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This paper presents a novel approach based on the shape space concept to classify defor-
mations of 3D models. A new quasi-conformal metric is introduced which measures the
curvature changes at each vertex of each pose during the deformation. The shapes with
similar deformation patterns follow a similar deformation curve in shape space. Energy
functional of the deformation curve is minimized to calculate the geodesic curve connect-
ing two shapes on the shape space manifold. The geodesic distance illustrates the similarity
between two shapes, which is used to compute the similarity between the deformations.
We applied our method to classify the left ventricle deformations of myopathic and control
subjects, and the sensitivity and specificity of our method were 88.8% and 85.7%, which are
higher than other methods based on the left ventricle cavity, which shows our method can
quantify the similarity and disparity of the left ventricle motion well.
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1. Introduction

Recently, the scanning technologies, such as Magnetic
Resonance Imaging, and Positron Emission Tomography,
have been advancing rapidly, many of which can be used
to capture motions of dynamic objects, such as cardiac
motion, face expressions, gestures. A new grand challenge
arises in analyzing this type of temporal motion data, espe-
cially when there is a necessity to visualize and compare
the deformation behavior across subjects. Appropriate
deformable shape analysis techniques are of utmost
important for this type of time-varying shape comparison
and classification. From a physical point of view, the
behavior of shapes is governed by physical principles.
Therefore, physically based approaches, such as deform-
able models, are employed to approximate the object
deformation by minimizing the summation of the defor-
mation energy under the constraint of smoothness of the
model in the Lagrangian setting [1]. Then, the analysis of
the derived deformable model can be achieved through
finite element analysis.

In contrast, from a geometric point of view, in order to
support efficient shape characterization, a higher level of
shape abstraction and information reduction is necessary.
In machine vision techniques, a shape descriptor extracts
a geometric feature from the shape, which is either global
feature such as boundary or volume of the shape [2], con-
vex-hull packing [3], or a local feature such as mean or
Gaussian curvature and edge length [4]. Then, an energy
functional based on the shape descriptor is minimized to
classify the shapes. The modern geometry introduces
shape space [5,6], where coordinates of points in this space
represent some generalized properties related to various
geometrical properties. In other words, a shape space is
established such that each surface group relates to the
same point in shape space. This inspires us to innovate
the geometry-based approaches for dynamic shape analy-
sis and shape deformation classification.
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In shape space, a deformation sequence is shown by a
curve. The geodesic distance between two points yields
the similarity between two shapes according to the prop-
erty which shape space preserves. Lipman et al. [7] esti-
mate the deformation between two isometric manifolds
by minimizing a geometric expressing functional. Huang
et al. [8] suggest a constrained energy function based on
the gradient domain techniques for deformation estima-
tion. Zhou et al. [9] introduce the Volumetric Graph Lapla-
cian technique to minimize a quadratic energy function
preserving the volumetric details during the 3D deforma-
tion. Huang et al. [10] present a geometrical potential func-
tion with constant stiffness matrix to speed up the
deformation approximation. Funck et al. [11] minimize
an energy function based on the divergence free vector
field to get a smooth, volume preserving deformation. Xu
et al. [12] deal with the deformation as gradient field inter-
polation, and propose a novel shape interpolation
approach based on the Poisson equation. However, all
these methods directly estimate one diffeomorphism
between two shapes by minimizing an energy functional
under some constraints, which increases the inconsistency
and instability of these methods, especially, in high-
dimensional shape spaces.

To address this problem, Kilian et al. [13] present a
geometric structure for isometric deformations, which
encodes all smooth groups of diffeomorphisms mapping
two objects together. The desired characteristics to which
shape space is invariant can be induced by choosing an
appropriate geometric structure. During the deformation,
the Gaussian curvature at each point on the manifold
may change according to the deformation characteristics.
Based on the spectral geometry, the eigenvalues of the
Laplace–Beltrami operator can serve as numerical finger-
prints of 2D or 3D manifolds [14], which can also be used
to build shape space invariant to isometric deformations.
Completely invariant to the conformal transformations, a
conformal structure based on the period matrix and re-
lated algorithms to calculate the period matrix for mani-
folds with arbitrary topologies are introduced in [15,16].
Wang et al. [17] further provide a 3D matching framework
based on the least squares conformal maps. To induce con-
formal mappings in 2D and quasi-conformal mappings in
3D, the Green Coordinates [18] are used in the cage-based
space deformation estimation. Hurdal et al. [19] and Haker
et al. [20] computed quasi-conformal and conformal maps
of the cerebral cortex, respectively.

Continuous Ricci flow [21] conformally deforms a Rie-
mannian metric on a smooth surface such that the Gauss-
ian curvature evolves like a heat diffusion process.
Eventually, the Gaussian curvature becomes constant and
the limiting Riemannian metric is conformal to the original
one. In discrete case, the circle packing metric [22] deter-
mines the discrete Gaussian curvature, and the discrete
Ricci flow [23,24] conformally deforms the circle packing
metrics with respect to the Gaussian curvatures. In [25],
the geodesic lengths of homotopy classes, measured by
Hyperbolic Uniformization metric, is used to determine
the coordinates of each conformal class in the Teichmüller
shape space to classify the shapes with negative Euler
number. In fact, surfaces with the same conformal class
share the same Uniformization metric and can be used to
classify the surfaces [26]. Some Researchers use the surface
Ricci flow method to compute the Teichmüller shape
descriptor and analyze abnormalities in brain cortical mor-
phometry, e.g. in patients with Alzheimers disease [27].

In the real world, the deformation characteristic is
determined by the elasticity of the material structure
undergoing the deformation. Zeng et al. [28] conducted a
series of experiments to verify whether natural surface
deformations are conformal. They reported that isometric
or conformal mappings are rare in the real world, and dif-
feomorphisms between surfaces which are induced by nat-
ural deformations are quasi-conformal mappings. The
diffeomorphisms are complex value functions which have
one-to-one correspondence to the space of Beltrami coeffi-
cients. This one-to-one correspondence can be used for
shape analysis between registered surfaces [29,30], as the
space of Beltrami coefficients is a simpler functional space
that captures the essential features of surface maps. Lui
et al. [31] propose a simple representation of surface diffe-
omorphisms using Beltrami coefficients to facilitate the
optimization of surface registrations. Their method recon-
structs a unique surface map using Beltrami coefficients
and Beltrami Holomorphic Flow, and converts the varia-
tional problems of diffeomorphisms to that of Beltrami
coefficients. Also, Zeng et al. [28] propose an algorithm to
register surfaces with large deformations using quasi-
conformal curvature flow method. Their method can cir-
cumvent the local minima with appropriate normalization
conditions. In the study of anatomical configurations, one
should consider the anatomical differences across subjects
in order to increase the statistical analysis accuracy within
anatomically defined regions of interest. The Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) method
[32] provides diffeomorphisms to map anatomical configu-
rations to extrinsic atlas coordinates. Therefore, the ana-
tomical variations between different configurations are
removed and the group-wise analysis can be carried out
across different anatomic regions, e.g. enhancement of
functional data of medial temporal lobe (MTL), and
detection of shape abnormality of the left hippocampus
in patients with dementia of the Alzheimer type [33,34].

In this study, we employ the structure proposed in [13],
in which the geometrical properties of the deformations
can be enforced by choosing a suitable metric in shape
space. We present a novel quasi-conformal metric to clas-
sify and comparatively analyze the deformations which are
following the transformations which are not rigid, iso-met-
ric or conformal. This metric is a symmetric form and uti-
lizes the local changes of curvature to measure the
similarity between deformations. One challenge in devel-
opment of the quasi-conformal geometry is to compute
effective numerical quasi-conformal mappings. Although
there are some numerical quasi-conformal mapping tech-
niques in the literature solving differential equations with
finite elements, they deal with simple domains and cannot
be applied on general regions. Zeng et al. [35] propose an
algorithm to numerically compute the quasi-conformal
mapping on general Riemann surfaces of any genus. The
framework we utilize in this study numerically minimizes
an energy function to find the geodesic curve connecting
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two models in the shape space manifold. This minimiza-
tion process can be carried out within the local variations
of the intermediate models and will converge to the geode-
sic curve in a linear time with respect to the number of
intermediate models which can be applied on any surface.
This framework is very effective for the classification of
deformations with various local curvature changes and is
not computationally expensive, in contrast, some metrics
such as Weil-Peterson metric [36] are difficult to estimate.
For example, Weil-Peterson metric is a Riemannian metric
with negative sectional curvature, in which estimation of
Weil-Peterson curvature is difficult due to the need to
work with the operator D ¼ �2ðD� 2Þ�1, where D is the
Laplacian operator [37].

One of the applications of this deformation classification
framework is to analyze the deformation of the left ventricle
in myopathic patients. Cardiomyopathy refers to a family of
diseases which cause dilation or hypertrophy in myocar-
dium. In hypertrophic cardiomyopathy (HCM) a portion of
myocardium, e.g. free wall, becomes thickened, which re-
duces stroke volume and increases the risk of arrhythmia
and sudden cardiac death, especially in children. HCM is
usually detected by echocardiogram or Cardiac Magnetic
Resonance imaging (CMR), which detect the physical prop-
erties of the left ventricle wall [38]. However, navigation
through sequential poses of a 3D deformation needs highly
experienced cardiologists, which increases subjectivity in
the analysis. This urges a deformation analysis method
which classifies the 3D heart deformations [39]. Certain lo-
cal shape descriptors such as Strain Analysis, Mean and
Gaussian Curvature, Shape Index, Shape Spectrum, and Wall
Thickness can provide rich information for the cardiac anal-
ysis [40]. We use the local Gaussian curvature changes to
classify the LV myopathic and healthy subjects.

Our contributions in this paper can be summarized as
follows,

�We propose a novel framework for the effective analysis
of dynamic shapes and shape deformations.
�We introduce a novel quasi-conformal metric to charac-

terize and classify the quasi-conformal deformations in
shape space.
� We apply our classification approach on the left ventri-

cle (LV) deformation of some patients with hypertro-
phic cardiomyopathy (HCM). The sensitivity and
specificity of our method for classification of myopathic
and control subjects are higher than other methods
based on the LV cavity, mean radial displacement and
mean radial velocity [41].

The remainder of this paper is organized as follows. The
quasi-conformal metric and the classification framework
are introduced in Section 2; the results on the synthetic
and left ventricle datasets are illustrated in Sections 3
and 4, followed by conclusion in Section 5.
2. Deformation analysis in shape space

Shape space: Let G be the space of all immersions with
the same connectivity. The deformation of the immersion
M constitutes a curve in this space. Therefore, the tangent
vector of X, which belongs to the tangent plane of G at
point M, assigns a vector Xp to each point p on M. Given
a smooth deformation of all points on M, the vector field
XðtÞ is @pðtÞ=@t for all points p. Depending on the deforma-
tion characteristics in which we are interested, various
shape spaces having different intrinsic geometries may
be defined.

2.1. Quasi-conformal metric

Let R be a simplicial complex, and a mapping f : R! R3

embed R to the Euclidean space, then M ¼ ðR; f Þ is a trian-
gular mesh. Let Dpqr be a face of M and fXp;Xq;Xrg be their
corresponding deformations.

In the Riemannian geometry, each metric is defined as
the inner product of two vector fields. Suppose two different
deformation fields as X and Y, the distance between them
are measured by X;Yh ih i in shape space. Based on the Rie-
mannian metric definition, some geometric structures have
been established to provide the Isometric and Rigid metrics
[13]. The as Rigid as possible metric is defined as,

X;Yh ih iRM ¼
X
p2M

Xp � Xp;Yp � Yp
� �

; ð1Þ

where Xp and Yp are the Rigid component of the
deformations. In contrast, if the deformation is strictly
Isometric, the length of every edge on the immersion M
remains unchanged. Thus the following relation holds,

Xp � Xq; pðtÞ � qðtÞ
� �

¼ 0; ð2Þ

and the as Isometric as possible metric is defined as
follows,

X;Yh ih iIM ¼
X
ðp;qÞ2M

Xp � Xq;p� q
� �

� Yp � Yq;p� q
� �

; ð3Þ

where ðp; qÞ is the edge of M. Here we propose a quasi-
conformal metric within this structure. Let Dpqr and D�p�q�r
be two triangles such that,

�pðtÞ ¼ pðt þ DtÞ ¼ pðtÞ þ XpðtÞ
�qðtÞ ¼ qðt þ DtÞ ¼ qðtÞ þ XqðtÞ
�rðtÞ ¼ rðt þ DtÞ ¼ rðtÞ þ XrðtÞ

8><
>:

:

During the conformal deformation, the angle between
two edges of each triangle would be preserved. Generaliz-
ing this idea, one may try to preserve the proportion of two
edge lengths of each triangle during the deformation. In
the Euclidean geometry, if the edge lengths of a triangle
are multiplied by the same coefficient, the resulting trian-
gle has the same angles as the original one; therefore,

�pðtÞ � �qðtÞk k2

pðtÞ � qðtÞk k2 ¼
�pðtÞ � �rðtÞk k2

kpðtÞ � rðtÞk2 : ð4Þ

Eq. 4 yields the following relation,

�pðtÞ � �qðtÞk k2 � pðtÞ � qðtÞk k2

pðtÞ � qðtÞk k2

¼
�pðtÞ � �rðtÞk k2 � pðtÞ � rðtÞk k2

pðtÞ � rðtÞk k2 : ð5Þ
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The numerator shows the changes of the squared edge
length within Dt. If both sides of the equal sign are divided
by Dt, and also Dt ! 0; then, the numerator would be equal
to the derivative of the squared edge length. By differentiat-
ing pðtÞ � qðtÞk k2 and pðtÞ � rðtÞk k2, Eq. 6 will be derived,

pðtÞ � qðtÞ;XpðtÞ � XqðtÞ
� �

kpðtÞ � qðtÞk2 ¼
pðtÞ � rðtÞ;XpðtÞ � XrðtÞ
� �

pðtÞ � rðtÞk k2 ;

ð6Þ

from which TpðXÞ is achieved as follows,

TpðXÞ ¼ p� q;Xp � Xq
� �

� p� rk k2 � p� r;Xp � Xr
� �

� p� qk k2
h i

:

ð7Þ

Likewise, TqðXÞ and TrðXÞ are calculated. To preserve
angles of each triangle Dpqr, a similarity transformation
requires that all TpðXÞ; TqðXÞ and TrðXÞ vanish during defor-
mation. Thus a conformal metric is obtained as follows,

TDpqrðXÞ ¼ TpðXÞ
�� ��þ jTqðXÞj þ TrðXÞj j; ð8Þ

X;Yh ih iCM ¼
X

Dpqr2M

TDpqrðXÞ � TDpqrðYÞ: ð9Þ

Although this metric preserves characteristics of con-
formal deformations, but the shape space geometry of
these conformal deformations cannot be reconciled to the
characteristics of some non-conformal deformations. This
necessitates a quasi-conformal shape space which better
preserves these non-conformal deformation characteris-
tics. Let DKp be the changes of curvature at the vertex p
during deformation, thus TpðXÞ is redefined as follows,

TpðXÞ ¼ DKp

� p� q;Xp � Xq
� �

� p� rk k2 � p� r;Xp � Xr
� �

� p� qk k2
h i

;

ð10Þ

and by substituting the new TpðXÞ from Eq. 10 in Eq. 8 and
Eq. 9 the final quasi-conformal metric is achieved which is
a symmetric form. Since this metric contains a conformal
term extracted from Eq. 7, there are some non-vanishing
deformation fields X, e.g. conformal deformation fields,
such that X;Xh ih i ¼ 0. To avoid this, we can add a regular-
ization term, e.g. L2 shape metric to the proposed quasi-
conformal metric [13],

X;Yh ih iL
2

M ¼
X
p2M

Xp;Yp
� �

� Ap; ð11Þ

where Ap is one-third of the area of all triangles adjacent to
the vertex p. Please note that we only use the deformations
which are not iso-metric or conformal, thus we do not add
L2 shape metric, and use the original quasi-conformal met-
ric (Eq. 9) in this paper. In this quasi-conformal metric,
changes in the curvature at each vertex are considered
such that each vertex with lower curvature changes has
less effect in the metric. The Gaussian curvature of vertex
p is approximated as,

Kp ¼ 2p�
X

Dpqr2M

hqr
p

where hqr
p is the corner angle of Dpqr. In order to find the geo-

desic on the shape space manifold, the energy functional
EðMÞ ¼

R
X;Xh ih iMdt of the curve connecting each pair of
meshes is minimized to achieve the geodesic line connecting
two end points on the shape space manifold. To estimate the
length of curve in Euclidean space, we can take some sam-
ples from the curve and inscribe a polyline to the curve,
and measure the curve length as summation of the length
of the line segments. As we refine the polyline the estimated
length converges to the true length of the curve. Here, we use
the same strategy in Riemannian space, by taking some sam-
ple shapes M0;M1; . . . ;Mnþ1 and the segments X0;X1; . . . ;Xn.
For our proposed quasi-conformal metric, we utilize the
symmetric energy function of the polyline M as,

EðMÞ ¼
X

i

Xi;Xih ih iMi
þ Xi;Xih ih iMiþ1

� �
; ð12Þ

which yields the sum of squared lengths of the line seg-
ments. In fact, this energy function is locally minimized
and the polyline converges to the geodesic, once we utilize
a scaled arc length parameterization [42]. We use the
quasi-Newton method to minimize the energy functional
and estimate the geodesic line by allowing the intermediate
vertices to change in order to minimize the length
functional.

2.2. The deformation analysis framework

An algorithm is introduced to classify the shape defor-
mation. Fig. 1 shows the pipeline of our algorithm. In first
step, the corresponding points are determined on the
intermediate meshes at sequential time points. In syn-
thetic datasets, we know the point correspondence before-
hand, and this step can be skipped, but in the experimental
datasets, we employ a non-rigid registration method to
find the corresponding points, as described in Section 4.
The following describes the rest of the pipeline in details.

2.2.1. Temporal interpolation
To estimate the deformation of an object some time-

varying samples should be taken from the object during
the deformation. In order to increase the temporal resolu-
tion of the sampling, the interpolation step is necessary.
The algorithm to interpolate the deformation is as follows.
Let Mi and Miþ1 be two sequential meshes sampled
during the deformation. We aim to increase the temporal
resolution by interpolating n intermediate meshes
P1; . . . ;Pnf g between Mi and Miþ1. First, the average of Mi

and Miþ1 is considered as an initial intermediate point.
Then by minimizing the energy functional EðMÞ, the inter-
mediate point is determined more accurately reflecting the
applied metric. In the next step, some other initial interme-
diate points may be entered to the energy functional and



Fig. 1. The main pipeline of the classification framework.

Fig. 2. The deformations should be transferred to the same point of shape
space using parallel transport approach; otherwise, they are not compa-
rable. Here, the deformation M is transferred to the point N0 along the
geodesics on the manifold. (a) The first step, M1 is transferred to N1, (b)
the second step, M2 is transferred to N2.
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all the intermediate meshes will be finally optimized
together. To accelerate the optimization process, we
employ a multi-resolution framework as follows [13].

At resolution k, we begin with the two end meshes, Mk
i

and Mk
iþ1, and estimate the intermediate meshes, Pk

1; . . . ;Pk
n,

as mentioned above. Then, we increase the resolution of
Mk

i and Mk
iþ1 such that we project each vertex p added to

Mkþ1
i onto mesh Mk

i , and find face f containing its projec-
tion point p0. Finally, the barycentric coordinates of p0 with
respect to face f are used to initialize the location of the
newly added vertex with respect to the intermediate
meshes at resolution kþ 1;Pkþ1

1 ; . . . ;Pkþ1
n . These refined

meshes initialize the optimization of the energy functional
at resolution kþ 1. As a result, the intermediate refined
meshes can be obtained more reliably compared with
interpolating the high resolution intermediate meshes
without a multi-resolution framework. In our implementa-
tion, we use three resolutions during the interpolation pro-
cess. Please note, the temporal interpolation is not a
necessary step in the pipeline, but if the temporal resolu-
tion is poor, we can increase it, as mentioned. Even in
Euclidean space, one can better judge the difference be-
tween two curves with enough number of intermediate
points rather than just few intermediate points.

2.2.2. Deformation transfer
Two deformations are comparable, if their deformation

curves are transferred to the same point of shape space. In
the Euclidean shape space, this is simple and will not
change the curve, but in non-Euclidean shape space, the
parallel transport [43] approach is employed for the defor-
mation transfer (Fig. 2).

Let M be an immersion on the shape space manifold G.
We sample the deformation path at equidistant points Mi,
thus the line segments connecting each pair of sequential
samples will be Xi ¼ DMi (i.e., a discrete tangent vector).
The deformation of M is transferred to the point N0 such
that M0 is mapped to N0.

Let the curve c0 : ½0 1� ! G be the geodesic line on
the shape space manifold connecting M0 ¼ c0ð0Þ to
N0 ¼ c0ð1Þ, and X0ðtÞ be a vector field along c0 at time t.
X0ðtÞ is parallel transferred along the curve c0, if the angle
a0 ¼ X0ðtÞ; c00

��
ðtÞiic0ðtÞ is constant during the transfer, pro-

vided X0ðtÞ rotates minimally around c00ðtÞ. We take some
samples along c0 and calculate X0ðtÞ at the discrete time
points as follows,

min
X0ðtiþ1Þ

X0ðtiþ1Þ � X0ðtiÞk k2
;

subject to:

a0 ¼ X0ðtiþ1Þ; c00ðtiþ1Þ
� �� �

c0ðtiþ1Þ
:

Once X0ðtÞ is transferred along c0;N1 ¼ N0 þ X0ð1Þ is
achieved (Fig. 2.a).

In the second step, the geodesic line c1 connecting M1 to
N1 is calculated and the vector X1ð0Þ is transferred along it
to achieve X1ð1Þ and N2 ¼ N1 þ X1ð1Þ (Fig. 2b). We keep
transferring deformation segments until all the segments
are transferred [13].
2.2.3. Deformation similarity measure
To compare the similarity between two deformations,

we determine the similarity between the corresponding
intermediate poses after transferring the deformations to
the same region of shape space. Let M ¼ M1; . . . ;Mnf g and
N ¼ N1; . . . ;Nnf g be two deformations, and Mi and Ni be
their ith intermediate poses after temporal interpolation
and deformation transfer. We measure the geodesic dis-
tance between each pair of corresponding poses by mini-
mizing the functional energy in Eq. 12, and then, measure
the deformation similarity by adding the geodesic distances
between all pairs of the corresponding intermediate poses,
that’s,

similarityðM;NÞ ¼
Xn

i¼1

disðMi;NiÞ; ð13Þ

where disðMi;NiÞ is the geodesic distance between Mi and
Ni.
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2.2.4. Deformation classification
Our aim is to classify different deformations into some

classes based on the deformation similarity metric. We
employ the k-means clustering algorithm to classify the
deformations into k classes, S ¼ S1; . . . ; Skf g, such that the
sum of squared with-in cluster distances is minimized,

min
S

Xk

i¼1

X
xj2Si

similarityðxj;liÞ; ð14Þ

where li is the intrinsic mean of the deformations xj’s in
class Si. Intrinsic mean li is calculated at each iteration
based on the similarity metric using the following algo-
rithm [44],
Fig
de
Fig. 4. The interpolation error of (a) our quasi-conformal metric, (b) the
isometric metric. Our metric shows more accurate interpolation than
isometric metric. (c) The interpolation error of all eight deformations
applied on the six initial shapes.
3. Experiments on synthetic datasets

As mentioned in Section 1, the rigid, iso-metric, or con-
formal transformation are so rare in the real world. Since
this study aims at classification of the deformations which
follow natural transformations, we generated some syn-
thetic deformations which are not rigid, iso-metric or con-
formal. In order to generate the synthetic datasets, we first
generated six genus zero shapes (Fig. 3a), as the initial
shapes whose point correspondence was known. Then,
each of the initial shapes was deformed in accordance with
eight known deformations, as shown in Fig. 3b–i. There-
fore, in total, we generated 48 deformations each including
three poses. Fig. 3b–i show the eight deformations applied
. 3. (a) Six initial shapes are generated as the poses at time point zero, (b–
formation the leftmost pose is the pose at time point zero.
on a torus at three sequential time points, such that the
leftmost pose illustrates the pose at time point zero.
3.1. Shape interpolation

We compare the performance of our quasi-conformal
metric with the isometric metric (Eq. 3). The first and last
poses of each deformation serve as input poses, and the
middle pose is interpolated by the temporal interpolation
i) eight deformations are used to deform the six initial shapes. In each
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algorithm. Fig. 4a and b show the interpolation of the mid-
dle pose of the deformation in Fig. 3f by our metric and the
isometric metric, respectively. The interpolation error at
each vertex is shown by different color. As seen, the qua-
si-conformal metric results in more accurate interpolation
than the isometric one. Fig. 4c illustrates the interpolation
error of each deformation separately. Each error bar in
Fig. 4c shows the mean and standard deviation of the inter-
polation error for each deformation applied on the six ini-
tial shapes (Fig. 3a). As seen, the quasi-conformal metric
results in lower error than isometric metric for all the
deformations.

3.2. Deformation transfer

In order to compare the performance of our metric with
the isometric one for deformation transfer, we deformed a
sphere as shown in Fig. 5a, and then, transferred its
deformation to an ellipsoid such that the ellipsoid should
follow the sphere’s deformation at two sequential time
points as shown in Fig. 5b. Fig. 5c and d show how well
the ellipsoid can follow the deformation using both
metrics. As seen, the deformation transfer error using our
metric (Fig. 5c) is lower than that of the isometric metric.
Fig. 5. (a) We deform a sphere, (b) an ideal deformation which the ellipsoid sh
compared with (d) the isometric metric.
The deformation transfer error at each vertex is shown
by different color.

3.3. Synthetic data classification

We applied our deformation classification approach on
the 48 deformations, and measured sensitivity and speci-
ficity of the classification. The point correspondence can
be skipped, as it is known in synthetic datasets. We inter-
polated three intermediate poses between two sequential
poses, which amounts to nine poses for each deformation.
Then, the deformations are transferred into one part of
shape space, and classified using k-means clustering into
eight separate classes based on the quasi-conformal met-
ric, as mentioned before.

Table 1 demonstrates the mean of sensitivity and spec-
ificity of the quasi-conformal metric compared with con-
formal, isometric and rigid metrics. We calculate the
confusion matrix for each class, produce the final confusion
matrix as the average of all the confusion matrices [45],
and then calculate the sensitivity and specificity as follows,

sensitivity ¼ TP
TP þ FN

; specificity ¼ TN
FP
þ TN: ð15Þ
ould follow, (c) the ellipsoid deforms with lower error using our metric



Table 1
Mean of specificity and sensitivity of the synthetic data deformation
classification using different metrics.

Metric Specificity (%) Sensitivity (%)

Rigid 63.4 55.2
Isometric 71.3 69.2
Conformal 80.7 84.2
Quasi-conformal 97.9 99.7
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where TP; TN; FP and FN indicate the true positive, true
negative, false positive and false negative of the average
confusion matrix, respectively. Here, sensitivity for each
deformation type shows the proportion of actual deforma-
tions of that type which are correctly classified as such, and
specificity illustrates the proportion of actual deformations
of the other types which are correctly classified as such. As
seen in Table 1, our metric outperforms other metrics.

We also measured the amount of time each step of the
pipeline takes for all 48 deformations in Fig. 3 on a Pentium
PC with 3 GHz CPU speed and 4 GB RAM memory. Table 2
illustrates the mean and standard deviation (SD) of execu-
tion time for each step separately.

3.4. Deformation projection on 2D space

High dimensional shape space makes the deformation
comparison more complicated. As a result, high dimen-
sional shape space can be projected onto two or three
dimensional space such that distance between the pro-
jected deformation points reflect the similarity between
the deformations in the original high dimensional space
Table 2
Execution of tasks: Time (in minutes) required for each step in the pipeline.

Pipeline steps Estimated time to completion
(mean� SD min)

Temporal interpolation 40� 0:47
Deformation transfer 102� 0:11
Similarity measurement 15� 0:28

Fig. 6. The projection of 48 deformations onto the 2D plane (two axes are first an
close to where all the same deformations are projected to.
as determined by the similarity measure in Eq. 14. Towards
this end, we build a distance matrix demonstrating distance
of each pair of meshes using the proposed metric. Then, the
MultiDimensional Scaling (MDS) method [46] is used to re-
duce dimensions of shape space and project deformations
onto a 2D space. Let M ¼ M1; . . . ;Mnf g be n deformations.
We define the similarity matrix D, where di;j is the similar-
ity between deformations i and j calculated using the above
mentioned similarity metric. We minimize the difference
between pair-wise distances on the high dimensional
space, e.g. disðMi;MjÞ, and the distance between their corre-
sponding points on the 2D space, e.g. kxj � xjk, that’s,

min
x1 ;...;xn

X
i<j

ðkxi � xjk � di;jÞ2: ð16Þ

Fig. 6 illustrates the projection result for all 48 deforma-
tions such that each point represents the projection of one
deformation on the 2D plane and each color represents
one of the eight type deformations in Fig. 3b–i, applied on
the six initial shapes in Fig. 3a. We expect the shapes under-
going similar deformations to be projected close to each
other, as their corresponding geodesic distance on shape
space is shorter than other deformations. This can be ob-
served in this experiment, that is to say, despite different
initial shapes, the similar deformations are projected to
the points (with the same color) close to each other.

3.5. Noise resistance

To evaluate the noise resistance of the pipeline for mea-
surement of deformation similarity, we add some noise to
the deformations, classify the deformations using the
k-means clustering algorithm based on the proposed defor-
mation similarity measure, and measure the percentage of
deformations classified in the same class before and after
adding noise. Let ki and �ki be the deformation sets classified
in class i before and after adding noise, accordingly. Eq. 17
illustrates the percentage of deformations classified in the
same class before and after adding noise,
d second coordinate of MDS). The corresponding deformation is illustrated



Table 3
Performance of the algorithm against noisy datasets with different
percentages of additive noise variance.

Noise variance (%) Uniform noise (%) Gaussian noise (%)

1 97.9 97.9
2.5 93.7 93.7
5 91.6 89.5
10 85.4 83.3
20 75.0 70.8
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s ¼
P

i ki 2 �kijki 2 ki
� ��� ��X

i

ki 2 kif gj j
: ð17Þ

Table 3 represents the algorithm performance against
additive noises with different distributions, which were
added to the 48 deformations. As seen, the percentage of
correctly classified deformations is acceptable up to 10%
of additive noise with uniform and Gaussian distribution.
4. Experimental results

We applied our classification method on the left
ventricle CT images of some patients with hypertrophic
Fig. 7. The left ventricle from (a) the axial view, and (c) the short axis view. As hig
intensity air in lungs and the high intensity contrast agent inside.
cardiomyopathy (HCM) and some control subjects, and
compared their deformation during one heart cycle.

4.1. Image acquisition

Nine myopathic subjects whose cardiac abnormalities
were verified by cardiologists to be on the left ventricle
free wall, and fourteen control subjects participated in this
study. The CT (Computed Tomography) scans of the heart
during one heart cycle were acquired from the subjects
with voxel size of 0:5� 0:5� 0:625 mm3, and tube voltage
of 125 kV, FOV = 500 mm (GE Medical Systems) (Fig. 7).
Each dataset contains eight time points during one heart
cycle (Fig. 8).

4.2. Pre-processing

We apply our method on the left ventricle datasets to
classify the myopathic and control left ventricle deforma-
tion. The pre-processing steps are as follows,

1. We use an extrinsic registration method based on
Thin-Plate Splines [47] which uses the intensity
information using sixteen landmarks selected on apex,
epicardium and endocardium, and register the
hlighted in (b) and (d), the left ventricle can be easily segmented from low
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sequential LV images together. Please note that as we
register sequential images to each other, the LV surface
does not deform drastically and can be registered using
TPS registration method with acceptable accuracy.

2. The Marching Cubes algorithm [48] is used to construct
the LV mesh from the LV image at time point one. The
appropriate threshold was determined by calibration
across a retrospective set of CT scans.

3. Each extracted mesh is deformed using the deformation
fields estimated by each registration in step 1, in order
to construct the LV mesh at different time points, as
well as to determine the point correspondence between
the intra/inter subject meshes.
Fig. 8. The extracted meshes at sequential time points for a
4.3. Left ventricle deformation classification

Each heartbeat cycle contains eight intermediate
meshes, which are temporally interpolated using the
quasi-conformal metric to produce three intermediate
between each sequential time points, thus in total, we
have 24 intermediate meshes for each deformation cycle.
Fig. 9 illustrates the deformation path by projecting it
onto 2D plane using MDS and the quasi-conformal
metric. As can be seen, the deformation contains
eight original meshes (Blue solid dots), and 24
intermediate meshes added using the temporal
interpolation (Blue triangles). The poses at time points
healthy subject (a–h), and a myopathic subject (i–p).



Fig. 9. The projections of eight sequential poses (Blue solid dots) onto the
2D plane along with the interpolated poses (Blue triangles). (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 4
Sensitivity and specificity of our method compared with other methods
based on the LV cavity ðr2 ¼ 0:1Þ.

Sensitivity (%) Specificity (%)

Our method 88.8 85.7
Mean systolic radial 79.4 54.9
Mean radial displacement 76.2 70.9

Table 5
Sensitivity and specificity of our method with different number of control
points of thin plate spline registration method ðr2 ¼ 0:1Þ.

Number of landmarks Sensitivity (%) Specificity (%)

8 77.7 71.4
16 88.8 85.7
24 88.8 92.8
32 88.8 92.8
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7 and 3 correspond to the end of diastole and end of sys-
tole, respectively.

Since the myopathic areas of the subjects are on the free
wall, we only consider the faces of the mesh which belong
to the LV free wall, and concatenate them to form a large
vector in R3m, where m vertices are selected on the free
wall. Finally, the proposed approach was applied on the
sequential deformation vectors of the subjects in order to
classify the myopathic and control subjects’ left ventricle
deformations.

Both left ventricle mesh generation and corresponding
landmark selection steps might introduce some inaccura-
cies in the location of the corresponding vertices at
different time points. However, as aforementioned, the
proposed approach resists against additive noise well,
and classifies the deformations accurately up to 10% addi-
tive noise. Thus, these accuracies in the vertex locations
due the surface generation and landmark selection can be
avoided well in our approach. Table 4 illustrates the sensi-
tivity and specificity of our method, which are calculated
as in Eq. 15. Our method shows better performance com-
pared with other methods based on the LV cavity, mean ra-
dial displacement and mean radial velocity [41].
5. Conclusion

An algorithm is presented to classify and compare
deformations based on a novel quasi-conformal metric in
shape space. To make deformation paths intuitively com-
parable in shape space, the deformations are transferred
to the same point of shape space. The synthetic and exper-
imental results on the CT images of the left ventricle verify
the performance of the metric. This method shows excel-
lent resistance against additive noise. Note that if the tem-
poral resolution of the poses is acceptable, the
interpolation step can be skipped, thus the rest of the pipe-
line is executed in Oðmn2Þ time. Otherwise, to increase the
temporal resolution a nonlinear function should be opti-
mized, whose complexity is OðmnÞ, where n is the number
of meshes, each having m vertices. Since each point of
shape space corresponds to one mesh in R3m, we can easily
retrieve the intermediate meshes [49]. To accelerate the
algorithm, we employ the space refinement, in which the
spatial resolution of meshes is increased iteratively, from
coarser meshes to finer ones to interpolate the intermedi-
ate poses.

In this study, the shape space structure requires the tri-
angulation consistency between sequential poses at differ-
ent time points. In the synthetic datasets, we generated
triangulations of some genus-0 (sphere) and genus-1
(torus) models without boundaries, and displaced the tri-
angulations to generate the models at different time points
of the deformations. As a result, the triangulation consis-
tency exists in the synthetic datasets. However, the trian-
gulation consistency cannot be preserved in the real
datasets, if we extract the surface of the models, e.g. the
epicardial and endocardial surfaces of the left ventricle at
sequential time points, and generate the triangulation for
each model, separately. A traditional way to generate a
consistent (isomorphic) triangulations between two sur-
faces is to compute a parameterization between each 3D
surface and a 2D parametric domain, e.g. topological disk,
take samples in the parametric domain in order to gener-
ate a consistent 2D triangulation in a multi-resolution
framework, and derive inverse mapped 3D vertices
[50,51]. However, this method might involve an arbitrary
graph cut which disrupts the continuity of the parameter-
ization and makes it hard to construct a continuous map
between two surfaces. To overcome this issue, Li et al.
[52] propose an algorithm based on the intrinsic geometry
structure of surfaces in order to estimate a quasi-confor-
mal mapping between surfaces while reaching the global
minimum distortion, which can register shapes undergo-
ing large deformations. In fact, using the framework pro-
posed in [52], one can integrate the quasi-conformal
registration into the process.

In contrast, in this study, we first register the CT images
of the left ventricle at different time points to the pose at
the first time point to find the corresponding points using
an intensity-based registration method, e.g. TPS, then ex-
tract the surface and triangulate the vertices of the first
pose. Finally, we apply this triangulation to other poses
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at other time points, since we already know the point
correspondences.

This method shows excellent resistance against the
additive noise, added to the surface vertex locations,
which, we believe, accounts for the registration accuracies.
However, in order to investigate the effect of registration
inaccuracies, we registered the intermediate LV poses with
different number of landmarks using the TPS method, and
examined the sensitivity and specificity of the method, as
illustrated in Table 5. The results show that TPS method
has acceptable accuracy for 16 chosen landmarks. How-
ever, any other non-rigid registration method can be uti-
lized in our framework, such as Advanced Normalization
Tools (ANTS) [53], an intensity-based registration method
which is available online and has acceptable registration
accuracy [54,55].

One drawback of this method for the LV deformation
classification is that it does not localize the myopathic
area, as the proposed metric considers all the vertices to-
gether to measure the similarity. Some researchers used
the LV thickness wall information to differentiate the
abnormal patients from healthy ones [56]. The wall thick-
ness measure can be utilized to localize the myopathic
area, which will be investigated more in the future work.
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