Intrinsic Geometric Scale Space by Shape Diffusion
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Abstract—This paper formalizes a novel, intrinsic geometric scale space (IGSS) of 3D surface shapes. The intrinsic geometry of a
surface is diffused by means of the Ricci flow for the generation of a geometric scale space. We rigorously prove that this multiscale
shape representation satisfies the axiomatic causality property. Within the theoretical framework, we further present a feature-
based shape representation derived from IGSS processing, which is shown to be theoretically plausible and practically effective. By
integrating the concept of scale-dependent saliency into the shape description, this representation is not only highly descriptive of the
local structures, but also exhibits several desired characteristics of global shape representations, such as being compact, robust to
noise and computationally efficient. We demonstrate the capabilities of our approach through salient geometric feature detection and

highly discriminative matching of 3D scans.

Index Terms—Scale space, feature extraction, geometric flow, Riemannian manifolds.

1 INTRODUCTION

Identifying robust features from geometric objects is of crucial im-
portance in many areas, such as visualization, shape registration, and
shape classification, to name a few. In order to automatically derive
and analyze features from real-world measurements, scale space rep-
resentation of signals are often employed to account for the scale vari-
ability of underlying structures [17]. A main intention behind it is to
obtain a separation of the structures retained in the original data, such
that fine structures only exist at finest scales in the scale space. There-
fore, operations performed at certain scales will be simplified, pro-
vided that unnecessary and irrelevant fine-scale structures have been
suppressed.

The rapid growth in the number and quality of geometric models
and their ubiquitous use in a large number of visual computing appli-
cations, suggest the need for more powerful tools in 3D shape analysis.
Having witnessed the success of scale space theory applied to image
and image feature extraction [19, 21], people are naturally inspired
to generalize a similar framework for 3D shapes [36, 8, 26, 23, 16].
For instance, Kimmel constructed a geometric scale space for images
painted on a given surface [13]. In [26] and [16], point clouds are ex-
plicitly smoothed by means of mean curvature flow and least squares
projection, respectively, for multiscale shape representations. Zou et
al. [36] treated multiple geometric properties as an image retained on
the surface, on which successive geodesic Gaussian smoothing is per-
formed on the curved domain. A common characteristic of these meth-
ods is that, although labeled by different smoothing techniques, the
original curved surfaces served as domains. Through surface param-
eterizations, scale-space shape representation and subsequent analysis
can also be defined on the UV domain [23, 8], where surface geome-
try is modeled as a normal map in [23], and a vector image consisting
of curvatures and area distortion factors in [8]. The UV domain is
subsequently represented as 2D images. Since the image can easily
attain a much higher resolution than triangular meshes, the geometric
information is well preserved in the image representation with little
loss. Furthermore, because of the regular structure of images, fea-
tures extracted by this approach are generally more robust than those
directly extracted from 3D meshes. Thus far, all scale-space repre-
sentations were established at the measurement level, in which case,
whether coarser scale representations correspond to a physically valid
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geometry is of little concern.

To further leverage the scale-space representations by the underly-
ing geometric structures of 3D shapes, our proposed scale-space al-
ternative is established upon the intrinsic geometry of 3D shapes. In
sharp contrast to an extrinsic point of view, shapes are generalized as
a 2-manifold, equipped with a Riemannian metric. This approach de-
scribes the geometry of a shape as an “insider”. As a consequence, the
intrinsic scale-space representation is independent of how the surface
is positioned in R®, namely, the embedding in R3. This paper focuses
on constructing a formal geometric scale space through intrinsic geo-
metric diffusion. The correctness is fully verified through our formal
proof. By integrating geometric comprehension into the scale-space
representation, many properties are better understood and with further
control. A lot of tasks in graphics and visualization can benefit from
this computational model. In particular, the scale-aware geometric fea-
ture is presented as a natural application of this novel geometric scale
space. As geometric features are organized according to their inherent
scales, the resulted representation is not only highly descriptive of the
local structures, but also compact, robust to noise and computationally
efficient.

1.1 Prior Work

The Scale Space Theory was first formulated in the computer vision
community based on 2D images [33]. Provided the presupposition
that new structures must not be created from a fine scale to any coarse
scale, the Gaussian kernel of increasing variance was selected to de-
rive a one parameter family of smoothed images I(z,y,t), namely,
the scale space. More mathematically, the same scale space can be
equivalently derived as the solution of the heat diffusion equation [9],
where the intensity value of the image was interpreted as a temperature
distribution in the image plane and the former convolution with Gaus-
sian kernel corresponds to the heat diffusion over time ¢. By allowing
the diffusion coefficient to vary, an edge-preserving version of image
scale space was derived from boundary detection and anisotropic dif-
fusion [27]. More recently, scale space has been successfully applied
to scale-invariant feature detection of images [17, 19, 21, 1]. How-
ever, a multi-scale representation by itself contains no clue about the
scale information of the underlying structures. To avoid the instabil-
ity of image descriptors computed at inappropriately chosen scales,
Lindeberg [17] proposed an automatical scale selection methodol-
ogy in the absence of prior knowledge about the images and, mean-
while, showed that certain normalized differential operators assume
local extrema over scales which correspond to the characteristic sizes
of respective structures in the image. In practice, the difference-of-
Gaussian (DoG) function was often used for keypoint detection in
scale space [19, 21, 1]. The frequency of sampling in the image and
scale domains need be pre-determined with caution, which trades off
efficiency and reliability with completeness.

3D shapes share the same multiscale nature as 2D images. Given
the success of scale space approaches to the planar image, some re-



cent work has been conducted, aiming at generalizing a similar frame-
work to the geometry of 3D shapes. Along this direction, Kimmel
constructed a geometric scale space for images painted on a given sur-
face, using a level set method [13]. Mokhtarian et al.[22] applied this
concept to free-form 3D object recognition, where a uniform optimal
scale was empirically determined for the features of each model ac-
cording to the number of rest feature points vs. the number of smooth-
ing iterations. By resorting to the surface parametrization, both Hua et
al. [8] and Novatnack et al. [23] represent 3D shapes as planar vector
images. The scale space was consequently constructed on the geomet-
ric attributes retained on the image. For the point-based 3D shapes, a
scale space formulated via surface variation was successfully applied
to shape deformation [26], line-type feature extraction [25], approxi-
mate alignment [16], and 3D model segmentation [14]. However, as
aforementioned, none of these methods explicitly related their pro-
posed representations to the fundamental axiomatic properties of scale
space theory. Therefore, it is desired that a formal analogue of scale
spaces between 2D images and 3D shapes can be rigorously estab-
lished.

On the other hand, the geometric flows [34, 10, 3, 35, 7, 29, 6]
previously seemed a separate field which may be bridged by this pa-
per. Here we merely attempt to show the inherent link between shape
smoothing (scale space processing) and geometric flows. In [3], the
mean curvature flow was employed for implicit mesh fairing. Be-
cause it only depends on the geometric properties of the mesh, con-
sequent smoothing is triangulation-invariant. With some constraints
and adjustment to the surface normal, the Gaussian curvature was also
used for surface smoothing in [35]. Recently, the Ricci flow received
much attention for its essential role in the proof of the Poincaré con-
jecture [7]. As the Gaussian curvature is induced by the Riemannian
metric of the surface, diffusion of the metric will affect the Gaussian
curvature accordingly. Surface Ricci flow has been demonstrated as
a powerful tool in shape analysis [6]. Its known applications, how-
ever, are essentially limited to the conformal surface parametriza-
tion [29, 11].

In this paper, we are investigating its potential in the scale-space
representation of 3D shapes. Unlike mean curvature flow [10] and
others, the Ricci flow is performed purely on the intrinsic geometry of
the surface shape as a process of metric diffusion. Surfaces deformed
via Ricci flow are conformally equivalent, which preserves the geo-
metric structures up to an isotropic scaling. Hence, we claim that it is
the first scale space formulation with respect to the intrinsic geometry
of 3D shapes.

2 INTRINSIC GEOMETRIC DIFFUSION

Given the criteria for a range of properties of the scale space (i.e., scale
space axioms), the Gaussian smoothing constitutes the canonical way
of generating a scale space. Equivalently, the scale-space sequence
can be defined as the solution of a diffusion equation
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where L(0) is the original signal. In this section, we shall present
the construction of our novel intrinsic geometric scale space (IGSS)
through the surface Ricci flow — a diffusion of the intrinsic Rieman-
nian geometry on the surface.

2.1 Surface Ricci Flow

Ricci flow is a powerful curvature flow method in geometric analysis.
In brief, it conformally deforms the Riemannian metric on a surface
according to the induced Gaussian curvature, such that the curvature
evolves in a heat diffusion fashion. The Ricci flow only depends on the
intrinsic surface geometry and the final target curvature, which makes
it an excellent 3D shape representation in a broad range of potential
applications [11]. Later, we will show that a scale space of surface ge-
ometry constructed via the surface Ricci flow satisfies a set of desired
properties for a multiscale representation, conventionally referred to
as the scale-space axioms.

Let S be a surface embedded in R?; the induced Riemannian met-
ric is denoted by g. Given a scalar function v : S — R defined on
S, g = e*“g is also a Riemannian metric on S. Surfaces with met-
rics having this relation form a group of conformal equivalence (i.e.,
angle-preserving). The surface geometry is locally preserved up to a
scaling factor. Surface Ricci flow deforms the metric g(¢) over time ¢
according to the current Gaussian curvature K (¢):

dg(t)
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such that the curvature evolves exactly following the diffusion equa-
tion
oK
ot
where Ag 4y is the Laplace-Beltrami operator under metric g(t). For

a detailed deduction, refer to [29]. If we substitute the metric with
g(t) = M g(0), Eq. (2) is equivalent to

= Ay K. 3)

du(t)
dt

= K. @

As shown by Eq. (3), the Ricci flow is a formal analogue of the
heat diffusion on the surface geometry. During the diffusive process,
the Gaussian curvature evolves in the same manner as image inten-
sity in the image scale space. Therefore, the properties that were as-
sumed in the SIFT-like methods [19, 21] are naturally retained by the
IGSS dealing with surfaces. Note that, the Gauss-Bonnet formula,
[ KdA + [,4 Kgds = 2mx(S), places the only constraint on the
final curvature as well as the metric, where K is the Gaussian curva-
ture, K4 is the geodesic curvature along the boundary 9.5, x(S) is the
Euler characteristic number of .S. To eliminate the scaling ambiguity,
we further require that [ udA = 0.

2.2 Theoretical Discretization

In practice, surfaces are often approximated using triangular meshes.
To generalize the continuous Ricci flow to a mesh, we first define our
notations. We denote a triangular mesh as a pair (7,G), where 7 is
an abstract simplical complex which contains all the topological (ad-
jacency) information, and G represents the geometric realization. The
complex 7 = (V, E, F) consists of a vertex subset V' = {v;}, an
edge subset E = {e;;}, and a face subset F' = {f;;x}, where v; de-
notes the ith vertex, e;; the oriented edge from v; to v; with the length
denoted as l;;, fijr the oriented face formed by v;, v;, v in an or-
der such that its counter-clockwise orientation gives the face normal
pointing outside. The geometric realization G : V' — R3 embeds 7
in R3. Instead of casting a specific problem for a discrete numerical
solution, we pursue a systematical translation of the continuous the-
ory. Properties that are valid in the continuous setting can easily find
analogous justifications in the discrete formulation.

From associating a circle to each vertex and making sure that two
circles are tangent if and only if the corresponding vertices are con-
nected by an edge, a configuration of these circles, namely, circle
packing unites the combinatorics and the discrete geometry of a trian-
gulation [32, 30]. It was proven that circle packing actually converges
the classic conformal structure under infinite refinement [28], which
shed light to a valid means to generalize the continuous conformal
geometry to a discrete mesh [30]. As classical conformal geometry
abstracts infinitesimal circles on the surface and concerns the trans-
formations where only the “radius” changes, its discrete counterpart
operates with real circles. Furthermore, the condition of tangency can
be generalized to allow an intersection angle between neighboring cir-
cles, offering more flexibility in practice.

More specifically, each vertex v; is associated with a circle of ra-
dius 7;, and each edge e;; assigned a weight w;; such that the equation
l?j =724+ fyj2 + 27, - ws; holds. A mesh deformation is conformal if
and only if edge weights are preserved constant. In fact, w;; is the co-
sine of the intersection angles when the neighbor circles have overlap,
or the inversive distances between adjacent vertices when their asso-
ciated circles do not intersect. Another typical definition of discrete



metric of a triangle mesh is the edge lengths [29]. The circle packing
metric is equivalent to the edge length metric in the sense that, given
one, we can straightforwardly compute the other.

On the other hand, a triangle mesh is essentially a piecewise Eu-
clidean surface. Each vertex is a cone singularity. Curvatures are
concentrated at each vertex. Conventionally, the vertex curvature is
defined as the angle deficit,

|

where Gfk is the angle formed by edge e;; and ey; in the face f;;x. For
interior vertices, K; is called the discrete Gaussian curvature, while
on the boundaries it is called the discrete geodesic curvature. Given
the three sides l;;, I and Ij; of triangle f;;x, the corner angle 67"
associated with v; can be computed by the cosine formula:

2 — qu‘jkeF 0] if v; is an interior vertex;

' (%)
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if v; is a boundary vertex,
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(6)
Similar to the fact that the Gaussian curvature is determined by the
metric for a smooth manifold, the discrete curvatures are only de-
termined by the radii that appeared in the circle-packing structure.
The Gauss-Bonnet Theorem still applies to a mesh, in the form of
2vev Ki = 2mx(M). Therefore, the surface Ricci flow is ready
to be properly translated to the discrete case. Suppose the radii {~;}
and the edge weights {w;; } are given for mesh M. The discrete Ricci
flow is defined at each vertex v; as

dui
= _Ki7
dt

(O]

where u; = In ;. The discrete surface Ricci flow has the same form as
the continuous case (See Eq. (4)). The correspondences of related con-
cepts are summarized in Table 1. In order to approximate the original

Table 1. Analogy between smooth Surface and Triangular Mesh

Continuous Surface
Metric:

Triangular Mesh

gij i
Gaussian curvature:
Js KdA =27 — [, Kyds Ki:QW*Zfi]kGFQZ
Conformal equivalence:

g =eg w;; is preserved
Conformal factor:
62u Yi
o7
Ricci flow:
99i5 __ dyi _
o = 2K gy o= 2K

geometry as far as possible, ideally, the weights w;; of circle packing
metric should be 1, that is,

vi +75 = bij, (8

for all edges. All neighboring circles are tangent to each other. Since
usually |E| > |V, it is however an overdetermined system. We solve
this problem by pursuing the optimal radius configuration in the least-
squares sense. The system of Eq. (8) can be written as a matrix-vector
multiplication AT" = L, where the matrix A has the entries as follows:

1
AT‘C_{ O

and the entries of I" and L are the corresponding radii and edge lengths,
respectively. Thanks to the sparsity of the matrix A, optimal circle-
packing metric can be solved using the Preconditioned Bi-Conjugate
Gradient method (PBCG) with great efficiency. The intrinsic geomet-
ric diffusion for a given mesh is computed as the following:

if v, is an incident vertex of the rth edge
otherwise,

)

Algorithm 1

Input: A triangle mesh M = (7, G), step length dt.

Output: A family of diffused metrics (edge lengths), parameterized
by time ¢: {Lo,....n(¢)}

1. Estimate the initial radii I" = {~; } using PBCG, and compute the

N

edge weights W = {wi;|wi; = 5"
11y

2. Initialize t = 0 and u; = In ;.

3. repeat

4. for each vertex v;, compute the discrete curvature K, using
Eq. (5) and Eq. (6).

5. if v; is an interior vertex,

6. then update its radius v; by v, = e and u; =

U; — K iét.

7. else ~; stays unchanged.

8. for each edge e;;, update the edge length by l;; =
\/%-2 +77 + 2975 - wij.

9. Save the edge lengths £(t) : {l;;} as the scale-space repre-
sentation at scale ¢.

10. t=t+1.

11. until ¢ is big enough.

The Ricci flow is a negative gradient flow of the energy:

ERrices = Z/Kidui-

where K; is the Gaussian curvature at v;, induced by the current metric
{u;}. It is ensured that the Ricci flow converges to the global mini-
mum of Fr;.;. For interested readers, more details on the discretiza-
tion and numerical issues can be found in [2]. As indicated by Alg. 1
again, the Ricci flow only manipulates the intrinsic geometry (the in-
ner metric) without any further reference to the ambient space. Con-
sequently, vertex positions are not relevant at this stage. Also note that
the metrics on the boundary stay non-deformed, such that all bound-
ary edges retain their original length. This treatment ensures that all
strict maxima and minima of Gaussian curvature belong to the original
shape. This property is of critical importance for the generation of a
scale-space shape representation as detailed in the next section.

10)

3 GEOMETRIC SCALE SPACE

As demonstrated in [17, 19, 16, 23, 14], scale-space representations
have been proven an extremely effective tool in analyzing signals with
different levels of details. To define a scale space, a set of scale-
space axioms that describe basic properties of the desired represen-
tation are first established, which largely narrow the choices for a
qualified candidate. Although the axioms have been formulated in
a variety of ways, specialized for different applications, one property
called causality is uniformly imposed in all scale-space representa-
tions, which essentially states that no spurious structures should be
generated at a coarse scale in the representation without a “cause” at
finer scales. By using intrinsic geometry diffusion, a novel geomet-
ric scale space can be consequently constructed, which satisfies the
causality criterion. We are aware of a similar approach proposed in [8].
In sharp contrast, we analyze a scale space directly built upon the in-
trinsic surface geometry, which generally preserves more information
of the original shape and avoids the complex topological surgery to
slice the surface open to a disk.

In this framework, we consider a surface as a Riemannian manifold.
The scale-space representation of the surface geometry has been for-
mulated as a family of diffused metrics, parameterized by ¢ in the last
section. As 2D images are presented by pixel intensities, the intrin-
sic geometry of surfaces can be presented by the pointwise Gaussian
curvatures. Given a surface S, let S := S(t) evolve with the Ricci
flow. By Eq. (3), the Gaussian curvatures will diffuse in the same
manner as the image intensity does in images. In practice, our pro-
posed intrinsic geometry scale space is represented as a time-varying
Gaussian function K (V,t) defined on the vertex set V' of a triangular



mesh 7 = (V, E, F), with K (v;, 0) being the initial discrete curva-

ture at v; € V and ¢ € [0,00) the time or scale parameter. More
specifically, the IGSS is retained by a n x |V| matrix
Ty —
K Kb Ky
K Ki Ko
IGSS(T) = ! o (an
Kb Kb Ko

Each column of the matrix stands for the surface geometry at scale ¢.
In the following, we will show the detailed properties of the IGSS, as
well as the automatic feature detection and scale selection scheme for
the 3D shape analysis.

3.1 Geometric Scale Space Properties

Causality For 3D objects, recent research in visual saliency sug-
gests that features usually appear as curvature variance [15, 36]. For
example, a sphere or a plane produces little visual attractiveness as it
has invariant curvature across the surface. For this reason, we iden-
tify geometric features as diffused curvature extrema in the IGSS.
The causality criterion can be established by requiring that all minima
and maxima of the Gaussian curvature function belong to the original
shape within the scale space . Based on Eq. (3), it can be formally
proved that all the extrema of the solution in space and time arise in its
initial condition, i.e., the original shape or, on the boundaries. Because
we further suppress the diffusion from the surface boundary in Alg. 1,
which is called an adiabatic boundary condition, the IGSS bears all
its extrema on the original surface. Thus, it satisfies the causality cri-
terion. A rigorous proof is given in the Appendix.

Scale Invariance In the spirit of discrete differential geometry,
the curvatures are defined at vertices, edges, and faces. Particularly
with the Euclidean background geometry (assumed throughout this pa-
per) [11], the edges and faces have no curvature. This setting lets the
IGSS inherently invariant to the similarity transformation of the ob-
jects. This property can also be easily judged from the computation of
the discrete curvature in Eq. (5), where only the angles matter. Thus,
if a feature is assumed in the IGSS of a certain shape, at scale level o,
then under a rescaling of the shape with a factor s, the corresponding
extrema for the rescaled shape will be transferred to scale ¢t + f(s),
where f(s) is a monotonically increasing function of s. Note that the
Ricci flow is a nonlinear geometric flow, as the underlying metric of
the surface is being deformed simultaneously. As a consequence, the
scale space established through the Ricci flow is also nonlinear. De-
riving a closed form of f(s) is non-trivial.

Parallelism Because of the variational solver, diffusion is com-
putationally expensive in general. However, the parallel structure of
the algorithm gives rise to a means to speed up the process. First,
partition the vertex set V' into a number of subset Vo, Vi, ..., Vo1,
such that V' = U?;Ol V; and each vertex is at least an interior vertex
in one subset. Therefore, each piece can be computed separately and
alternatively. Because the Ricci flow energy is convex, the alternating
optimization converges to the global minima, which is equivalent to
the sequential execution.

Flexibility Thus far, we assume that the geometry will diffuse to
a flat metric, i.e., K; = 0. In case that a non-trivial final metric is
desired to guide the diffusion, a per-vertex target curvature distribution
{R’ i } can be specified across the vertices, as long as the Gauss-Bonnet
condition is satisfied. Accordingly, the diffusion equation (Eq. 4) is
modified to

a (12)

It warrants that the geometry converges to the specified geometry
eventually.

3.2 Scale-Aware Features in Geometric Scale Space

The notion of scale is of fundamental importance when processing
heterogeneous, noisy geometry using automatic methods. To allow
for a finer analysis, scale dependent feature detection and appropriate
feature scale selection is crucial. We complement the IGSS with a
mechanism which can automatically detect salient, robust features and
determine their local scales, upon which local shape descriptors can be
computed for many purposes.

3.2.1

A scale space representation by itself contains no explicit informa-
tion about what structures in the data should be regarded as significant
or what scales are appropriate for treating them. Lindeberg [18] at-
tempted to address this problem in the image domain and suggested
that local extrema over scales of normalized differential entities may
correspond to structures of interests. Essentially, it is a scale-structure
matching process. Local maxima of operator responses are assumed
at the corresponding scales of the structures of interest. Because the
propagation of scale measurement is performed in space via the dif-
fusion equation, scale information has been incorporated for scale-
dependent feature detection when performing local evaluation at sin-
gle points in the scale-space representation.

Once shapes are represented at multiple scales, meaningful features
can be extracted in a scale-invariant manner and adaptive to the surface
geometry. For 2D images, the Laplacian normalized with the scale
parameter ¢ has proved to be a more stable feature detector, compared
to a range of other possible candidates, such as the gradient, Hessian,
or Harris corner function [18, 19, 20]. We therefore extend it to the
surface geometry. Let K be the geometric representation at scale ¢ in
the IGSS. The scale-normalized Laplacian operator is defined as

Scale Dependent Feature Detection

AnormK" =t Agy K", (13)
To detect scale-dependent features, A,,orm K" is required to be the
local maxima/minima in the IGSS with respect to space and scale si-
multaneously. Given a triangular mesh, the discrete Laplacian at v;
can be computed by the well-known cot-Laplace operator:

1
AK;:§ > (cot s + cot By)(Ky, — Kyy) - (14)

v €N (v;)

where N1 (v;) denotes the 1-ring neighbors of v;, c;; and (3;; are the
two angles opposite to edge e;; in the two triangles sharing e;;. Con-
sequently, we obtain

tAKYR L AKL b1 AK !
toAKY i AKL b1 AK !
Anorm,IC‘:S*S’ = . . .
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Feature points are identified as local minima/maxima of the normal-
ized Laplacian of the IGSS representation across scale ¢. Specifically,
it is done by comparing each vertex in the mesh structure to its 1-ring
neighbors at the same scale ¢ and also itself as well as its 1-ring neigh-
bors at the neighboring scales ¢ — 1 and ¢ + 1, If the vertex bears the
maximum or minimum among all compared vertices, it is selected as a
feature point. Fig. 1(a) illustrates the neighborhood of a feature point
detected in the geometric scale space. The red dot denotes the key-
point (extremum), while the other surrounding green dots denote its
neighborhood in space and over scales.

3.2.2 Geodesic Scale Computing

One merit of scale space is that features can be extracted with respect
to their inherent scales. Feature scales are critical in a scale-space
setup, since all subsequent local computations are conducted on this
feature-adaptive support. In the scale spaces formulated via Gaussian
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Fig. 1. Feature extraction in the geometric scale space. (a) shows the
neighborhood setting of a keypoint; (b) visualizes the geodesic scale
associated with the keypoint.

smoothing [19, 15, 36], the scale of a detected keypoint is empiri-
cally defined as certain multiple of the standard deviation of the cur-
rent Gaussian kernel. The support region is centered at the keypoint.
A quantitative connection between spatial scale ¢ and the diffusing
time ¢ exists in the Euclidean space as ¢ = v/2t, given by the general
solution of a diffusion equation. However, this equality does not hold
in general for an intrinsic geometry diffusion, since the metric is de-
formed. We follow the intuition of heat diffusion, defining the feature
scales on the manifolds through front propagation. Suppose S(t) is the
diffused surface at time ¢, and a point v is detected as a feature point
at S(t). The scale o () is delineated by a center-surrounded geodesic
neighborhood U (v) of ¥ under metric g(0), which is formulated as

U(v,t) = {x|dist(x,D) < V2t,x € S(t)}, (16)
where dist(z,?) denotes the geodesic distance between points ¥ and
z, estimated under the original metric. In practice, such neighbor-
hoods can be estimated by performing isotropic front propagation on
the triangle mesh, originating from each keypoint. Let C(s) be a level
set curve of dist(x, ¥), hence centered at ¥, and s the arc length pa-
rameter. The propagating velocity of the front is given by

dC(s) -

a e
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where 71, is the exterior unit vector normal to the curve C(s) at s in
the tangential plane of s, and c is chosen to be the 1/10 of the average
edge length. U(zx,t) is then given as the region bounded by C(s) at
time ¢. Propagation is stopped once U (x, t) reaches the size as defined
by the corresponding scale value as in Eq. (16). Fig. 1(b) shows the
geodesic scale of a keypoint defined on the surface. The process of
front propagation is visualized by a color map from red (¢ = 0) to
blue (t = t,,) as time elapses.

4 APPLICATIONS AND EXPERIMENTAL RESULTS

The IGSS provides a unified methodology for the automatic detection
of scale-dependent salient geometric feature on the surface. When in-
tegrated with a 3D local shape descriptor, it can also serve as a feature-
based 3D shape matching framework. In the order of saliency identi-
fication, feature extraction and shape matching, we evaluate the effec-
tiveness of IGSS in the following applications, respectively.

4.1 Saliency-based Surface Simplification

For the interactive visualization of large-scale 3D models, surface sim-
plification is often needed to downgrade the original model to a sim-
plified version, in order to accommodate the graphics hardwares. The
essential goal of surface simplification is to preserve the visual ap-
pearance of the original model as far as possible with a given trian-
gle budget. Conventionally, an error metric is first defined based on
some geometric primitives, such as curvatures [4]. Then, such metric
is used to guide the simplification process, e.g., through iterative edge
contraction. These methods in general incline to preserve regions of

high curvatures while, on the other hand, decimate more intensively
in somewhat flat regions. However, it should be noted that the at-
tribute of curvature is only capable of conveying the local geometry,
which usually does not contain sufficient information to indicate per-
ceptually interesting regions. By taking scale-dependent features into
consideration during the mesh simplification, and guiding the process
in a feature/scale-aware manner, more visually pleasing results can be
achieved [15]. Since the IGSS’s center-surrounded mechanism can
also serve as the visual front-end in a vision system for 3D shape anal-
ysis, we shall present a competitive alternative to the previous methods
in capturing visually salient regions of 3D models [15] and demon-
strate its leverage in surface simplification.

Once a feature point (vertex) v is detected as the local extremum in
the IGSS, it is natural to define the magnitude of the scale-normalized
Laplacian (tA K,) at v as the measure of feature strength. In addition,
the associated scale information defines a support region for the fea-
ture centered at v. We assign each vertex a saliency value ¢ within its
scale-dependent neighborhood, based on the strength of the feature it
belongs to:

o(z,v) = tAK,], (18)

where U (v, t) denotes the geodesic local support of v, determined by
scale t. When multiple features are close to each other on the surface,
the respective support regions may have overlaps. In such a case, the
final saliency of a point is defined as the maximum among all saliency
values attributed to it:

b x) = ma.
d)( ) k:zeu(fk,t)

z € U(v,t),

o(x,vk). (19)

Therefore, a saliency map is established on the mesh through the IGSS.

For the purpose of comparison, we apply our saliency map to the
same basic simplification framework as in [15]. In this framework,
simplification algorithm is based on the iterative contraction of vertex
pairs (vi,v2) — ¥. An error metric @ is defined at each vertex. To
select a pair to contract, a cost is associated with each pair as Q;; =
Q(vi)+Q(v;), and at each iteration, the pair of least cost is collapsed.
More detailed information can be found in [4]. Now suppose S(V') is
the saliency map defined on the vertex set V' of a triangular mesh. The
error metric is modified as

Qv) = S(v)Q(v).

Accordingly, the cost for contracting vertex pair (v;, v;) is computed
as Qi; = Q(vs) + Q(v;). Fig. 2(a) and 2(d) show the saliency maps
derived from the IGSS of the Neptune and the Elephant models. Evi-
dently, those visually interesting features, such as the head of Neptune,
the spoke of the trident, and the eye of the Elephant, are successfully
detected as salient sub-parts of the whole shape, as shown in Fig. 2(a)
and Fig. 2(d). Reasonable salient features are successfully detected as
expected. Fig. 2(b), 2(c), 2(e), and 2(f) show the results of simplifying
the Neptune model and the Elephant model, both with a resolution of
50, 000 faces. Fig. 2(b) gives the result of the Neptune decimated to
1, 000 faces, using the Qslim method [4], whereas in Fig. 2(c), the im-
proved result with the same budget is achieved by using our method.
Consistent results is also obtained from the Elephant model, as shown
by Fig. 2(e) and Fig. 2(f).

(20)

4.2 Scale-dependent Feature Extraction

Recently, the relative scale variability of local geometric structures
has received much attention, especially in 3D vision applications [23].
With a rich set of scale-dependent 3D features detected from the IGSS,
a number of tasks, such as shape matching [12], 3D face recogni-
tion [36], surface registration [37], can greatly benefit from this frame-
work.

Fig. 3 shows the geometric features extracted from three 3D mod-
els: the Julius Caesar, the Armadillo and the Buddha. Each feature is
visualized by a sphere centered at the keypoint, whose radius is pro-
portional to the feature’s associated scale. Because features at small
scales (empirically, ¢ < 0.005) could be possibly due to the noise,
those features have been suppressed. Furthermore, thresholding on
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Fig. 2. Saliency-guided surface simplification. (a) and (d) show the
saliency map derived from the IGSS. (b) and (e) are the results obtained
by Qslim method [4] with a budget of 1,000 faces; (c) and (f) show the
improved results achieved by using our method, given the same budget.

the magnitude of the scale-normalized Laplacian constitutes another
level of feature selection, when too many features cause visual clut-
tering. Observe that the features spread across various scales and the
scale of a specific feature is consistent with the scale of the underlying
surface geometry. Take the Caesar model as an example. While many
small features are detected around regions of eyes, nose, and mouth,
each part is extracted as one single feature at coarser scales. This
phenomenon reflects the hierarchical nature of the scales of detected
features.

(b)

Fig. 3. Keypoint Detection. (a) Julius Casear; (b) Budda; (c) Armadillo.

We further test the repeatability of feature detection under noises.
In this experiment, random noises are injected to the surface of the
Caesar model along the normal direction. The noise magnitudes span
from 0 to 5%, 7.5%, and 10% of the bounding ball radius, respec-
tively. As shown by Fig. 4, despite that small features may vary in lo-
cation because of the injected noises, features detected at larger scales
are highly consistent across all cases, which are robustly detected at
close locations and scales. We also performed comparison experi-
ments among several related works, including mean curvature flow-
based scale space processing [36] and geodesic shape vector image
diffusion [8]. Average results of the feature point repeatability are
shown in Fig. 5. Because the IGSS purely relies on intrinsic proper-
ties of shapes, extracted features are generally more robust to the noise
than the other two.

Fig. 4. Scale-dependent feature extraction at the presence of noise: (a)
5%; (b) 7.5%; (c) 10%, relative to the bounding ball radius.
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Fig. 5. Comparison of feature point repeatability under random noise.

4.3 3D Shape Matching

3D shape matching is a fundamental issue in computer vision and ge-
ometry processing [36]. This experiment is performed on a 3D face
database which contains 100 3D facial scans from 20 subjects to ana-
lyze the performance of our proposed framework. A scale-dependent
geodesic fan shape representation [5, 24] is employed as the local
shape descriptor. Each subject has 5 different expressions. Our method
can correctly match the same subject with different expressions while
differentiating different subjects based on the number of matched key-
points. Descriptor matching is obtained for a keypoint by comparing
the distance from its constructed local descriptor to its closest neigh-
bor with the distance to that of the second-closest neighbor found on
the to-be-matched object [8]. Only when the distance to the clos-
est neighbor is much greater than the distance to the second-closest
neighbor, we consider they are matched keypoints. This ensures that
only distinctive keypoints having prominent similarity are matched. A
threshold is given here to judge the distinctiveness. Fig. 6(a) shows the
matched same subject with different expressions and Fig. 6(b) shows
the differentiation between two different subjects, where the number
of matched keypoints is significantly fewer. Fig. 7 shows the statistics
of the numbers of matched keypoints among 20 subjects with different
expressions. As we can see, the numbers of matched keypoints are
significantly higher in the intra-subject matching (same subject differ-
ent expressions) against those found in the inter-subject case. Note
that only matches with high confidence (small matching distance) are
selected. The number of matched keypoints is descriptive enough to
differentiate models from different subjects and, meanwhile, retrieve
distinct expressions of the same person. The experiments indicate that
our method is effective for 3D shape matching, recognition and re-
trieval.

We have also compared with other methods in the face retrieval
experiment. The faces with the top numbers of matched points to a
query are considered as the retrieved faces. Assuming the class size
is Cp, the First Tier shows the percentage of correctly related items
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Fig. 6. Keypoint matching. (a) shows matched salient feature points
between the different expressions of the same subject; (b) shows the
few matched feature points between different subjects.
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Fig. 7. Comparison of the numbers of matched keypoints between intra-
subject and inter-subject matches among 20 subjects under a fixed dis-
tinctiveness threshold.

within the top C,, of all ranked lists and the Second Tier shows the
percentage within the top 2 x C),. Table. 2 shows the comparison
between the IGSS and other methods [31] in terms of three different
measures, namely the recognition rate (RR), the first and the second
Tier.

5 CONCLUSION

In this paper, we have presented a novel, formal intrinsic geometric
scale space constructed by shape diffusion through the Ricci flow. This
multiscale shape representation satisfies a range of axiomatic scale-
space properties. It provides a formal means to study the geomet-
ric scalability and variability, as well as their effects in graphics and
vision applications. In the geometric scale space, we have also pro-
posed a feature-based shape representation based on the computation
of scale-aware local shape descriptors within the local support scales
where the feature points are detected. Promising results are obtained
through examples of salient feature detection, scale-dependent feature
extraction, and 3D facial scan matching.

[ Method [ RR [ IstTier [ 2nd Tier ]
Amberg run2 | 98.6% | 85.5% 90.6%
ter Haarrund | 91.1% | 62.4% 72.4%
Xu run5 81.7% | 61.2% 71.9%
Nair run4 82.2% | 60.5% 67.9%
IGSS 95.2% | 88.0% 95.2%

Table 2. Results of retrieval of faces. Top 4 runs in different methods
[31] are compared with IGSS.
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APPENDIX

Suppose S : D — R? is a smooth surface embedded in R®, where
D denotes the domain 2-manifold; the induced Euclidean metric is
g. In the following discussion, we separate the topology and ge-
ometry of S by denoting S as a pair (D,g). Let T = (a,b) be
an interval of R representing the range of scale parameter ¢t. The
geometric scale space L(D,g) is therefore formed by the product
L = (D,g) xT = {(p,g(p,t))lp € D,t € T}. Furthermore,
let OL represent the boundary of L, and 0;L, Os L, and Oy L the top,
side, and bottom portions of 0L, respectively, given by

atL = {(pa (p7 t))|p € D7t = a’}
abL—{(p, (p t)lp € D,t = b} @D

OL = 0;L U 0sL U 0yL.

We shall prove the causality of geometric scale space by showing that
the Gaussian curvature function Ky : D — R (K is defined as the
geodesic curvature on D), as well as all its spatial derivatives Vg K,
reach the maximum and the minimum on the bottom 9, L of L.

Lemma 1 (The Maximum Principle of Intrinsic Geometric Diffusion).
Consider a smooth function f : L — R. If f satisfies

F=fi—Aguf <0,

where Ag(yy is the Laplace-Beltrami operator under metric g(t), then
f obeys the maximum principle:

(22)

max f = max f. (23)

oy L

Proof. By hypothesis L is compact and closed, hence f has a maxi-
mum in it. We denote the maximum by p,,, ... = (p, t). First consider
the case when p € L\ OL. Let m = f — A(t — a), for any A > 0.
Provided that f satisfies the weak inequality Eq. (22), m satisfies the
strict inequality

M = me —

Ag(t)m < 0. (24)

In the local neighborhood 7} X R of p where T}, represents the tan-
gential space of p, m(r) can be expanded by the Taylor series as

m(p) + Vm' (r — p) + %('r' —p) " H(m

m(p),

)(r —p)
(25)

m(r) =

+O(llr —p|*) <

where H(m) is the Hessian matrix of m. Since p is a point where m
has a maximum, the gradient Vm = 0. Consequently, the quadratic
term of Eq. (25) has to be non-positive to hold the inequality, i.e.,
(r —p)TH(m)(r — p) < 0. It also implies that the Hessian matrix
H(m) is negative semidefinite and the diagonal entries are either equal
to zero or negative. Notice that the Laplace-Beltrami operator is the
trace of the Hessian ¢r(7H) with respect to the metric, restricted to
Tp x R. Thus, Agym < 0. Recall that my is the t-component of
Vm. Since m; = 0 at p, then

m¢ — Ag<t)m Z 0, (26)
contradicting Eq. (24). Thus, there is no local maxima of m in the
interior of L.

The same argument is also valid for Os L as the Laplace-Beltrami
operator is performed on the boundary curves. Similarly, if p € 0; L
we have m; > 0 and Vgm = 0, which is an even stronger condition
for deriving the contradiction than in the argument above. Thus, m
does not have local maxima in 0sL or 9;L either. It ensures that m
obeys the maximum principle: maxy m = maxs,r m.

Since f = m + A(t —a) < m+ A(b— a) on L, we can see that

mLaxf < mLaX(m +Ab—a)) = rg&x(m + A(b—a))

< max(f + Ab—a)). (27)
oL
Letting A — 0, we obtain
max f= rgbaLx f- O

Now we show that the Gaussian curvature function on surface
(D, g) and its derivatives obey both the maximum and minimum prin-
ciple.

Theorem 1 (The Causality of Intrinsic Geometric Scale Space). The
Gaussian curvature function Kg(;) : D — Rinduced by the initial ge-
ometry and the Ricci flow, and all derivatives of K 41y in space satisfy
both the maximum and minimum principle:

max f= rgbagcf and min f= I(%l{l I (28)
Proof. First consider the maximum principle. By the governing equa-

tion of the surface Ricci flow, Eq. (3), the Gaussian curvature function
K satisfies Eq. (22) since

0K

615 - Ag<t)K = O,

(29)
thus maxy K = maxg,r K. Furthermore, let D be a certain differ-
ential operator in space. Apply D to Eq. (29). Due to the commutative
property of differentiation, we have

ODK oK
o~ BewDK =D(5- ) = D(Ag 1K)
oK
=D(; — ByK) =D(0)=0.  (30)

Again, since all spatial derivatives of K satisfies Eq. (22), they also
obey the maximum principle.

Notice that if a function f satisfies Eq. (22), so does its negative
h = —f. The argument above also holds for h, such that
€2V

max h = maxh — rnlnf = min f.
L dpL AL

It indicates the Gaussian curvature function and all the spatial deriva-
tives obey the minimum principle as well. O

Theorem 1 shows that all maxima and minima of the Gaussian cur-
vature belong to the original 3D shapes. Therefore, our proposed
scale-space representation has the axiomatic property of causality.



