(a)) than those with a
large number of topics (e.g., z=20 in Figure 1(b)). Moreover, the accu-
racy achieved by the topic models (i.e., EV-844, EV-CUR, PLSA+PE
and LSP) is significantly higher than the traditional projection meth-
ods (i.e., PCA, MDS and ISOMAP). These results indicate that topic
information is very helpful for the data visualization. When visual-
izing real-world text corpus, particularly the ones collected from the
World Wide Web, the number of topics is typically unknown and thus
has to be estimated through topic model detection. Some well-known
approaches include Bayesian Inference Criteria (BIC) and Minimum
Message Length (MML). A detailed discussion of model detection can
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Fig. 1. Accuracy with k-NN in the two-dimensional visualization space with differ-
ent k: (a) 20Newsgroups-I (3 topics), (b) 20Newsgroups-II (20 topics).

be found in [15]. In our experiments, the number of topics for all the
topic models is simply set based on the ground truth. Another im-
portant observation from Figure 1 is that EV-844 constantly provides
a higher accuracy value than EV-CUR. This is mainly because Algo-
rithm 844 selects unique columns (exemplars) while CUR may choose
replicated ones to build the subspace. Thus, we used EV-844 in the rest
of our experiments and referred it to EV without special mention. Fi-
nally, as shown in Figure 1(a), the two probabilistic topic models (i.e.,
EV and PLSA+PE) have comparable performance on 20Newsgroups-
I. However, as the number of topics increases, EV clearly outperforms
PLSA+PE on 20Newsgroups-II in Figure 1(b). These results imply
that EV can appropriately embed documents in a two-dimensional
Euclidean space while keeping the essential relationship of the doc-
uments, especially for a data set with a large number of topics.

Figures 2 and 3 show the visualization results obtained by EV,
PLSA+PE, LSP, ISOMAP, MDS, and PCA on 20Newsgroups-I and
20Newsgroups-II, respectively. Here, each point represents a docu-
ment, and the different color shapes represent the topic labels. For
example, there are three different color shapes in Figure 2, represent-
ing three groups of news: black diamond for “comp.sys.ibm.pc”, green
triangle for “rec.sport.baseball” and red circle for “sci.med”. In the EV
visualization (Figure 2(f)), documents with the same label are nicely
clustered together while documents with different labels tend to be
placed far away. In PLSA+PE and LSP (Figures 2(e) and (d)), docu-
ments are located slightly more mixed than those in EV. On the other
hand, with PCA, MDS and ISOMAP (Figures 2(a)-(c)), documents
with different labels are mixed, and thus the AC values of the corre-
sponding layout are very low. These results also imply that the topic

Table 3. Comparison of computation time (in seconds) for: EV,
PLSA+PE, PCA, LSP, MDS and ISOMAP. A cross x indicates that an
algorithm does not provide a result in a reasonable time.

Data size EV PLSA+PE PCA LSP MDS ISOMAP
n O(n) O(n2) O(n2) O( f (n,s)) O(n3) O(n3)

1×103 0.49 0.42 0.40 15.25 20.48 200.05
2×103 0.95 1.50 1.36 30.40 216.62 1611.72
3×103 1.43 3.20 2.24 80.62 801.30 x
4×103 1.93 5.49 3.78 160.10 1881.00 x
5×103 2.55 8.38 x x x x
1×104 5.79 x x x x x

models generally provide better visualization layout. Figures 3(a)-(f)
show 20-topic news groups visualized by the six methods. Similarly,
EV provides the best view since news in similar topics are closer while
news of distinct topics are placed further away.

As discussed earlier, by choosing the dimension of the subspace,
EV can visualize documents with different granularity and enhance
the interpretability of the visualization. In Figures 2(g)-(i) and 3(g)-
(i), the representative documents selected in the low-rank subspace
are embedded in a two-dimensional layout, for 20Newsgroups-I and
20Newsgroups-II, respectively. In Figures 2(g)-(i), we provided a se-
ries of visualization for 20Newsgroups-I, from the most abstract view
to the visual layout with considerate amount of details as the number
of selected exemplars increases from 10 to 40. This result demon-
strates that EV can use exemplars to summarize the distribution of
the entire document collection. Similarly, Figures 3(g)-(i) illustrate
the visualization from abstract to details when the number of exem-
plars increases from 100 to 400 in 20Newsgroups-II. In these figures,
the overlapping in the original layout (Figure 3(f)) is greatly reduced,
making users easier to understand the relations between news docu-
ments.

Second, we compared the computational speed of the six visualiza-
tion methods: EV, PLSA+PE, PCA, LSP, MDS and ISOMAP. From a
theoretical perspective, the time complexity of EV is O(n), PLSA+PE
and PCA are O(n2), LSP is O( f (n,s)) = O(max{n

3
2 ,n
√

s}), and
MDS and ISOMAP are O(n3), where n is the number of documents
and s is the condition number in LSP. Our experiments are performed
on a machine with Quad 3GHz Intel Core2 processors and 4GB RAM.
In order to compare under the same condition, the running time are re-
ported based on a single iteration if an algorithm uses the iterative
approach. Table 3 summarizes the computation time in seconds for
all six methods with increasing number of documents. From Table
3, EV clearly is the quickest among the six, followed by PLSA+PE
and PCA, while the computing time of LSP, MDS and ISOMAP in-
creases quickly with the number of documents. More important, we
observed that some algorithms fail to provide a result within a reason-
able time for relatively large document sets. Specifically, ISOMAP is
the slowest and cannot give a result when the matrix contains more
than 3,000 documents due to insufficient memory. When we have
more than 10,000 samples, only EV can provide a result within a rea-
sonable computation time, while all other methods fail (indicated by
a cross x in the table). Clearly, EV is suitable to visualize large text
corpus we are increasingly facing these days thanks to its high com-
putational efficiency.

We also developed an Exemplar-based Visualization software tool
to offer a range of functions of creating visualization with user-
specified configuration and thus supporting visual exploration of doc-
ument data. First, when choose “View All” menu, the system can
show all the documents at once for the 20Newsgroups and 10PubMed
data sets. In this case, EV is the only one among the six algorithms
that can produce a projection in a reasonable time. For example,
Figure 4(a) shows visualization by EV for the 18,864 documents in
20Newsgrups. Again, each point represents a document, and the dif-
ferent color shapes represent the topic labels. Note that it is diffi-
cult to see the details because the number of documents is very large,



leading to extremely heavy overlapping. If one clicks “View Ex-
emplars” and sets the number of exemplars at 1,000, Figure 4(b)
shows the representative documents selected by EV to summarize the
whole document collection. Clearly, the cognitive overload and se-
rious overlapping are greatly reduced. Here, a big color shape in-
dicates the mean coordinate of documents for one group, calculated
by µl = 1

nl
∑n

i=1 I(li = l))yi, where nl is the number of documents
labeled with l. Obviously, documents with the same label are clus-
tered together, and similar documents with closely related labels are
placed nearby, such as “comp.graphics’, “comp.os.ms.windows.misc’
and “comp.windows.x” in the “computer” category, or “rec.autos”,
“rec.motorcycles”, “rec.sport.baseball” and “rec.sport.hockey” in the
“recreation” news group. Based on the visualized exemplars, EV pro-
vides several additional options for a user to further explore the data
set. For example, on the click of “View Clusters”, a magnified lay-
out of all corresponding documents in the groups of “comp.graphics”,
“comp.os.ms.windows.misc” and “comp.windows.x” is given in Fig-
ure 4(c), which provides further details. Similarly, a user can specify a
neighborhood (the rectangle in Figure 4(b)), clicking “Zoom In” will
generate a magnified view of all or representative documents in the
selected area. Also, if desired, further clustering and visualization can
be performed in an area of interest, leading to a hierarchical structure
for data exploration.

Figure 5 shows the exemplar-based visualization for the 15,565
documents in the 10PubMed data set. Exemplars and means of
10PubMed data illustrated in Figure 5(a) help us gain a better under-
standing on the distribution and relations of these documents. It is
clear that documents with same disease are likely to be located closely
while documents with different diseases are moved further away. We
noticed that there is less overlapping in the 10PubMed data set than in
20Newsgroups. One reason is that the number of topics in 10PubMed
is less than in 20Newsgroups while another one is that the abstracts
in the literature for various diseases is actually easier to be separated
than the documents in different news groups. The average value of
AC is about 60% in the 10PubMed data set; it is only approximately
30% in 20Newsgroups. If desired, users can further explore the data
set by clusters. In Figure 5(b), documents related to two diseases
(“Gout” and “Chickenpox”) are shown, where the selected exemplars
(100 in total) are emphasized by the bigger black shapes. First, our
method provides a clear visualization with little clutter. Second, users
can quickly browse the large document collection by reading only
the representative documents (exemplars) in each cluster. The actual
time required by EV to produce visualization for 20Newsgroups and
10PubMed (with 1,000 exemplars and 1,000 iterations) are 30 and 25
minutes, respectively. These results clearly show that EV provides a
very powerful tool for visualizing large text data sets.

5 CONCLUSIONS AND FUTURE WORK

In the paper, we propose an Exemplar-based approach to Visualize
(EV) extremely large text corpus. In EV, a representative text data
subspace is first computed from the low-rank approximation of the
original word-document matrix. Then, documents are soft clustered
using the matrix decomposition and visualized in the Euclidean em-
bedding space through parameter embedding. By selecting the repre-
sentative documents, EV can visualize tens of thousands of documents
with high accuracy (in retaining neighbor relations), high efficiency (in
computation), and high flexility (through the use of exemplars).

The algorithms discussed in this paper have been fully integrated
into a visualization software package, which will be released publicly
shortly after the Infovis Conference 5. In the future, we plan to con-
duct practical user studies to solicit feedbacks so that the software can
be improved with more convenient and user-friendly features. We also
intend to pursue incorporating topic detection model into our system,
making it more appropriate for real-world data visualization. Another
direction we are considering for the future work is to develop an inter-
action tool based on the EV model for the visualization of other types
of data.

5http://vii.wayne.edu
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Fig. 2. Visualization of documents in 20Newsgroups-I (300 documents, 3 topics) by (a)PCA, (b)MDS, (c)ISOMAP, (d)LSP, (e)PLSA+PE, and (f)EV,
and visualization of (g)10 exemplars, (h)20 exemplars, (i)40 exemplars by EV.
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Fig. 3. Visualization of documents in 20Newsgroups-II (1000 documents, 20 topics) by (a)PCA, (b)MDS, (c)ISOMAP, (d)LSP, (e)PLSA+PE, and
(f)EV, and visualization of (g)100 exemplars, (h)200 exemplars, (i)400 exemplars by EV.
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Fig. 4. Visualization of documents in 20Newsgroups (18,864 documents, 20 topics) by EV. Each point represents a document; each color shape
represents a news topic; and the corresponding big color shape indicates the mean of a news group. Visualization of (a) all documents, (b) 1000
exemplars with their means, (c) three similar groups of news: “comp.graphics”, “comp.os.ms.windows.misc” and “comp.windows.x”.
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Fig. 5. Visualization of abstracts in 10PubMed (15,565 documents, 10 topics) by EV. Each point represents an abstract; each color shape represents
a disease; and the corresponding big color shape indicates the means of an abstract group. Visualization of (a) 1000 exemplars with their means,
(b) two distinct groups of diseases: “Gout” and “Chickenpox” with the selected exemplars (100 in total), emphasized by the bigger black shapes.


