
Computing a High-Dimensional Euclidean Embedding from an
Arbitrary Smooth Riemannian Metric

ZICHUN ZHONG,Wayne State University
WENPING WANG, The University of Hong Kong
BRUNO LÉVY, INRIA Nancy - Grand Est
JING HUA,Wayne State University
XIAOHU GUO, University of Texas at Dallas

Fig. 1. Illustration of self-intersection free high-dimensional Euclidean embedding (SIFHDE2) for anisotropic Restricted Voronoi Diagram and meshing on
Riemannian 2- and 3-manifolds. Left: For some examples of 2- and 3-manifolds with Riemannian metric fields in different scenarios, such as metrics defined by
a 2D analytic function, 3D surface curvature, and 3D analytic function, we can compute SIFHDE2s of them in a high-dimensional Euclidean space. Right: Then,
we can generate the Voronoi diagrams and meshes in such embedding with Euclidean metric. Finally, when they are mapped to the original domains, the
anisotropic Voronoi diagrams (Top Right) and the anisotropic meshes (Bottom Right) will exhibit the desired anisotropy.

This article presents a new method to compute a self-intersection free high-
dimensional Euclidean embedding (SIFHDE2) for surfaces and volumes equipp-
ed with an arbitrary Riemannian metric. It is already known that given a
high-dimensional (high-d) embedding, one can easily compute an aniso-
tropic Voronoi diagram by back-mapping it to 3D space. We show here how
to solve the inverse problem, i.e., given an input metric, compute a smooth
intersection-free high-d embedding of the input such that the pullbackmetric
of the embedding matches the input metric. Our numerical solution mech-
anism matches the deformation gradient of the 3D → higher-d mapping
with the given Riemannian metric. We demonstrate the applicability of our

Authors’ addresses: Zichun Zhong, Wayne State University, zichunzhong@wayne.edu;
Wenping Wang, The University of Hong Kong, wenping@cs.hku.hk; Bruno Lévy,
INRIA Nancy - Grand Est, bruno.levy@inria.fr; Jing Hua, Wayne State University,
jinghua@wayne.edu; Xiaohu Guo, University of Texas at Dallas, xguo@utdallas.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/8-ART62 $15.00
https://doi.org/10.1145/3197517.3201369

method, by using it to construct anisotropic Restricted Voronoi Diagram
(RVD) and anisotropic meshing, that are otherwise extremely difficult to
compute. In SIFHDE2-space constructed by our algorithm, difficult 3D an-
isotropic computations are replaced with simple Euclidean computations,
resulting in an isotropic RVD and its dual mesh on this high-d embedding.
Results are compared with the state-of-the-art in anisotropic surface and
volume meshings using several examples and evaluation metrics.

CCS Concepts: • Computing methodologies → Parametric curve and
surface models; Volumetric models;

Additional KeyWords and Phrases: anisotropic Voronoi diagram, anisotropic
meshing, high-dimensional (high-d) embedding, self-intersection free

ACM Reference Format:
Zichun Zhong, Wenping Wang, Bruno Lévy, Jing Hua, and Xiaohu Guo.
2018. Computing a High-Dimensional Euclidean Embedding from an Ar-
bitrary Smooth Riemannian Metric. ACM Trans. Graph. 37, 4, Article 62
(August 2018), 16 pages. https://doi.org/10.1145/3197517.3201369

1 INTRODUCTION
Anisotropic meshes are important for not only improving the ac-
curacy of numerical simulations [Alauzet and Loseille 2010; Narain
et al. 2012] but also better approximating shapes [Simpson 1994].

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:2 • Zhong, Wang, Lévy, Hua, and Guo

Unlike isotropic meshes, where the elements are chosen to be as
regular and uniform as possible, anisotropic meshes are designed
with elongated mesh elements that follow user specified orienta-
tions and aspect ratios or Riemannian metric tensor fields. With
the same number of budgeting elements, the anisotropic meshing
representation for the surface / volume of the original model is pre-
ferred due to the smaller approximation errors compared with the
correspondent isotropic counterpart [Heckbert and Garland 1999;
Simpson 1994].
Anisotropic meshes are notoriously difficult to compute. A pos-

sible strategy to overcome the difficulty is to map the (complicated)
anisotropic 3D space onto a higher-d space, where geometric compu-
tations are made simpler (Euclidean / isotropic). In a certain sense,
“anisotropy is traded for additional dimensions”. This idea is in-
spired by the celebrated Nash embedding theorem, which states
that every Riemannian manifold can be isometrically embedded
into some high-dimensional (high-d) Euclidean space [Kuiper 1955;
Nash 1954]. In such high-d embedding space, the metric is uniform
and isotropic. When the isotropic mesh is computed in this embed-
ding space and back-projected, the mesh elements on the original
manifold will exhibit the desired anisotropic property. Recently, a
few methods investigated this problem on surface meshing. Zhong
et al. [2013] introduced a particle-based meshing approach that
conceptualizes the inter-particle energy optimization in a high-d
“embedding space”. This embedding space was used in their energy
and force formulation without computing such a space explicitly.
However, their method has some limitations due to lack of explicit
embedding. Specifically, without an explicit embedding, K-Nearest
Neighbors (K-NN) search of particles and anisotropic Restricted
Voronoi Diagram (RVD) computation under a Riemannian metric
space are very challenging and time-consuming. Another group of
research focused on computing explicit embeddings, such as 3D
embedding [Panozzo et al. 2014], 5D or 6D embedding [Dassi et al.
2014, 2015; Lévy and Bonneel 2012]. However, these methods have
their own limitations, such as exhibiting self-intersections [Panozzo
et al. 2014], working only on specific dimensions [Dassi et al. 2014,
2015; Lévy and Bonneel 2012; Panozzo et al. 2014], or using only spe-
cific embeddings (i.e., not considering arbitrary input Riemannian
metrics) [Dassi et al. 2014, 2015; Lévy and Bonneel 2012].
The novelty introduced by our method is that our input is a

smooth arbitrary user-defined metric, from which the embedding
is deduced, whereas previous work observed that some predefined
shapes of the embedding result in some specific anisotropies when
back-mapped to 3D space. Our main contribution is to provide a
numerical method that solves the “inverse problem”. It makes our
method much more general in terms of supported metrics. Besides
that, previous work considered the surficial case, whereas we also ex-
periment with the (significantly more challenging) volume meshing
problem. Our algorithm works with arbitrary embedding dimension
and avoids self-intersections. On the computed embedded surface
or volume, we can directly optimize for a uniform, isotropic particle
distribution and generate a high-quality isotropic RVD and its dual
mesh on it. When mapped back to the original surface or volume,
an anisotropic RVD as well as a simplicial mesh are obtained. Fig. 1
illustrates the method in flat 2D, 3D surficial and volumetric settings.

The embedding problem is formulated as an optimization that
minimizes the deviation between the given metric and the deforma-
tion gradient of a map from the original surface / volume to the high-
d embedded surface / volume. Our empirical experiments detailed
further demonstrate that our method constructs an embedding with
a small metric deviation error. The benefits of the high-d embedding
are as follows:
• the so-constructed high-d space can be used to compute an-
isotropic Voronoi diagrams for surfaces and volumes with
a prescribed anisotropy. To our knowledge, this is the first
time that an effective computational algorithm is proposed
to construct such objects in the arbitrary volumetric metric;
• it introduces new computational strategies for some recent
anisotropic meshing algorithms, such as particle optimization,
RVD, and dual meshing in the high-d Euclidean embedding
space. Our empirical evaluations in several scenarios demon-
strate that high-d embedding is a practical utility.

2 RELATED WORK

2.1 Anisotropic Triangulation
Anisotropic Centroidal Voronoi Tessellation. In order to com-
pute well sampled anisotropic meshes, Du et al. [2005a] further
generalized the concept of Centroidal Voronoi Tessellation (CVT) to
the anisotropic case – Anisotropic CVT (ACVT), and then computed
its dual mesh graph. An Anisotropic Voronoi Diagram (AVD) with
the given Riemannian metric needs to be constructed in each Lloyd
iteration [Lloyd 1982], which is a time-consuming operation. To
make the computation faster, Valette et al. [2008] described a dis-
crete approximation of ACVT by clustering the vertices of a dense
pre-triangulation of the domain, at the expense of degraded mesh
quality. Recently, Zhong et al. [2014] provided a method to solve the
anisotropic meshing by conformally mapping the metric surface to
an appropriate 2D parametric domain and then compute CVT on
it. But the limitation of the conformal embedding method is that it
cannot handle surfaces with complicated topologies.

Surface Meshing in Higher Dimensional Space. Several solu-
tions were proposed for certain classes of surface meshing problems
by embedding them in high-d spaces [Boissonnat et al. 2008a; Cañas
and Gortler 2006; Kovacs et al. 2010; Lévy and Bonneel 2012]. Lévy
and Bonneel [2012] extended the computation of CVT to a 6D space
in order to achieve the curvature-adaptation. The main idea of their
method is to transform the anisotropic meshing problem on a 3D
surface to an isotropic one embedded in 6D space described by ver-
tex positions and normals. Recently, Dassi et al. [2014; 2015] used
Lévy and Bonneel’s framework to compute remeshing, but instead
of optimizing the CVT in 6D, they used local operations (i.e., edge
flips). It should be noted that both Lévy and Bonneel’s and Dassi et
al.’s work does not provide user’s flexibility to control the anisotropy
through an arbitrary input metric field.

Particle-Based Anisotropic Meshing. Particle-based approaches
for anisotropic meshing have been proposed during the past two
decades. Bossen and Heckbert [1996] simulated the repulsion and
attraction forces between particles based on a distance function with
the metric tensor. Shimada et al. [1995; 1997] physically modeled the
inter-bubble forces by a bounded cubic function of the distance, and

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:3

further extended it to anisotropic meshing by converting spherical
bubbles to ellipsoidal ones. Both Bossen et al. and Shimada et al.’s
work requires dynamic population control schemes, that is to adapt-
ively insert or delete particles / bubbles in certain regions. Zhong
et al. [2013] showed that by formulating the inter-particle energy
optimization in a high-d space, such optimizations have very fast
convergence without any need for the explicit control of particle
population. But they still needed to compute the anisotropic RVD on
the surface in 3D space in their final step of mesh generation, which
is less robust and efficient. Another bottleneck in their framework
is the search speed of neighboring particles. A comparison with our
approach is shown in Sec. 6 and Appendix D.

Refinement-Based Delaunay Triangulation. Delaunay refine-
ment-based approaches involve iterative point insertion in a Delaun-
ay triangulation. Many researchers have extended these approaches
to anisotropic triangulations [Borouchaki et al. 1997b,a; Dobrzyn-
ski and Frey 2008]. Cheng et al. [2001; 2006] applied Delaunay
refinement to anisotropic surface meshing. Boissonnat et al. [2015a;
2008b; 2015b] introduced a Delaunay refinement framework to add
new vertices gradually to reach the final anisotropic meshes. Re-
cently, Rouxel-Labbé et al. [2016] introduced an algorithm to com-
pute discrete approximations of Riemannian Voronoi diagrams on
2-manifolds by using the numerical computation of geodesic dis-
tances. The main strength of these methods is that they come with
theoretical proofs, both on termination (finite number of inserted
points) and existence of a straight dual. However, since they use
local criteria to insert points, the final result is often of lower quality
than when using a global optimization [Fu et al. 2014; Zhong et al.
2013]. Since they used the same representation of the metric as
in [Lévy and Bonneel 2012] and as us (piecewise constant in the
simplices), their method can be used as a post-processing after a
global optimization, in order to benefit from both advantages (qual-
ity of global optimization and robustness / theoretical guarantees
of Delaunay refinement).

Optimal Delaunay Triangulation. Another idea for anisotropic
meshing is through Delaunay-based variational approach, by min-
imizing the error between a lifted quadratic target function and the
linear interpolation of the constructed mesh. Chen et al. [2007; 2004]
proposed Optimal Delaunay Triangulation (ODT) method to min-
imize the error function for both isotropic and anisotropic meshing.
Alliez et al. [2005] presented a robust approach for isotropic tetra-
hedral meshing by exploiting the ODT formalism. In the context of
varying densities, the objective function was carefully analyzed and
improved in [Chen et al. 2014]. ODT can be considered as lifting the
points onto a paraboloid and estimating volume integrals on this
paraboloid. Budninskiy et al. [2016] presented a variational method
to take into account an anisotropy by using a convex function instead
of a paraboloid. While elegant and interesting from a theoretical
point of view, their method is limited to a small class of anisotropies
stemming from convex functions. The constraint is not reasonable
in practical applications (for instance, it could not account for the
anisotropy in Fig. 1-Right, nor with any non-convex geometry). Fu
et al. [2014] proposed a Locally Convex Triangulation (LCT) method
to compute the anisotropic meshes based on constructing convex
functions that locally match the specified Riemannian metric. We

compare the quality of our generated mesh with Fu et al.’s method
in Sec. 6.

2.2 Anisotropic Tetrahedralization
Theoretically, it is possible to extend ACVT-based method for an-
isotropic meshing from 2D domain or surface [Du and Wang 2005a;
Valette et al. 2008; Zhong et al. 2014] into 3D volume, but this group
of methods needs to compute AVD iteratively in the ambient 3D
space with specified metrics, which makes the computation very
complicated and impractical. In computer graphics and geometric
modeling areas, there is few literature in anisotropic tetrahedral
meshing: Dobrzynski and Frey’s local mesh adaptation method
based on an extension of Delaunay kernel [Dobrzynski and Frey
2008], Klingner et al.’s aggressive optimization [Klingner 2008; Kling-
ner and Shewchuk 2007] and Fu et al.’s LCT method [Fu et al. 2014]
on some simple 3D models. Yamakawa and Shimada [2000] pro-
posed an ellipsoidal bubble packingmethod, but inserting or deleting
particles / bubbles is necessary in the computation. In mechanical
and biomedical engineering, anisotropic meshing is widely used
in computational fluid dynamics (CFD) [Alauzet and Lozeille 2016;
Frey and Alauzet 2005; Loseille and Löhner 2016] and blood flow
simulations [Marchandise et al. 2013; Sauvage et al. 2014]. However,
their methods are numerical and error estimation-based approaches.
The complicated algorithms and implementations are becoming the
major bottleneck and impeding the effective utilization and better
understanding of acquired 3D anisotropic volume models.

2.3 Other Related Embedding Work
In the mathematical community, there are many theoretical work
on isometric embedding for Riemannian manifolds [Gromov 2017;
Gromov and Rokhlin 1970; Han and Hong 2006; Hong 1993]. Re-
cently, Borrelli et al. [Borrelli et al. 2012] proposed to convert the
convex integration theory into an algorithm and implementation
that produces isometric maps of flat tori. Bronstein et al. [2000;
2005] demonstrated the performance of multi-dimensional scaling
(MDS). Instead of raising the dimensions, they mapped the original
metric domain into a parameter domain (similar to a conformal
embedding). Verma [2012] proposed the distance preserving embed-
dings for general n-dimensional manifolds in the machine learning
field. It applies “spiraling perturbations / corrections” for globally
isometric mapping. This cannot compute a smooth high-d embed-
ding for our computer graphics research and applications. Recently,
Panozzo et al. [2014] proposed a 3D embedding framework with self-
intersections to compute a surface deformation that warps a frame
field into a cross field, and used it for the adaptive quad meshing. In
their method, the parameterization is used to handle the final mesh-
ing with self-intersections. However, our proposed method does
not need an extra step to parameterize the embedding for meshing,
since we can directly produce the Voronoi diagrams and meshes on
the computed SIFHDE2. Another limitation of their method is that
the frame-driven deformation for 3D embedding computation may
deteriorate the quality of the input triangulation, especially when
the stretching ratio is high, such as ≥ 10, which leads to failure.
However, our method theoretically can compute the embedding for
any high-stretching ratio case, since we provide enough degrees of
freedom in higher dimensions. We compare the embedding quality

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:4 • Zhong, Wang, Lévy, Hua, and Guo

with Panozzo et al.’s method in Sec. 6. Besides surface cases, our
high-d embedding approach can work on volume cases, which is an
unexplored topic in the previous work.

3 HIGH-D EMBEDDING

3.1 Anisotropy and High-D Embedding
Anisotropy represents how distances and angles are distorted, which
can be measured by the dot product in geometry. We consider that a
metricM (.), i.e., a symmetric positive definite (SPD) bilinear form,
is defined over the surface or volume domain Ω ⊂ Rm . In this case,
at a given point x ∈ Ω, the dot product between two vectors a and b
is denoted by ⟨a, b⟩M (x) , which is defined over the tangent space of
the surface or the volume:

⟨a, b⟩M (x) = aTM(x)b, (1)

where a symmetricm×mmatrixM(x) represents themetric. Through
Singular Value Decomposition (SVD), the metric matrixM(x) can
be decomposed into:

M(x) = R(x)T S(x)2R(x), (2)
where the diagonal matrix S(x)2 contains its ordered eigenvalues
(i.e., a scaling field), and the orthogonal matrix R(x) contains its
eigenvectors (i.e., a rotation field). In the surface case [Du and Wang
2005a; Zhong et al. 2013], they are defined on the tangent spaces
of the surface. s2s1 is defined as stretching ratio in the surface metric
fieldM(x), where s1 and s2 are the two diagonal items in S(x) and
s1 ≤ s2. Similarly, in volume case [Yamakawa and Shimada 2000],
they represent the scaling and rotation in a 3D volume space.
Metric through High-D Embedding. For an arbitrary metric

fieldM(x) defined on the surface or volume Ω ⊂ Rm (i.e., Rieman-
nian 2- or 3-manifold), Nash theorem [Nash 1954] states that there
exists a high-d space Rm (i.e., m ≤ m), in which the surface or
volume can be embedded with Euclidean metric as Ω ⊂ Rm . In this
article, Ω denotes the “embedded surface or volume”. Consider a
mapping denoted by ϕ : Ω → Ω. For a simple example of Fig. 2,
the left image shows a 2D metric field M. The unit circles and
bean-shaped curves are iso-distance contours, and the colormap
represents the stretching ratio. The right image shows that by em-
bedding the flat 2D domain as a curved surface in 3D, one can recast
the Riemannian manifold problem (such as in 2D) as the isotropic
Euclidean manifold of a shape surface embedded in a higher di-
mensional space (such as in 3D). This theorem does also hold in
the higher dimensions, other than 2D. In this work, we focus on
Riemannian 2- and 3-manifold shapes.

1.0

Max

Fig. 2. The original 2D Riemannian manifold surface Ω (left) embedded in
a higher dimensional space Ω (right) (3D).

From the definition of anisotropy at the beginning of this section
and the above Eq. (1), it can be seen that introducing anisotropy

means changing the definition of the dot product. If we consider two
vectors a and b in the tangent space of a given location x ∈ Ω, then
they are transformed into a = J(x)a and b = J(x)b on the high-d
embedded surface or volume Ω, where J(x) denotes the Jacobian
matrix of mapping ϕ at x. The dot product between a and b is given
by the pullback metric of ϕ, defined as: ⟨a, b⟩ = aT J(x)T J(x)b =
aTM(x)b.

Importance ofHigh-D Embedding. (1) In a high-d space, more
degrees of freedom are available to deform and embed the given
surface or volume, so that better embedding quality is obtained.
Experiments are shown in Sec. 6. (2) When using the high-d space,
we can avoid self-intersections of the embedded surface or volume
as discussed in Sec. 3.4.2, instead of embedding them in the original
space. (3) By generating a high-d Euclidean embedding without self-
intersections, we are able to drastically simplify several Riemannian
geometric applications, such as computing anisotropic RVD and
meshing on surface and volume with high-quality elements using
only isotropic Euclidean computations. This is both more efficient
and more accurate than the computations in metric space. Details
are presented in Sec. 4.

3.2 High-D Embedding Transformation
In this work, we assume the surfaces are all represented as triangle
meshes and the volumes are all represented as tetrahedron meshes.
The two surfaces / volumes Ω (in the original space) and Ω (in
the high-d space) share the same number of vertices and the same
connectivity between vertices. The only difference between them
is their vertex coordinates and dimensions; thus, we assume that
the two surfaces / volumes have the same indices of vertices and
triangles / tetrahedrons. In the following subsection, we discuss the
surface and volume cases, respectively.
Surface: For a triangle j on Ω and Ω, let {vj1 , vj2 , vj3 } and {vj1 ,

vj2 , vj3 } denote their vertices, respectively. A basis to the tangent
space is given by their corresponding edge vectors, which can be
represented as the following two matricesWj = [vj2 −vj1 , vj3 −vj1]
andWj = [vj2 − vj1 , vj3 − vj1].

Volume: For a tetrahedron j on Ω and Ω, let {vj1 , vj2 , vj3 , vj4 } and
{vj1 , vj2 , vj3 , vj4 } denote their vertices, respectively. Similar to the
surface case, the corresponding edge vectors can be represented as
the following two matricesWj = [vj2 − vj1 , vj3 − vj1 , vj4 − vj1] and
Wj = [vj2 − vj1 , vj3 − vj1 , vj4 − vj1].

Their relationship can be represented as:

Wj = JjWj , (3)

where Jj is the Jacobian transformation matrix for triangle or tetra-
hedron j, and JTj Jj = Mj .

In what follows, we assume that the original metric is smooth over
the surface or the volume (satisfying a Lipschitz condition [Freidlin
1968; Itô 1950]), and sampled as a constant symmetric matrix Mj
attached to each mesh simplex j . Note that in practice, it may be spe-
cified in the input at each vertex. In this case, several techniques can
be used to interpolate the metric and deduce a reasonable constant
value on each simplex (see [Courty et al. 2006] for a discussion).

We now elaborate on the relationship between the Jacobianmatrix
of the mapping Jj and the metric Mj , i.e., JTj Jj = Mj . To better

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:5

understand Jj , it is necessary to explore the relationship between
the original triangle or tetrahedron j onΩ and the embedded triangle
or tetrahedron j on Ω, Jj is anm×mmatrix, and it can be represented
as the product of a rotation in the high-d embedding space, and a
scaling and rotation in the original space. Based on Eq. (3), that is:

Wj = Uj
[SjRj

0

]
Wj , (4)

where Uj is anm ×m unitary matrix (i.e., a rotation matrix in Rm);
0 is a (m −m) ×m block of zeros; Sj and Rj are the diagonal scaling
matrix and rotation matrix extracted from SVD of the metric Mj as
shown in Eq. (2).
Thus, the embedding transformation Jj is:

Jj = Uj
[SjRj

0

]
. (5)

By denoting Qj =
[SjRj

0

]
, we can simply represent Jj as:

Jj = UjQj . (6)

3.3 High-D Deformation Gradient
Intuitively, the transformation between the original surface or volume
Ω and its high-d embedded one Ω can be considered as the deform-
ation of Ω. It is represented by the field of the deformation gradient
over the surface or volume as intuitively shown by Sumner and
Popović [2004]. This field is defined per triangle face or tetrahedron
volume. We extend their idea from 3D surface to our high-d embed-
ding as well as volume cases. Given a manifold with no deforma-
tion (i.e., the original surface or volume Ω) and its corresponding
deformed manifold (i.e., the embedded surface or volume Ω), the
deformation gradient Tj for triangle or tetrahedron j (Tj is anm×m
matrix) can be defined by:

TjWj =Wj . (7)

In order to obtain Tj , we need to compute the inverse of Wj .
Since the surface and volume have different representations of edge
vectors, there are two cases as follows:

(1) Surface: For surfaces,Wj is a 3×2 matrix, so we cannot directly
compute its inverse matrix. With QR factorization of Wj [Golub
and Loan 1996] (equivalent to the pseudoinverse):

Wj = Oj
[Pj
0

]
= [OjαOj β]

[Pj
0

]
= OjαPj , (8)

where Pj is a 2×2 upper triangular matrix,Oj is anm×m orthogonal
matrix, Ojα is anm × 2 matrix, and Oj β is anm × (m − 2) matrix,
where m = 3. Then we have the minimum norm solution of the
deformation gradient for triangle j:

Tj =WjP−1j OT
jα . (9)

(2) Volume: For volumes,Wj is a 3×3 square matrix, so the inverse
of it can be directly computed as:

Tj =WjW−1j . (10)

3.4 Embedding Optimization
From Eq. (6) and Eq. (9) (or Eq. (10)), we can clearly see that in
essence, the high-d embedding transformation Jj and the high-d
deformation gradient Tj are the same. For Jj in Eq. (6), Qj is coming
from the given metric Mj on the surface or volume, while Uj is
the high-d rotation matrix that is unknown. For Tj in Eq. (9), Pj

and Ojα are from the edge vector Wj of the original surface, or in
Eq. (10), W−1j is from the edge vector Wj of the original volume,
while Wj is the edge vector of the high-d embedded triangle or
tetrahedron that is unknown.

Thus, knowing either of these two matrices, i.e., Jj and Tj , guides
us in computing the other. We can formulate an expression to min-
imize the function Eem defined as the difference between these two
matrices:

Eem (v1, · · · , vnv) = min
nele∑
j=1

Tj − Jj

2
F
, (11)

where nv is the number of vertices, nele is the number of mesh
elements, i.e., triangles or tetrahedrons, and {v1, · · · , vnv } are the
vertices of the high-d embedded surface or volume Ω. The matrix
norm | |.| |F is the Frobenius norm.
By substituting Eq. (6) and Eq. (9) (or Eq. (10)) into Eq. (11), we

can get the more detailed expressions for this objective function:
Surface:

Eem (v1, · · · , vnv) = min
nele∑
j=1

WjP−1j OT
jα − UjQj

2
F
. (12)

Volume:

Eem (v1, · · · , vnv) = min
nele∑
j=1

WjW−1j − UjQj

2
F
. (13)

3.4.1 Regularization Term. It is well known that solutions to
Nash isometric embedding problem often present wrinkles, known
as corrugations, that can form fractal patterns (see [Borrelli et al.
2012] and references herein on convex integration). Thus, a direct
minimization of the criterion in Eq. (12) or Eq. (13) may lead to an
oscillating high-d embedding, with wrinkles (an example shown in

Fig. 3. A 3D embedding from a 2D do-
main with an anisotropic metric given
in Fig. 4 (a) computed without the reg-
ularization.

Fig. 3), that may have an in-
fluence on the stability / ro-
bustness of the subsequent geo-
metric operations: in the high-
d embedding space, we would
like to use the Euclidean dis-
tance to approximate the met-
ric distance on the original sur-
face or volume, in order to effi-
ciently compute: (1) K-NN for
particle optimization in the high-d space; and (2) high-d RVD and
dual mesh based on uniformly optimized particles. Thus the embed-
ded surface or volume has to be smooth enough, in order to ensure
that the K-NN and RVD computed with Euclidean distances in the
high-d space are sufficiently accurate.

Thus, to regularize the embedding, we add the following term:

Er eд (v1, · · · , vnv) =
nv−b∑
i=1

m∑
d=3,4

(

∑
k ∈N (i) (v

d
k −v

d
i)

|N (i) |
)2, (14)

where nv−b is the total number of vertices excluding those on the
open boundaries in surface case or boundary surface in volume
case, N (i) is the set of one-ring neighbors of vertex i , |N (i) | is the
size of set N (i), and vdi , v

d
k are the d-th dimensional coordinates of

vertices vi and vk (why d starts from 3 or 4 will be explained in the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:6 • Zhong, Wang, Lévy, Hua, and Guo

following Sec. 3.4.2). The regularity term Er eд is a summation of
the square of graph Laplacian operations over every vertex in the
embedding space except those vertices on the open boundaries in
surface case or boundary surface in volume case.
Now our regularized objective function for the embedding op-

timization includes two terms: the similarity between two trans-
formations and the regularity used to achieve smoothness of the
embedding:

Etotal = Eem + µEr eд , (15)

where µ is a weighting factor to balance the similarity and regularity
terms during optimization. In our experiments, µ is set to be 100.
The experiments for analyzing the behaviors of different µ values
with embedding results are given in Appendix B.

3.4.2 Avoiding Intersections and Choosing Target Dimension. Ac-
cording to Nash embedding theorem, using the mapping ϕ : Ω → Ω

given by v1:m → (v1:m , vm+1, · · · , vm), one obtains an embedding
without self-intersections. In our case, to avoid self-intersections
that may come from numerical approximations or from the regu-
larization term, in addition we keep the original 3D coordinates,
thus, in a certain sense, the additional nD coordinates that we com-
pute act as “correcting terms” to solve for the metric. Clearly, if
the original 3D surface is free of self-intersections, then it is also
the case of our (n+3)D embedding. Compared with methods that
avoid self-intersections a-posteriori in a 3D embedding [Panozzo
et al. 2014], this is both simpler, and leaves more degrees of free-
dom to fit the user-specified metric. Generally speaking, the higher
the dimension is, the smaller the embedding error is, since more
degrees of freedom are provided to deform and embed the given
surface or volume in such an embedding space; it is necessary to
choose the dimension in a way that balances the computational
efficiency and the embedding errors. Another advantage of the pro-
posed high-d embedding is that we can automatically preserve the
original 2D / 3D shape geometric features (such as sharp feature
edges and corners) by using the strategy of keeping the original 2D
/ 3D coordinates, and only embedding and smoothing additionally
higher dimensions (d starts from 3 or 4 in the regularization term),
i.e., “anisotropic metric is traded as additional dimensions”. Our
empirical results showed that 8D is a reasonable target dimension
for embedding most general metric surfaces and volumes in small
errors and without any self-intersection. More details and empirical
validation will be given in Sec. 6.1.2.

3.4.3 Numerical Solution Mechanism. The optimization defined
above is a non-linear problemwith two unknown parameters (i.e.,Wj
and Uj). We use an iterative method to obtain the optimal solution
of Wj . It should be noted that the optimized vertex coordinates
v1, · · · , vnv of the embedded surface or volume are included in the
edge vectorsWj .

Initially, for each vertex i , we set its high-d embedding coordinates
as vi = (v1:mi ,v

m+1
i , · · · ,vmi), where the firstm dimensions are the

same as the original surface or volume’s coordinates, and use a small
random perturbation to each higher dimensional coordinate (from
dimensionm + 1 to dimensionm).

When the vertex coordinates {vi |i = 1, · · · ,nv } are fixed (i.e., all
Wj s are fixed), the optimal Uj can be computed as the orthogonal
factor of the following Polar decomposition:

Surface:
Uj = Polar (WjP−1j OT

jαQ
T
j). (16)

Volume:
Uj = Polar (WjW−1j QT

j). (17)
The detailed derivations are given in the supplementary material
(Appendix A).

When all Uj s are fixed, we can compute the optimal vertex co-
ordinates {vi |i = 1, · · · ,nv }, where v1:3i = v1:3i , by solving a linear
system, since the objective function Etotal is a quadratic form of the
vertex coordinates. This is similar to the method used by Sumner
and Popović [2004].
Our goal is to ensure that the regularized objective function al-

ways decreases during optimization. The optimization strategy is
similar to [Panozzo et al. 2014; Sorkine-Hornung and Alexa 2007].
In summary, as shown in the following Alg. 1, we can optimize the
vertex coordinates v1, · · · , vnv of the embedded surface or volume
iteratively, until convergence by satisfying a specified stopping con-
dition, e.g., the magnitude of the gradient is smaller than a threshold
or the desired number of iterations is reached. In our experiments,
we use the number of iterations as 50 for the stopping condition.
One example of the evolution of the objective function during op-
timization is given in Fig. 4 (b), which can reach a satisfactory small
embedding error. It is noted that we optimize Eq. (15) with a reg-
ularization smoothness term, instead of Eq. (12) and Eq. (13). Not
only it forces the embedding to be C2 (with the graph Laplacian
regularization), but also it smoothens, thus it prevents the energy
of the objective function from reaching zero.

Data: Original surface or volume Ω with user-specified metric
M and target dimensionm

Result: Vertex coordinates {vi |i = 1, · · · ,nv } of the embedded
surface or volume Ω inm space

Initialize vertex coordinates inm space;
while stopping condition not satisfied do

for each triangle or tetrahedron j do
Compute Uj by fixing {vi |i = 1, · · · ,nv } and using
Eq. (16) or Eq. (17);

end
Compute {vi |i = 1, · · · ,nv } by fixing all Uj s and fixing v1,
i.e., solve a linear system to minimize the regularized
objective function Etotal of Eq. (15);

end
Algorithm 1: High-D Embedding Optimization.

4 ANISOTROPIC RVD AND MESHING
In order to demonstrate the importance and usefulness of the pro-
posed SIFHDE2, we investigate two applications, i.e., computing
anisotropic RVD and anisotropic triangular / tetrahedral meshing.
Under the isotropic metric space, we can use the particle optim-

ization technique (Sec. 4.1) to compute isotropic RVD and its dual
Delaunay triangulation on the high-d embedded surface or volume
(Sec. 4.2), since it is efficient to generate regular hexagonal patterns

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:7

Initial 5 iteration

(b) Self-intersection free high-d embedding optimization

(d) RVD and its dual mesh on high-d
embedded surface

(e) Mapping the RVD and its dual mesh to the original anisotropic
metric domain

(a) Input: 2D domain with anisotropic metric

1.0

3.85

Ground truth:
Gaussian surface

10 iterations 20 iterations

0

50%

Relative edge length errors of
3D embedding at 20 iterations

(c) Uniform particle distribution
on high-d embedded surface

Gmin = 0.81
Gavg = 0.98
θmin = 40.60°

θavg = 54.76°

% <30° = 0

θ

Embedding energy Eem
curve during optimization

Stretch(x)

Fig. 4. Illustration of the proposed high-d embedding for anisotropic RVD and surface meshing. (a) A simple example of a 2D domain equipped with anisotropic
metric, which has an ideal 3D embedding – the Gaussian surface as the ground truth. (b) Our embedding optimization iteratively deforms the original domain
into the embedded surface (Sec. 3). After embedding we can (c) uniformly and isotropically sample particles (Sec. 4.1) and (d) compute the isotropic RVD and
its dual mesh on the embedded surface (Sec. 4.2). (e) When they are mapped to the original 2D domain, the RVD and the triangular mesh will exhibit the
desired anisotropy (Sec. 4.2).

of particles on 2-manifold and regular body-centered-cubic (BCC)
lattices on 3-manifold, which are similar to the results of CVT [Du
et al. 1999; Du and Wang 2005b; Liu et al. 2009]. Moreover, the
particle-based method is easily formulated in high-d space. Finally
the generated RVD and triangulation / tetrahedralization can be
mapped from the high-d embedding space to the original space, on
which RVD and triangulation / tetrahedralization will exhibit the
desired anisotropic property.

4.1 High-D Particle Optimization with Efficient K-NN
In this section, we discuss the isotropic particle optimization on the
explicitly-computed high-d embedded surface or volume, which is
the main difference between ours and Zhong et al.’s method [2013].
The limitations of their methods are: (1) theymade use of the concept
of embedding space for their energy and force formulations, without
computing such high-d embedding explicitly, which may lead to
more approximation error; (2) during the particle optimization, they
had to have a very large range for searching neighboring particles
in the original metric space when the anisotropic stretching ratio
is high, which is less efficient. Besides that, they only worked on
surface case without considering volume case.
However, once the high-d embedding is computed as discussed

in Sec. 3, we can directly define the inter-particle energy and force
in such embedding space. The goal is to let particles reach isotropic
uniform distribution at their equilibrium state, where the particle
distribution on the original surface or volumewill exhibit the desired
anisotropy.

In our method, we formulate the isotropic inter-particle energy
and force with explicit coordinates of the particles in the high-d
embedding space, which is based on [Zhong et al. 2013]. The energy
E
pq between particles p and q in the high-d embedding space is

defined as: Epq = e
−
∥xp−xq ∥2

4σ 2 , where σ is kernel width, and xp and
xq are particle positions in the embedding space. Note that our
goal is to let the particles uniformly and isotropically sampled on

Ω, so σ = 0.3 d
√
|Ω |/n, as suggested in [Zhong et al. 2013], where

d = 2 in surface and d = 3 in volume, |Ω | denotes the area or the
volume of Ω in the embedding space, n is the number of particles.
The force applied from particle p to particle q in the embedding
space is defined as the gradient of the inter-particle energy. To
sum up all inter-particle energies, the computational complexity
of particle optimization is O (cnp), where c is a constant, i.e., the
average number of K-NN for each particle, and np is total number
of particles (i.e., the number of RVD cells / final mesh vertices).
The k-d tree data structure is used to compute K-NN. Since np
is provided by user, c is the key factor to affect the efficiency of
the computation. With the computed high-d Euclidean embedded
surface or volume, the particle positions are defined and optimized
on such embedding, which helps us to determine the c around 20∼30,
i.e., nearest neighbors in Euclidean metric space within five standard
deviations of the Gaussian energy kernel (5σ), where σ is the kernel
width. If without the high-d Euclidean embedding, hundreds or
thousands of neighbors need to be checked and then the spurious
neighbors are pruned when the stretching ratio in the given metric

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:8 • Zhong, Wang, Lévy, Hua, and Guo

field is high, such as ≥ 10. The K-NN comparison experiments are
given in Appendix D. Finally, we use the L-BFGS algorithm [Liu and
Nocedal 1989] to optimize the particle positions constrained on the
high-d embedded surface or inside the high-d embedded volume.
Boundary and Sharp Feature Handling. Particles on a sur-

face with boundaries should be restricted to remain on it during
the particle optimization. During L-BFGS optimization, the updated
particle positions need to be projected to their nearest locations on
the embedded surface, if they are out of the boundary or out of the
surface. The particles in a volume with boundaries can be treated
similarly. Besides that, the particle optimization formulation is con-
structed by using a pushing energy and force based on a Gaussian
kernel, which can maximally and optimally push particles away
within the boundary constraint so as to cover the entire domain
(surface and volume), leading to automatically capture and recon-
struct the boundaries without requiring the user’s tagging as an
extra input (such as CVT and LCT approaches need user’s interven-
tion). However, as for the sharp features (in a smooth metric field),
users need to identify the feature edges and corners in the input
reference mesh at first, and then constrain the movement of the
particles along the feature edges or fix the feature corners during
optimization. We will provide experiments on these cases in Sec. 6.

4.2 Restricted Voronoi Diagram and Mesh Generation
High-DRVDandMeshing. The input of high-d RVD computation
are the triangle / tetrahedral mesh of the high-d embedded surface /
volume Ω and the sites (i.e., optimized particle positions in high-d
space) of high-d Voronoi cells. The key task is to identify the high-d
Voronoi cells that overlap each triangle / tetrahedron of the embed-
ded surface / volume Ω and compute their intersections. The RVD
computation on surface is based on Yan et al.’s method [2009] and
the volume version is based on Lévy and Bonneel’s method [2012]
with the exact geometric predicates from [Lévy 2016], and then
extended in high-d space. All these computations are done under
the Euclidean metric, which is easy and efficient, even in the high-d
space. In particular, note that the geometric predicates in [Lévy
2016] compute barycentric coordinates, that depend on the intrinsic
dimension (2 for surfaces, 3 for volumes) rather than ambient dimen-
sion (high-d). Without using the high-d Euclidean embedding, one
would need to compute anisotropic RVD and its dual anisotropic
mesh on the original surface with the given metric, requiring a high-
resolution tessellation of the input surface / volume and additional
costly computations, such as computation of anisotropic Voronoi
cell boundaries, search for neighboring Voronoi sites in anisotropic
metric space, etc. Once the RVD is obtained, we can easily compute
its dual graph, i.e., Restricted Delaunay Triangulation (RDT).

Anisotropic RVD and Mesh. Using the barycentric coordinates
of each output site or vertex, we can back-project the RVD and RDT
from the high-d embedding space onto the original space, and gen-
erate the final anisotropic RVD and mesh. As we mentioned before,
if the given Riemannian metrics are smooth, the proposed high-d
embedding framework can compute a smooth and small-error em-
bedding in higher dimensions. The algorithm robustly computes the
RVD using filtered geometric predicates and symbolic perturbation
to resolve degeneracies [Lévy 2016]. Note that in general, there is no

guarantee that the dual mesh (i.e., the associated RDT) will not have
inverted elements (negative Jacobian) when back-projected to 3D.
Whenever such an inverted element is detected, our implementation
inserts additional points using the provably terminating algorithm
in [Rouxel-Labbé et al. 2016], that uses the same discretization of the
metric as us (also used in [Lévy and Bonneel 2012]). In practice, we
did not observe such inverted elements in our empirical experiments
(the refinement step was never triggered).

5 EVALUATIONS

5.1 EmbeddingQuality
In order to evaluate the optimized high-d embedding of the surface
or volume equipped with a given metric (in practice, the given
metric is specified in the input mesh at each vertex), we consider the
edge lengths of the input triangular surface or tetrahedral volume
under the given metric, and use them as the ground truth to evaluate
computed embedding results.
For each edge with vertices va and vb , we use the average met-

ric of two vertices Qab = (Q(va) + Q(vb))/2 to approximate the
metric for this edge. Then the length of each edge can be computed
according to its own Qab and we use it as the ground truth. The
relative edge length error is the percentage of the absolute differ-
ence between the ground truth and the edge length of computed
embedding with respect to the ground truth. In our experiments,
we only use relative edge length error to measure the computed
embedding, because it is invariant to scales. The criteria for evalu-
ating the embedding quality are: Lr elmax and Lr elavд , i.e., the maximal
and average values of relative edge length errors of all embedded
triangles / tetrahedrons. The color-coded diagram of the relative
edge length errors is rendered.

5.2 Anisotropic MeshQuality
Since RVD is not straightforward to be evaluated as compared with
its dual triangular and tetrahedral meshes, in the experiments, we
will focus on the mesh quality for evaluations.

Surface: In the anisotropic triangular meshing, for each triangle
△abc in the final mesh, we use its approximated metric Q(△abc) =
(Q(xa) + Q(xb) + Q(xc))/3 to affine-transform it from the original
anisotropic space into the Euclidean space. After that, we employ
the following isotropic triangular criteria, as suggested by Frey
and Borouchaki [1997] and used in Zhong et al. [2013] and Fu
et al. [2014]’s recent work, to evaluate the quality of generated
anisotropic triangular mesh: The quality of a triangle is measured
by G = 2

√
3 S
ph , where S is the triangle area, p is its half-perimeter,

and h is the length of its longest edge. Gmin , Gavд are the minimal
and average qualities of all triangles. θmin , θavд are the smallest
and average angles of the minimal angles of all triangles. %<30◦ is
the percentage of triangles with their minimal angles smaller than
30◦. The angle histogram is also provided. θavд should be 60◦ if it
is a regular triangle.G is between 0 and 1, where 0 denotes a skinny
triangle and 1 denotes a regular triangle.

Volume: In the anisotropic tetrahedral mesh, for each tetrahed-
ron tetabcd , its approximated metric is Q(tetabcd) = (Q(xa) +
Q(xb)+Q(xc)+Q(xd))/4. Thenwe use the correspondingQ(tetabcd)
to affine-transform the tetrahedron in the Euclidean space, and

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:9

employ the following isotropic tetrahedral mesh quality measure-
ments [Dardenne et al. 2009; Yan et al. 2013] to evaluate the quality
of generated anisotropic tetrahedral mesh: The quality of a tetra-
hedron is measured by G = 12 3√9V 2∑

l 2i, j
, where V is the volume of the

tetrahedron, and li, j is the length of the edge which connects ver-
tices vi and vj . Gmin , Gavд are the minimal and average qualities
of all tetrahedrons. θmin , θavд are the smallest and average angles
of the minimal dihedral angles of all tetrahedrons. %<15 ◦ is the
percentage of tetrahedrons with their dihedral angles smaller than
15 ◦, which are considered as slivers. The angle histogram is also
provided to show the distribution of minimal dihedral angles for all
tetrahedrons. θavд should be ≈ 70.53◦ if it is a regular tetrahedron.
G is between 0 and 1, where 0 denotes a sliver and 1 denotes a
regular tetrahedron.

6 RESULTS
We implement our algorithms by using Microsoft Visual C++ 2013.
The embedding and mesh quality evaluations are implemented with
Matlab R2015a. For the hardware platform, the experiments are run
on a desktop computer with Intel(R) Core(TM) i7-6700 CPU with
3.40GHz, 32GB DDR4 RAM.
Riemannian Metric Design. In our experiments, users firstly

design a smooth scaling field S(x) and a rotation field R(x) that is
smooth in regions other than some singularities, and then compose
them toM(x) = R(x)T S(x)2R(x), which is similar to the approach
mentioned in [Du and Wang 2005a; Yamakawa and Shimada 2000].
Since this article focuses on both 2- and 3-manifolds, the metric
design has some slight differences as follows.

For the anisotropic meshing in 2D domains, we use the following
2 × 2 metric tensor:

M = [v1, v2]diaд(s12, s22)[v1, v2]T , (18)
where v1 and v2 are two orthogonal principal directions, composing
a rotation field. s1 and s2 are two stretching factors along principal
directions.

For the anisotropic meshing on 3D surfaces, we use the following
3 × 3 metric tensor:

M = [vmin , vmax ,n]diaд(1, (
s2
s1
)2, 0)[vmin , vmax ,n]T , (19)

where vmin and vmax are the directions of the principal curvatures,
n is the unit surface normal. s1 and s2 are two user-specified stretch-
ing factors along principal curvature directions. Since the surface
models are computed by curvature-based metric tensor fields, we
use the metric of Eq. (19) with s1 =

√
Kmin and s2 =

√
Kmax ,

where Kmin and Kmax are the principal curvatures. We set small
thresholds to preserve both Kmin and Kmax not vanishing. As sug-
gested by Alliez et al. [2003], Laplacian smoothing is applied to both
the stretching factors and directions, to ensure smoothness of the
input metric field on the surface. Then, s2s1 is defined as stretching
ratio (≥ 1) in the surface metric fieldM.

For the anisotropic meshing in 3D volumes, we use the following
3 × 3 metric tensor:

M = [v1, v2, v3]diaд(s12, s22, s32)[v1, v2, v3]T , (20)
where v1, v2, and v3 are three orthogonal principal directions. s1,
s2, and s3 are three stretching factors along principal directions.

It is noted that since our embedding computation is based on the
strategy of keeping the original 2D / 3D coordinates, and embedding
additionally higher dimensions, the Euclidean distance in the high-d
space will be at least longer than or equal to what was given in the
original mesh. In order to overcome this obstruction, in the smaller
metric cases, we need to pre-process the input metrics for exist-
ing benchmarks to compute embeddings and generate anisotropic
meshes. For instance, if any magnitude of s1 and s2 (in a 2D tensor)
or s1, s2, and s3 (in a 3D tensor) is less than one, we will multiply the
target Riemannian metric M by a suitable global constant (scaling),
which can guarantee that the smallest metric is larger than or equal
to one, as well as preserve the shapes and size ratios of the cells in
the RVD, and those of triangles / tetrahedrons in the anisotropic
mesh. We will give examples in this case in later Sec. 6.

6.1 SIFHDE2 Computation
6.1.1 Importance of Higher Dimensions. In order to demonstrate

the importance of the high-d embedding, instead of embedding
computed in the original space, we use two examples in detail to
explain its advantages.

One example is a 2D domain with a Riemannian metric field. Fig. 4
shows a simple 3D self-intersection free embedding computed by
our method for a 2D domain equipped with an anisotropic metric,
which can “perfectly” embed the original 2D domain into a Gaussian
surface in 3D space. Since we have both the original domain with
the metric and its ground truth of the embedded surface (the target
dimension is known, i.e., 3D), we can explicitly evaluate our high-d
embedding optimization framework quantitatively and visually.

The pipeline of the proposed work is given in Fig. 4, i.e., to com-
pute the self-intersection free high-d embedding, isotropic particle
optimization on such embedding, high-d isotropic RVD and dual
meshing, final anisotropic RVD and mesh. The anisotropic metric
field is M(x) = R(x)Tdiaд{Stretch(x)2, 1}R(x), where the stretch-
ing field Stretch(x) ∈ [1, 3.85] with the rotation field R(x). Our
proposed embedding optimization framework converges superbly
fast, i.e., 20 iterations in this 3D embedding. The embedding quality
is quite satisfactory, i.e., Lr elavд = 0.92% and Lr elmax = 10.58%. Besides
the high quality, there is no self-intersection, due to the strategy
we discuss in Sec. 3.4.2, i.e., fixing the original 2D coordinates and
deforming the new added 3rd coordinates in the embedding compu-
tation. Visually, the shape of the embedding result at 20 iterations
(Fig. 4 b) looks very similar to the shape of the ground truth Gaussian
surface (Fig. 4 a). By using this 3D embedding, we can compute the
uniform distribution of particles (Fig. 4 c) for RVD and dual meshing
on it (Fig. 4 d), and finally generate high-quality anisotropic RVD
and triangular mesh with 2000 output samples in Fig. 4 (e).
Note that without using an extra higher dimension (i.e., the 3rd

coordinate), the output embedding will have self-intersections, since
the input metric controls the deformations of each triangle in the
original 2D space, which will very easily cause self-intersections,
especially when the metric field has large stretching ratios and
directions. Regularizing the embedding to avoid self-intersections
is not a good strategy, since it would dramatically increase the error
of the embedding.

Another example is a 3D Cyclide surface with a Riemannian met-
ric field, which is designed according to the surface curvature. The

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:10 • Zhong, Wang, Lévy, Hua, and Guo

3D surface with anisotropic metric

1.6

9.4

Stretching ratio

3D embedding
(Green faces are self-intersecting)

Fig. 5. A 3D embedding result [Panozzo et al. 2014] of a Cyclide surface.
There are 1146 self-intersecting faces out of total 21,600 faces as shown in
green color.

Anisotropic meshAnisotropic RVDAnisotropic particle distribution

θ

Fig. 6. The anisotropic particle distribution, RVD, and its dual anisotropic
mesh of the Cyclide surface by using the 8D embedding.

stretching ratio is s2
s1 ∈ [1.6, 9.4]. Without a high-d embedding, i.e.,

using a 3D embedding as suggested by Panozzo et al. [2014], in Fig. 5,
though the embedding errors are relatively small, i.e., Lr elavд = 2.36%
and Lr elmax = 30.62% (still larger than our 8D embedding errors as
shown in Tab. 2), there are many self-intersecting faces in the com-
puted 3D embedding (i.e., 1146 self-intersecting faces in this Cyclide
model), which are harmful for the particle optimization, RVD and
dual mesh computations. Themajor fundamental difference between
their framework and ours is that they deform the embedding directly
in the original 3D coordinates, which may lead to self-intersections;
however, we deform the embedding in high-d space with fixing the
first three coordinates to avoid self-intersections (as discussed in
Sec. 3.4.2).
Based on the self-intersection free high-d embedding, we can

compute particle distribution, RVD, and its dual mesh; and finally
map them back to the original 3D space to generate the anisotropic
RVD and its dual anisotropic mesh. The results of the Cyclide model
are shown in Fig. 6.
Moreover, we also investigate some other surface models and

Tab. 1 shows that self-intersecting faces do widely exist in the 3D
embedding (i.e., Panozzo et al.’s method [2014]), so that it needed
an extra step to parameterize the 3D embedding for their final quad
meshing. Besides that, the parameterization methods have limita-
tions to deal with complicated topologies as pointed out by [Fu et al.
2014; Zhong et al. 2014]. However, our high-d embedding method
does not have any constraint on model topologies. In order to fur-
ther compare with Panozzo et al.’s 3D embedding method [2014],
we provide the analysis of the embedding accuracy in Sec. 6.2.

Table 1. Statistics (i.e., numbers and percentages) of self-intersecting faces
for embeddings in 3D and high-d spaces on different surfaces.

Model Cyclide1 Cyclide2 Kitten Gargo Upright Nefertiti

3D 1146 1751 1001 2405 3584 1385
5.31% 3.38% 2.50% 2.40% 2.38% 5.61%

High-D 0 0 0 0 0 0

6.1.2 Choosing the Dimension of the Embedding. We elaborate
on how to choose the dimension of the high-d target for computing
the SIFHDE2 with small relative edge length errors. In general, we
do not know beforehand the required dimension for the high-d
embedding. From Nash theorem, it is known that for constructing
a C1 isometric embedding of a nD metric, 2n dimensions suffice
(Nash-Kuiper). For higher smoothness (Ck ,k ≥ 2), the bound on
embedding dimension becomes n(3n + 11)/2 (Nash-Moser). With
our regularization term, we constrain the embedding to be C2 and
thus avoid the oscillations of C1 embeddings, but the Nash-Moser
theoretical bound becomes 17D for surfaces and 30D for volumes.
We now evaluate the required embedding dimension in practice for
surfaces and volumes and show empirically that in both cases 8D
suffices to accurately account for the input metric:

Surface Case:We conduct different experiments with surfaces
in varying dimensions. The associated metric deviation errors of a
Cyclide surface are plotted in Fig. 7. It is noted that in our case, when
using embedding dimensions larger than 8D, the relative edge length
errors are quite stable and small (Cyclide surface: Lr elavд = 1.83% and
Lr elmax = 25.81%).

We also investigate some other surface models to conclude that
8D space is a good target dimension for computing SIFHDE2 with
smaller relative edge length errors, e.g., Kitten surface: Lr elavд = 3.82%
and Lr elmax = 139.21%. More experiments with varying dimensions
for different surface models are given in Appendix C.

0

100%

1.6

9.4

Stretching ratio

5D

10D 20D

Dimensions

6D

8D

7D

4D

0

100%

1

6

Stretching ratio

8D

4D

5D

6D

7D

10D 20D

Dimensions

Fig. 7. The relative edge length errors of high-d embeddings (i.e., 4D ∼ 20D)
of the Cyclide and Kitten surfaces.

Volume Case: As for the volume models, we also investigate
the ideal target dimension for computing the self-intersection free
embedding with smaller relative edge length errors. Similar to sur-
face case, volume models (as shown in Fig. 8) also conclude that 8D
is a good target dimension for computing SIFHDE2 with smaller
relative edge length errors, e.g., Cube volume: Lr elavд = 1.65% and
Lr elmax = 17.54%, Sphere volume: Lr elavд = 3.21% and Lr elmax = 65.01%.
As demonstrated in the surface case, we also observe that beyond
8D, the relative edge length errors remain stable and small. More
experiments with varying dimensions for different volume models
are given in Appendix C.
6.2 Comparison with 3D Embedding
Tab. 2 shows the comparison of embedding accuracy between Panozzo
et al.’s 3D embedding method [2014] and our proposed high-d em-
beddingmethod on different surfacemodels. It demonstrates that the
8D embeddings have smaller errors, mainly because of more degrees
of freedom, besides the advantages of avoiding self-intersection as
shown in Tab. 1.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:11

0

100%

1

10

Stretching ratio

8D

4D

5D

6D

7D

10D 20D

Dimensions

0

100%

1

5

Stretching ratio

8D

4D

5D

6D

10D 20D

7D

Dimensions

Fig. 8. The relative edge length errors of high-d embeddings (i.e., 4D ∼ 20D)
of the Cube and Sphere (shown its cross section) volumes.

Table 2. Statistics of average relative edge length errors in 3D embed-
ding [Panozzo et al. 2014] and the proposed 8D embedding on different
surface models.

Model Cyclide1 Cyclide2 Kitten Gargo Upright Nefertiti

3D 2.36% 2.41% 3.86% 8.35% 1.85% 3.19%
8D 1.83% 2.18% 3.82% 6.72% 1.52% 2.98%

6.3 3D Surface RVD and Meshing
Our Results. Fig. 1 (2D domain) shows the anisotropic RVD and
meshing results of a 2D square domain with a highly-varying metric
field, which is defined by the Hessian of the non-convex analytic
functions. Actually, a 2D domain can be considered as a 3D flat
surface. Fig. 1 (3D surface), Fig. 6, and Fig. 9 show the anisotropic
3D surface RVD and meshing results of Kitten, Cyclide and Gargo
models with metrics designed by surfaces’ curvature tensors.

Sharp Feature and Boundary Models. Fig. 10 is a surface mesh-
ing result on Upright CAD model with smooth metrics but sharp
geometric features. The computed vertices and triangle edges can
well preserve the sharp features (e.g., edges) on the model. However,
if the input metric has sudden discontinuities, that is beyond the
scope of this paper. Fig. 11 shows surface RVD and meshing results
on Nefertiti model with boundaries.

The statistics and timings for our 8D embedding computation and
surface meshing are shown in Tab. 3. It is noted that our embedding
computation in 8D space is quite efficient, and most surface models
provided in this article need only dozens of seconds. There are
some more surface RVD and meshing results with different sizes
given in Appendix E. Totally, we have tested 16 surface models
with corresponding curvature tensors by using the proposed 8D
embedding for RVD and meshing computation.

Comparison with Other Embedding Meshings. Fig. 12 shows
the comparison with 2D conformal embedding [Zhong et al. 2014]
and Lévy and Bonneel’s 6D embedding [2012], and our method,
on a Kitten surface model with 5000 output samples. Let us first
compare the 2D conformal embedding method with our embedding
method, since both of them are considering the curvature tensors as
input. The 2D conformal embedding method produces poor mesh
quality results as shown in Tab. 4, since it computes the embedded
surface into 2D space, which has very limited degrees of freedom.
Our high-d embedding method, i.e., 8D, obtains better mesh qual-
ity result since it better matches the input curvature-based metric
field. The 6D embedding method has some more degrees of freedom
compared with 2D embedding, but it applies a 6D metric in terms

Fig. 9. The anisotropic 3D surface RVD and mesh with 25,000 vertices on
Gargo model (stretching ratio s2

s1
∈ [1, 7]) generated by our 8D embedding

method. The result has both isotropic and anisotropic Voronoi cells and
triangles according to the input surface curvature tensor field.

1

10

Stretching ratio

Fig. 10. The anisotropic 3D surface RVD and mesh on Upright model
(stretching ratio s2

s1
∈ [1, 10]) with sharp geometric features generated

by our 8D embedding method.

Fig. 11. The anisotropic 3D surface RVD and mesh on Nefertiti model
(stretching ratio s2

s1
∈ [1, 6]) with boundaries generated by our 8D embed-

ding method.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:12 • Zhong, Wang, Lévy, Hua, and Guo

Table 3. Statistics and timings for embedding computation and surface meshing.

Model Input #Vert. Stretch Lr elavд Lr elmax Embed. Time Output #Vert. Gmin Gavд θmin θavд %<30◦ Mesh Time

2D Domain (Fig. 1) 63, 001 [1, 40] 4.04% 76.79% 64.69 s 4000 0.34 0.89 18.11◦ 51.51◦ 0.19% 27.15 s
Cyclide1 (Fig. 6) 10, 800 [1.6, 9.4] 1.83% 25.81% 9.14 s 2000 0.57 0.92 28.88◦ 54.47◦ 0.05% 6.22 s
Cyclide2 (Fig. 13) 25, 920 [2, 29] 2.18% 19.39% 23.63 s 8000 0.63 0.92 29.07◦ 53.70◦ 0.009% 42.83 s
Kitten (Fig. 1) 20, 000 [1, 6] 3.82% 139.21% 17.56 s 2000 0.33 0.85 20.69◦ 48.60◦ 0.34% 7.87 s

Nefertiti 12, 478 [1, 6] 2.98% 46.33% 9.20 s 2000 0.32 0.86 20.14◦ 48.09◦ 0.49% 7.05 s
Upright 75, 196 [1, 10] 1.52% 28.35% 115.57 s 10, 000 0.46 0.88 25.44◦ 51.12◦ 0.04% 62.16 s
Gargo 50, 032 [1, 7] 6.72% 151.55% 50.76 s 25, 000 0.32 0.87 20.02◦ 49.94◦ 0.45% 91.19 s

Note: Embed. Time: timing for embedding computation with 50 iterations. Mesh Time: timing for both particle optimization with 50 iterations and RVD computation.

of vertex positions and normals, without considering the curvature
tensors, which does not adapt to the geometry defined by an input
Riemannian metric field. In order to compare these three embedding
meshing methods, we use Hausdorff distance to measure the faith-
fulness accuracy of these three results to the original input surface.
The Hausdorff distance of our result is 0.004964% of the bounding-
box’s diagonal length, while Hausdorff distances of 2D conformal
embedding and 6D embedding results are 0.013415% and 0.005110%,
respectively. It is noted that the meshing fidelity of 2D embedding is
worse than both those of 6D and our 8D embeddings, though it has
a reasonable mesh quality to match the designed metric. Essentially,
when using the dimension reduction, such as mapping a 3D shape
into a 2D domain, it may lose some 3D shape fidelity properties.

2D conformal embedding 6D embedding Our embedding

Fig. 12. Comparison on anisotropic meshing results with 2D conformal
embedding method [Zhong et al. 2014], Lévy and Bonneel’s 6D embed-
ding [2012], and our method on the Kitten surface model.

Table 4. Comparison of mesh quality on different embedding meshings.

Method Gmin Gavд θmin θavд %<30◦

2D embedding 0.08 0.75 5.02◦ 41.91◦ 8.24%
Our embedding 0.32 0.91 19.04◦ 50.13◦ 0.86%

ComparisonwithOtherAnisotropic SurfaceMeshings. In this
subsection, we show further comparative analysis and experiments
with other state-of-the-art anisotropic meshing approaches. Fig. 13
compares our method with both particle-based method [Zhong et al.
2013] and LCT method [Fu et al. 2014] on a Cyclide model with the
large stretching ratio s2

s1 ∈ [2, 29]. Our method improves the mesh
quality significantly as shown in Fig. 13 compared with the original
particle-based method [Zhong et al. 2013], since we have computed
the particle optimization directly on the high-d embedding. Com-
pared with LCT method (one of the optimal high-quality anisotropic
meshing methods), our method increases the minimal angle from
26.94◦ to 29.07◦ and %<30◦ = 0.03% versus %<30◦ = 0.009%, mean-
while we have similar quality of average values. Fig. 14 visualizes
the final mesh quality errors (i.e., 1-G, where G is the quality of
triangle in Sec. 5.2) of the above three methods. We can see that
our errors are more smoothly distributed, whereas particle-based
method and LCT method have more poor quality triangles.

There are some more comparison results given in Appendix F
due to the page limit.

Particle LCT Our method

Gmin = 0.63
Gavg = 0.92
θmin = 29.07°

θavg = 53.70°

% <30° = 0.009%

Gmin = 0.09
Gavg = 0.87
θmin = 5.03°

θavg = 49.70°

% <30° = 0.04%

θ θ θ

Gmin = 0.60
Gavg = 0.92
θmin = 26.94°

θavg = 53.10°

% <30° = 0.03%

Fig. 13. Comparison on anisotropic surface meshing results (8000 output
samples) with particle-based method [Zhong et al. 2013], LCT method [Fu
et al. 2014], and ourmethod on the Cyclide surfacemodel with the stretching
ratio s2

s1
∈ [2, 29].

0

1

Particle LCT Our method

Fig. 14. Comparison on final mesh quality errors (i.e., 1-G) with particle-
based method [Zhong et al. 2013], LCT method [Fu et al. 2014], and our
method on the Cyclide surface model with the stretching ratio s2

s1
∈ [2, 29].

6.4 3D Volume RVD and Meshing
Volumetric RVD and Meshing. Firstly, the anisotropic metric
fields in 3D volume models are designed by different analytic func-
tions in our experiments. The statistics and timings for our 8D
embedding computation and volume meshing are shown in Tab. 5.
Fig. 15 shows the anisotropic 3D volume RVD and meshing results
of a Cube model with domain [0, 1]3 of two different Riemannian
metric fields M(x) = diaд{Stretch(x)2, 1, 1}. The first one is de-
signed by a linear function with stretching ratios Stretch(x) = 10x ,
where Stretch(x) ∈ [1, 10], and the second one is designed by a
highly nonlinear function with large stretching ratios Stretch(x)
= 0.2(0.0025 + 0.2(1 − e−|x−0.5 |))−0.8, ∈ [1, 25].

A unit Sphere model with a cylindrical anisotropic metric field is
in Fig. 1. The Riemannian metric is designed asM(x)= R(x)Tdiaд

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:13

(a) Cube1

θ

(b) Cube2

θ

Fig. 15. The anisotropic 3D volume RVD and meshes on two Cube models
(with different Riemannian metric fields) generated by our 8D embedding
method. Both the surface and interior of the volume RVD and tetrahedral
meshes are shown. In order to better visualize the 3D RVD results, we shrink
each Voronoi cell (i.e., polyhedron) a little bit. The blue color represents the
outside of each 3D Voronoi cell, and the red color represents the inside of
each 3D Voronoi cell.

Fig. 16. The anisotropic 3D volume RVD on the Cube model with the large
cylindrical anisotropic metric field generated by our 8D embedding method.
Both the surface and interior of the volume RVD are shown.

{Stretch(x)2, 1, 1}R(x), where Stretch(x) ∈ [1, 5], and R(x)’s colu-
mns are (x/

√
x2 + y2, y/

√
x2 + y2, 0)T , (−y/

√
x2 + y2, x/

√
x2 + y2,

0)T , and (0, 0 , 1)T .
Fig. 16 shows one volumetric RVD result on a Cube model with

domain [1, 11]3. The targeted cylindrical Riemannian metric field
is specified via a highly nonlinear analytic function as M(x) =
R(x)Tdiaд{Stretch(x)2, 1, 1}R(x), where Stretch(x) = 2(0.1+ 2(1−
e−0.01 |x

2+y2−49 |))−1, andR(x) is a cylindrical rotation field as defined
previously. The stretching ratio is Stretch(x) ∈ [1, 20]. By using our
method, we can generate highly curved 3D Voronoi cells in regions
where the metric varies quickly, while in low stretching regions, the
regular 3D Voronoi cells are obtained. Its dual tetrahedral mesh is
given in the following.

Gmin = 0.04
Gavg = 0.91
θmin = 0.6°

θavg = 55.98°

% <15° = 0.57%

θ

Our method

LCT

Gmin = 0.003
Gavg = 0.85
θmin = 0.01°

θavg = 51.16°

% <15° = 1.82%

θ

Fig. 17. Comparison on anisotropic volume meshing results with LCT
method [Fu et al. 2014] and our method on the Cube volume model with the
cylindrical Riemannian metric field of stretching ratio Stretch (x) ∈ [1, 20]
(without sliver elimination process).

Fig. 17 shows the meshing comparison with our method and LCT
method [Fu et al. 2014] on a Cube model with the previous cyl-
indrical Riemannian metric field. By using almost the same number
of vertices, i.e., 5637 vertices in LCT method and 5600 vertices in
our method, we obtain better mesh quality results in average and
minimal value measurements as shown in Fig. 17. Visually, our res-
ult achieves better mesh stretching ratios and directions in both
surface and interior of the volume. The reason why we have poor
results in minimal mesh quality and smallest angle is that we do not
apply any sliver elimination strategy. Since the sliver elimination
is a post-processing in both methods, it is more straightforward to
compare the performance of two algorithms without doing sliver
elimination. As demonstrated, LCT method has 517 slivers (i.e., tet-
rahedrons with the dihedral angle < 15 ◦), and we have a smaller
number of slivers, i.e., 164. It is noted that the LCT result in Fig. 17
is before applying sliver elimination, which was provided by the
authors of [Fu et al. 2014].

Fig. 18 shows one volumetric RVD result on a unit Sphere model
with a smaller number of samples, i.e., 1000. The Riemannian metric
is defined as a cosine wave anisotropy:M(x)= R(x)Tdiaд{Stretch
(x)2,1, 1}R(x), where Stretch(x) = 10, and R(x)’s columns are (2cos
(4x), 1, 0)T , (1, −2cos (4x), 0)T , and (0, 0, 1)T . A closeup shows
clearly how the 3D Voronoi cells are extremely curved. Both the sur-
face and interior of the volumetric RVD are illustrated. This example
is to demonstrate the advantage of using our proposed SIFHDE2 as
a tool to compute arbitrary anisotropic Voronoi diagrams. Without
using SIFHDE2, such as Budninskiy et al. [2016]’s work by using a
convex function to represent the anisotropy, it is very difficult to
obtain our result.

Volumetric Tensor Field Visualization. Lastly, we apply our 3D
volumetric RVD method on some real engineering and CFD tensor
field datasets. The eigenvalues in Eq. (20) (i.e., s1, s2, and s3), after
computing SVD of input Riemannian metricM, can be arbitrary in

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:14 • Zhong, Wang, Lévy, Hua, and Guo

Table 5. Statistics and timings for embedding computation and volume meshing.

Model Input #Vert. Stretch Lr elavд Lr elmax Embed. Time Output #Vert. Gmin Gavд θmin θavд %<15◦ Mesh Time

Cube1 (Fig. 15 a) 9261 [1, 10] 1.65% 17.54% 138.84 s 2000 0.09 0.92 1.66◦ 57.24◦ 0.29% 29.71 s
Cube2 (Fig. 15 b) 44, 541 [1, 25] 1.30% 48.39% 567.56 s 5000 0.10 0.91 1.68◦ 56.76◦ 0.42% 83.73 s
Cube3 (Fig. 17) 44, 541 [1, 20] 2.12% 71.32% 562.28 s 5600 0.04 0.91 0.6◦ 55.98◦ 0.57% 91.32 s
Sphere (Fig. 1) 50, 000 [1, 5] 3.21% 65.01% 587.61 s 5000 0.08 0.88 1.34◦ 54.02◦ 1.24% 77.67 s

Note: Embed. Time: timing for embedding computation with 50 iterations. Mesh Time: timing for both particle optimization with 50 iterations and RVD computation. The small values are inGmin and
θmin , since we do not apply any sliver elimination strategy (a post-processing) in our meshing results.

Fig. 18. The 3D anisotropic volumetric RVD on the Sphere model (with a
cosine wave anisotropy) generated by our 8D embedding method. Both the
surface and interior of the volume RVD are shown.

these real datasets, e.g., sometimes the absolute values are smaller
than one. In this case, as mentioned before, a global constant should
be multiplied to M (we need to multiply a constant value, 5, in both
models, since the minimal eigenvalues are 0.2). Fig. 19 shows the
visualization of the 3D stress tensor field resulted from the simu-
lation of a brake lever (data downloaded from www.tensorvis.org)
and Fig. 20 shows the 3D tensor field visualization of a CFD data. To
our knowledge, this is the first time to use 3D anisotropic Voronoi
diagram to visualize the 3D tensor field. The main advantage of us-
ing 3D volumetric RVD to visualize the tensor field is that Voronoi
cells can be freely distorted with respect to the local tensor, which
can achieve a continuous visualization of the given tensor field.

There are some more volumetric RVD and meshing results with
different sizes given in Appendix E. Through the above experiments,
it is noted that our proposed SIFHDE2 and high-d RVD are effective
computational algorithms to generate the high-quality anisotropic
3D Voronoi diagrams and tetrahedral meshes with arbitrary smooth
Riemannian metric fields.
6.5 Special Riemannian Metric Cases
In this subsection, we further investigate the convergence speed
and accuracy of the proposed embedding computation on some spe-
cial 2D and 3D Riemannian metric fields with small metric tensors
(especially some stretching factors / eigenvalues are less than one)
buried in large metric tensors all around.

A 2D Metric. Fig. 21 shows an input 2D metric domain having
concentric rings with smaller metrics (in small regions shown in
the blue color) and larger metrics (in large regions). Since the input
stretching factors (∈ [0.3, 3]) in the major direction have values
less than one, we need to multiply the input metric by a global
constant value, such as 3.34. Our embedding framework can effi-
ciently converge within 50 iterations with smaller relative edge
length errors, e.g., Lr elavд = 1.55% and Lr elmax = 28.39%. Based on

0.2

15
Stretching factor

Fig. 19. The visualization of the stress tensor field by using 3D anisotropic
volumetric RVD (with 10,000 samples) on the Brake Lever model (filled with
air outer part) with the stretching factor in the major direction s1 (x) ∈
[0.2, 15] generated by our 8D embedding method.

0.2

14

Stretching factor

Fig. 20. The visualization of the tensor field by using 3D anisotropic volu-
metric RVD (with 10,000 samples) on the CFD model (courtesy of Adrien
Loseille) with the stretching factor in the major direction s1 (x) ∈ [0.2, 14]
generated by our 8D embedding method.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:15

the computed embedding, we can generate the high-quality aniso-
tropic mesh with 5000 vertices (i.e., Gmin = 0.29, Gavд = 0.91,
θmin = 17.01◦, θavд = 53.23◦, and %<30◦ = 0.4%).

0.3

3

Anisotropic meshInput: 2D anisotropic metric

E e
m

Embedding energy Eem
curve during optimization

0

100%

of 8D embedding

Stretching factor

Fig. 21. Illustration of the embedding energy (Eem) curve during optimiza-
tion of 50 iterations, 8D embedding errors, and anisotropic meshing result of
an input 2D metric domain having concentric rings with smaller metrics (in
small regions shown in the blue color) and larger metrics (in other regions).

A 3DMetric. Fig. 22 shows a CFDmodel with a complicated bound-
ary and topology. It has a 3D metric field including small metric
tensors buried in large metric tensors as shown in the closeup re-
gions, and all other regions in small metric tensors (i.e., eigenvalues
are less than one). With the stretching factors (eigenvalues) in the
input metric ∈ [0.2, 30], we need to multiply a constant value, 5,
in this model. The embedding energy curve during optimization
and 3D tensor field visualization result are given in Fig. 22. Our
embedding framework can efficiently converge within 50 iterations
with smaller relative edge length errors, e.g., Lr elavд = 2.13% and
Lr elmax = 79.38%. Based on the computed embedding, we can gener-
ate the 3D anisotropic volumetric RVD result with 20,000 samples,
which does well preserve the shapes and size ratios of Voronoi cells.

0.2

30

Anisotropic RVD

Stretching factor

Embedding energy Eem
curve during optimization

E e
m

0

100%

of 8D embedding

Fig. 22. Illustration of the embedding energy (Eem) curve during optimiza-
tion of 50 iterations, 8D embedding errors, and 3D anisotropic volumetric
RVD result (with 20,000 samples) of an input CFD model (courtesy of Adrien
Loseille) with small metric tensors buried in large metric tensors (as shown
in the closeup regions), and all other regions in small metric tensors.

7 DISCUSSION AND FUTURE WORK
To the best of our knowledge, this is the first article in the literature
for computing the self-intersection free Euclidean embedding in

arbitrary dimensions and using it in Voronoi diagram, surfaces and
volume meshing equipped with Riemannian metrics. In particular,
this is the first practical algorithm for computing volumetric an-
isotropic Voronoi diagrams. While there is a direct application to
anisotropic meshing, we feel that there are many unexplored applic-
ations as limitations and future work: (1) We have not yet explored
the cases where the input metric has sudden discontinuities, in such
case, finding a practical embedding may be challenging. (2) In this
work, we would like to emphasize that all the costs of computa-
tions in a high-d space are justified since we can obtain high-quality
anisotropic RVD and meshes as compared with previous methods.
In the future, we will improve the computational speed by using
GPU-based parallel algorithm and implementation. (3) In order to
generate the sliver-free tetrahedral meshes, we will apply some
sliver suppressing strategies, such as perturbations [Tournois et al.
2009], sliver elimination [Fu et al. 2014] or gradient-based shape
matching [Ni et al. 2017]. (4) Since the optimization strategy used
in the embedding computation is not a global approach, the energy
is possibly trapped in a local minimum when minimized at a cer-
tain number of iterations. In this case, some global optimization
strategies can be applied, such as to perturb the high-d vertex po-
sitions to jump out of some local minima and keep searching for
a rather-global one, e.g., Monte Carlo minimization, etc. Further-
more, in the optimization framework, some relaxation techniques
for metric smoothness to handle singularities will be considered
and studied. (5) Since in this paper, we only show the potential
applications in 3D tensor field visualization, they are not yet the
best results, and better visualization techniques combined with 3D
AVD will be further investigated in our future work. (6) Besides
anisotropic RVD and meshing, we will explore other important and
interesting applications by using the proposed SIFHDE2, such as
simulations in medical imaging and computer animation. Especially,
we will investigate more practical tasks where the absolute self-
intersection free is a requirement that should be strictly enforced.

ACKNOWLEDGMENTS
We would like to thank the reviewers for their valuable comments.
We are grateful to Joshua A. Levine for the early discussions of this
work, Adrien Loseille for sharing 3D CFD tensor datasets, Tensor-
Vis.org for providing 3D engineering tensor datasets, and the au-
thors of the comparison work for sharing their results. This work
was partially supported by the National Science Foundation un-
der Grant Numbers ACI-1657364, CNS-16472000, IIS-1149737, the
Wayne State University Subaward 4207299A of CNS-1821962, the
Wayne State University Startup Grant, and the Natural Science
Foundation of China under Grant Number 61572021.

REFERENCES
F. Alauzet and A. Loseille. 2010. High-Order Sonic Boom Modeling Based on Adaptive

Methods. J. Comput. Phys. 229, 3 (2010), 561–593.
F. Alauzet and A. Lozeille. 2016. A Decade of Progress on Anisotropic Mesh Adaptation

for Computational Fluid Dynamics. Computer-Aided Design 72 (2016), 13–39.
P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. 2003. Anisotropic

Polygonal Remeshing. ACM Trans. Graph. 22, 3 (2003), 485–493.
P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. 2005. Variational Tetrahedral

Meshing. ACM Trans. Graph. 24, 3 (2005), 617–625.
J-D. Boissonnat, K. Shi, J. Tournois, and M. Yvinec. 2015a. Anisotropic Delaunay Meshes

of Surfaces. ACM Trans. Graph. 34, 2 (2015), 14.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:16 • Zhong, Wang, Lévy, Hua, and Guo

J-D. Boissonnat, C. Wormser, and M. Yvinec. 2008a. Anisotropic Diagrams: Labelle
Shewchuk Approach Revisited. Theoretical Computer Science 408, 2-3 (2008), 163–
173.

J-D. Boissonnat, C. Wormser, and M. Yvinec. 2008b. Locally Uniform Anisotropic
Meshing. In Proceedings of the 24th annual symposium on Computational geometry.
270–277.

J-D. Boissonnat, C. Wormser, and M. Yvinec. 2015b. Anisotropic Delaunay Mesh
Generation. SIAM J. Comput. 44, 2 (2015), 467–512.

H. Borouchaki, P. George, F. Hecht, P. Laug, and E. Saltel. 1997b. Delaunay Mesh
Generation Governed by Metric Specifications. Part I. Algorithms. Finite Elements
in Analysis and Design 25, 1–2 (1997), 61–83.

H. Borouchaki, P. George, and B. Mohammadi. 1997a. Delaunay Mesh Generation
Governed by Metric Specifications. Part II. Applications. Finite Elements in Analysis
and Design 25, 1–2 (1997), 85–109.

V. Borrelli, S. Jabrane, F. Lazarus, and B. Thibert. 2012. Flat Tori in Three-dimensional
Space and Convex Integration. Proceedings of the National Academy of Sciences of
the United States of America 109, 19 (2012).

F. Bossen and P. Heckbert. 1996. A Pliant Method for Anisotropic Mesh Generation. In
5th International Meshing Roundtable. 63–76.

M. Bronstein, A.Bronstein, R. Kimmel, and I. Yavneh. 2000. Multigrid Multidimensional
Scaling. Numerical Linear Algebra with Applications 0 (2000), 1–6.

M. Bronstein, A. Bronstein, R. Kimmel, and I. Yavneh. 2005. A Multigrid Approach For
Multi-Dimensional Scaling. In Proceedings of the Copper Mountain Conference on
Multigrid Methods.

M. Budninskiy, B. Liu, F. de Goes, Y. Tong, P. Alliez, and M. Desbrun. 2016. Optimal
Voronoi Tessellations with Hessian-based Anisotropy. ACM Trans. Graph. 35, 6
(2016), 242:1–242:12.

G. Cañas and S. Gortler. 2006. Surface Remeshing in Arbitrary Codimensions. Visual
Computer 22, 9 (2006), 885–895.

L. Chen, P. Sun, and J. Xu. 2007. Optimal Anisotropic Meshes for Minimizing Interpola-
tion Errors in Lp -Norm. Math. Comp. 76 (2007), 179–204.

L. Chen and J. Xu. 2004. Optimal Delaunay Triangulations. Journal of Computational
Mathematics 22 (2004), 299–308.

Z. Chen, W. Wang, B. Lévy, L. Liu, and F. Sun. 2014. Revisiting Optimal Delaunay
Triangulation for 3D Graded Mesh Generation. SIAM Journal Scientific Computing
(2014).

H-L. Cheng, T. Dey, H. Edelsbrunner, and J. Sullivan. 2001. Dynamic Skin Triangulation.
ACM-SIAM symposium on Discrete algorithms 25 (2001), 525–568.

S. Cheng, T. Dey, and E. Ramos. 2006. Anisotropic Surface Meshing. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms. 202–211.

F. Courty, D. Leservoisier, P-L. George, and A. Dervieux. 2006. Continuous Metric and
Mesh Adaptation. Applied Numerical Mathematics 55 (2006), 117–145.

J. Dardenne, S. Valette, N. Siauve, N. Burais, and R. Prost. 2009. Variational Tetrahedral
Mesh Generation from Discrete Volume Data. The Visual Computer 25, 5 (2009),
401–410.

F. Dassi, A. Mola, and H. Si. 2014. Curvature-Adapted Remeshing of CAD Surfaces. In
23rd International Meshing Roundtable. 253–265.

F. Dassi, H. Si, S. Perotto, and T. Streckenbach. 2015. Anisotropic Finite Element
Mesh Adaptation via Higher Dimensional Embedding. In 24th International Meshing
Roundtable. 265–277.

C. Dobrzynski and P. Frey. 2008. Anisotropic Delaunay Mesh Adaptation for Unsteady
Simulations. In 17th International Meshing Roundtable. 177–194.

Q. Du, V. Faber, andM. Gunzburger. 1999. Centroidal Voronoi Tessellations: Applications
and Algorithms. SIAM Rev. 41, 4 (1999), 637–676.

Q. Du and D. Wang. 2005a. Anisotropic Centroidal Voronoi Tessellations and Their
Applications. SIAM Journal on Scientific Computing 26, 3 (2005), 737–761.

Q. Du and D. Wang. 2005b. The Optimal Centroidal Voronoi Tessellations and the
Gersho’s Conjecture in the Three-dimensional Space. Computers & Mathematics
with Applications 49, 9 (2005), 1355–1373.

M. Freidlin. 1968. On the Factorization of Non-Negative Definite Matrices. Theory of
Probability and Its Applications 13, 2 (1968), 354–356.

P. Frey and F. Alauzet. 2005. Anisotropic Mesh Adaptation for CFD Computations.
Computer Methods in Applied Mechanics and Engineering 194, 48-49 (2005), 5068–
5082.

P. Frey and H. Borouchaki. 1997. Surface Mesh Evaluation. In 6th International Meshing
Roundtable. 363–373.

X. Fu, Y. Liu, J. Snyder, and B. Guo. 2014. Anisotropic Simplicial Meshing using Local
Convex Functions. ACM Trans. Graph. 33, 6 (2014), 182:1–182:11.

G. Golub and C. Loan. 1996. Matrix Computations (3rd Ed.). Johns Hopkins University
Press, Baltimore, Maryland.

M. Gromov. 2017. Geometric, Algebraic, and Analytic Descendants of Nash Isometric
Embedding Theorems. Bull. Amer. Math. Soc. 54, 2 (2017), 173–245.

M. Gromov and V. Rokhlin. 1970. Embeddings and Immersions in Riemannian Geometry.
Russian Mathematical Surveys 25, 5 (1970), 1–57.

Q. Han and J-X. Hong. 2006. Isometric Embedding of Riemannian Manifolds in Euclidean
Spaces. Vol. 13. American Mathematical Society.

P. Heckbert and M. Garland. 1999. Optimal Triangulation and Quadric-Based Surface
Simplification. Computational Geometry 14, 1–3 (1999), 49–65.

J-X. Hong. 1993. Realization in R3 of Complete Riemannian Manifolds with Negative
Curvature. Communications in Analysis and Geometry 1, 4 (1993), 487–514.

K. Itô. 1950. Stochastic Differential Equations in a Differentiable Manifold. Nagoya
Mathematical Journal 1 (1950), 35–47.

B. Klingner. 2008. Tetrahedral Mesh Improvement. Ph.D. Thesis, Dep. of Elec. Eng. and
Comp. Sciences U. of California at Berkeley.

B. Klingner and J. Shewchuk. 2007. Agressive Tetrahedral Mesh Improvement. In
Proceedings of 16th International Meshing Roundtable. 3–23.

D. Kovacs, A. Myles, and D. Zorin. 2010. Anisotropic Quadrangulation. In Proceedings
of the 14th ACM Symposium on Solid and Physical Modeling (SPM ’10). 137–146.

N. Kuiper. 1955. On C1-isometric Embeddings I. In Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappen. 545–556.

B. Lévy. 2016. Robustness and Efficiency of Geometric Programs: The Predicate Con-
struction Kit (PCK). Computer-Aided Design 72 (2016), 3–12.

B. Lévy and N. Bonneel. 2012. Variational Anisotropic Surface Meshing with Voronoi
Parallel Linear Enumeration. In 21st International Meshing Roundtable. 349–366.

D. Liu and J. Nocedal. 1989. On the Limited Memory BFGS Method for Large Scale
Optimization. Mathematical Programming 45, 3 (1989), 503–528.

Y. Liu, W. Wang, B. Lévy, F. Sun, D. Yan, L. Lu, and C. Yang. 2009. On Centroidal Voronoi
Tessellation – Energy Smoothness and Fast Computation. ACM Trans. Graph. 28, 4
(2009), 101:1–101:17.

S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory 28, 2 (1982), 129–137.

A. Loseille and R. Löhner. 2016. Anisotropic Mesh Generation for High-fidelity Simula-
tions in CFD. INRIA (2016). preprint.

E. Marchandise, C. Geuzaine, and J.F. Remacle. 2013. Cardiovascular and Lung Mesh
Generation Based on Centerlines. International Journal for Numerical Methods in
Biomedical Engineering 29, 6 (2013), 665–682.

R. Narain, A. Samii, and J. F. O’Brien. 2012. Adaptive Anisotropic Remeshing for Cloth
Simulation. ACM Trans. Graph. 31, 6 (2012), 147:1–147:10.

J. Nash. 1954. C1-isometric embeddings. Annals of Mathematics 60, 3 (1954), 383–396.
S. Ni, Z. Zhong, Y. Liu, W. Wang, Z. Chen, and X. Guo. 2017. Sliver-suppressing Tetra-

hedral Mesh Optimization with Gradient-based Shape Matching Energy. Computer
Aided Geometric Design 52 (2017), 247–261.

D. Panozzo, E. Puppo, M. Tarini, and O. Sorkine-Hornung. 2014. Frame Fields: Aniso-
tropic and Non-Orthogonal Cross Fields. ACM Trans. Graph. 33, 4 (2014), 134:1–
134:11.

M. Rouxel-Labbé, M. Wintraecken, and J-D. Boissonnat. 2016. Discretized Riemannian
Delaunay Triangulations. Procedia Engineering 163 (2016), 97–109.

E. Sauvage, J. Remacle, and E. Marchandise. 2014. Metric Field Construction for Aniso-
tropic Mesh Adaptation with Application to Blood Flow Simulations. International
Journal for Numerical Methods in Biomedical Engineering 30, 11 (2014), 1326–1346.

K. Shimada and D. Gossard. 1995. Bubble Mesh: Automated Triangular Meshing of Non-
manifold Geometry by Sphere Packing. In Proceedings of the 3rd ACM Symposium
on Solid Modeling and Applications. 409–419.

K. Shimada, A. Yamada, and T. Itoh. 1997. Anisotropic Triangular Meshing of Parametric
Surfaces via Close Packing of Ellipsoidal Bubbles. In 6th International Meshing
Roundtable. 375–390.

R. Simpson. 1994. Anisotropic Mesh Transformations and Optimal Error Control.
Applied Numerical Mathematics 14, 1–3 (1994), 183–198.

O. Sorkine-Hornung and M. Alexa. 2007. As-rigid-as-possible Surface Modeling. In
Proceedings of the fifth Eurographics symposium on Geometry processing. 109–116.

R. Sumner and J. Popović. 2004. Deformation Transfer for Triangle Meshes. ACM Trans.
Graph. 23, 3 (2004), 399–405.

J. Tournois, R. Srinivasan, and P. Alliez. 2009. Perturbing Slivers in 3D Delaunay Meshes.
Proceedings of the 18th international meshing roundtable (2009), 157–173.

S. Valette, J. Chassery, and R. Prost. 2008. Generic Remeshing of 3D Triangular Meshes
with Metric-Dependent Discrete Voronoi Diagrams. IEEE Trans. Vis. Comput. Graph.
14, 2 (2008), 369–381.

N. Verma. 2012. Distance Preserving Embeddings for General n-Dimensional Manifolds.
Journal of Machine Learning Research volume 14 (2012), 2415–2448.

S. Yamakawa and K. Shimada. 2000. High Quality Anisotropic Tetrahedral Mesh
Generation via Packing Ellipsoidal Bubbles. In 9th International Meshing Roundtable.
263–273.

D. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang. 2009. Isotropic Remeshing with Fast and
Exact Computation of Restricted Voronoi Diagram. Computer Graphics Forum 28, 5
(2009), 1445–1454.

D. Yan, W. Wang, B. Lévy, and Y. Liu. 2013. Efficient Computation of Clipped Voronoi
Diagram for Mesh Generation. Computer-Aided Design 45, 4 (2013), 843–852.

Z. Zhong, X. Guo, W. Wang, B. Lévy, F. Sun, Y. Liu, and W. Mao. 2013. Particle-Based
Anisotropic Surface Meshing. ACM Trans. Graph. 32, 4 (2013), 99:1–99:14.

Z. Zhong, L. Shuai, M. Jin, and X. Guo. 2014. Anisotropic Surface Meshing with
Conformal Embedding. Graphical Models 76, 5 (2014), 468–483.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Appendix of Computing a High-Dimensional Euclidean Embedding
from an Arbitrary Smooth Riemannian Metric

A DERIVATION OF EQ. (16) AND EQ. (17)
In this appendix we show the detailed derivation of Eq. (16) and
Eq. (17), which is inspired by the idea given in the Appendix of
Shoemake and Duff’s paper [Shoemake and Duff 1992].
We only consider Eem in this case, since Er eд is constant when

the vertex coordinates {vi |i = 1, · · · ,nv } are fixed. Note that for
Eem in surface case, i.e., Eq. (12), Tj =WjP−1j OT

jα or in volume case,
i.e., Eq. (13), Tj =WjW−1j is also constant when {vi |i = 1, · · · ,nv }
are fixed. The high-dimensional rotation Uj for each triangle or
tetrahedron j is independent of each other, so our problem is simply
expressed as:
For triangle or tetrahedron j, find Uj minimizing

Tj − UjQj

2
F
,

subject to orthogonality constraint UTj Uj − I = 0.

Since the squared Frobenius norm

Tj − UjQj

2
F
is exactly the

trace of matrix (Tj − UjQj) (Tj − UjQj)
T , we can use a symmet-

ric Lagrange multiplier matrix Y to incorporate the orthogonality
constraint as a linear term in the Lagrangian:

F (Uj ,Y) = trace[(Tj − UjQj) (Tj − UjQj)
T + (U

T
j Uj − I)Y]. (1)

By differentiating F (Uj ,Y) with respect toUj and making it equal
to a zero matrix, we can get:

2(UjQj − Tj)QT
j + 2UjY = 0. (2)

Thus we have:

Uj (QjQT
j + Y) = TjQT

j . (3)

Since QjQT
j + Y is a symmetric matrix and Uj is an orthogonal

matrix, we can consider Uj (QjQT
j + Y) as the Polar decomposition

of matrix TjQT
j .

This means that Uj is the orthogonal factor of the Polar decom-
position of matrix TjQT

j , as shown in Eq. (16) and Eq. (17) in paper.

B BEHAVIORS OF DIFFERENT µ VALUES IN EQ. (15)
The coefficient µ is a weighting factor to balance the similarity and
regularity terms during embedding optimization (Sec. 3.4.1 in paper).
The similarity term is defined based on the number of mesh elements
(i.e., triangles or tetrahedrons), and the regularity term is defined
based on the number of vertices. Through Euler characteristic, we
know that the number of mesh elements and the number of vertices
in a manifold have the linear relationship. So no matter what mesh
models are, it is possible to find a suitable constant coefficient µ to
balance the similarity and regularity energies at a relatively stable
order of magnitude in different models. From our experimental

observations, µ = 100 (i.e., order of magnitude of µ is 2) is a good
choice to all models in our paper and appendix.
In this section, we provide the experiments for behaviors of dif-

ferent µ values in embedding results. In order to emphasize its
importance and behaviors, we choose different orders of magnitude
of values to test the corresponding embedding results. Since it is
not straightforward to visualize the computed embedding results
≥ 4D, we choose the example of an ideal embedding in 3D space,
i.e., 2D domain with Gaussian embedding metric (Fig. 4 in paper)
as examples to illustrate the importance of having an appropriate
value of the coefficient in the regularity term.

If we use Eq. (12) or Eq. (13) only, i.e., without adding the regularity
term Er eд to optimize a 3D embedding, the result is shown in Fig. 1
(µ = 0).We can see that the result is far from our desired result (many
wrinkles and not smooth), known as corrugations, that can form
fractal patterns [Borelli et al. 2012], though the average relative edge
length error does reduce dramatically (i.e., Lr elavд = 11.73% compared
with original Lr elavд = 20.71%). So it is necessary to add a regularity
term to obtain a smooth embedding.
Along with increasing the orders of magnitude of µ, we can see

that the embedding is smoother. It is interesting to see that the
embedding errors are decreasing at first and then increasing, this is
probably because some embedding results are at local minima (such
as µ = 0, 1, 10 in Fig. 1), so adding a regularity term is also a good
strategy to let the optimizer jump out of the local minima to reach
a better result. However, if the regularity coefficient is too large,
the embedding is over-smooth and the accuracy of the embedding
is poor. One extreme case is the order of magnitude of µ is 5 (i.e.,
µ = 100, 000), the computed embedding almost does not have any
deformation from the original 2D plane. In order to balance the
smoothness and accuracy, we have tried a sequence of increasing
values of µ in different orders of magnitude, and found that µ = 100
is an appropriate setting (Lr elavд = 0.92% and Lr elmax = 10.58%; and the
3D embedding shape is smooth and very close to the ideal Gaussian
surface) as shown in Fig. 1.

C OBSERVATION ON CHOOSING THE DIMENSION OF
EMBEDDINGS

Tab. 1 provides the average relative edge length errors of all surface
and volume models in our experiments (besides the results shown
in Sec. 6.1.2 of paper) for different dimensions. Error values in bold
demonstrate that 8D is a good and reasonable choice observed in
the experiments.

D K-NN EFFICIENCY ON HIGH-D EMBEDDING
The following criteria of K-NN efficiency are used: Tknn is com-
putational time on K-NN searching for all particles; Navд is the
average number of nearest neighbors to be searched; Nmax is the
maximal number of nearest neighbors to be searched. We use the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:2 • Zhong, Wang, Lévy, Hua, and Guo

Fig. 1. The behaviors of different orders of magnitude of µ values in 3D embedding results of a 2D domain with Gaussian embedding metric. A µ value in bold
emphasizes the best result observed in the experiment.

Particle optimization on the original
anisotropic 3D space

Particle optimization on the 8D
Euclidean embedding space

neighbors histogram # neighbors histogram

Navg= 103
Nmax = 298
Tknn= 0.18s

Navg= 19
Nmax = 42
Tknn= 0.035s

Fig. 2. Comparison of K-NN searching of 2000 particles optimization on
the original anisotropic 3D Cyclide surface and its 8D Euclidean embedded
surface.

above criteria to compare Zhong et al.’s anisotropic particle optim-
ization [2013] with our proposed isotropic particle optimization on
the high-d Euclidean embedding.

In order to compare the efficiency of the K-NN between the high-
d embedding space and the original space, we use the same search
radius 5σ , where σ is the kernel width of the inter-particle energy in
the Euclidean embedding space (as mentioned in Sec. 4.1 of paper).
However, when the K-NN computation happens in the original
space, we need to transform this search radius into the original
anisotropic space, resulting in a large range once the anisotropic
stretching ratio is high. After that, we need to further check and
prune the spurious neighbors under the given metric.
Fig. 2 shows the K-NN computation of 2000 particles optimiza-

tion on the computed 8D Euclidean embedding in this paper and
the original 3D surface [Zhong et al. 2013] of the Cyclide model
with the stretching ratio s2

s1 ∈ [1.6, 9.4]. We provide the statistics
when the particles are at equilibrium state, i.e., at the end of the
optimization, since the number of neighbors may vary slightly at
each iteration during optimization. The K-NN at equilibrium state
is more convincing and stable to analyze. It demonstrates that the
average K-NN on 8D Euclidean embedding is 19 compared with 103
on the original anisotropic space, and the K-NN searching time of
2000 particles for each iteration on the embedded surface is about
5 times faster than that of the original surface with the specified
anisotropic metric.

Besides Cyclide model, we also measure the K-NN efficiency
on the high-d embeddings of other models, such as Kitten, Vase,
Knot, Club, etc., and the average K-NN is quite stable and small,
i.e., Navд = 20. However, without using Euclidean embedding,
the average K-NN highly depends on the stretching ratio in the
Riemannian metric. The higher the stretching ratio is, the larger
the average K-NN is, such as Navд = 232 on another Cyclide model
(as shown in Fig. 13 of paper) with the larger stretching ratio s2

s1 ∈

[2, 29].

E MORE RVD AND MESHING RESULTS
Our proposed method works on different shapes of the models and
there are some extra results given in the following, including differ-
ent topology genera, closed surfaces and surfaces with boundaries.
Figs. 3, 4, 5, 6, 7, 8, and 9 show that the anisotropic 3D surface RVD
and meshing results of Vase, Bone, Knot, Genus3, Rocker Arm, Club,
and Hand models with the anisotropic metrics designed by the sur-
faces’ curvature tensors. In order to demonstrate the scalability of
the proposed method on medium-large sizing RVD and meshing of
3D surfaces, Fig. 10 (Fertility model) shows the final results with
vertices ranging from 10,000 to 100,000. The statistics and timings
for our 8D embedding computation and surface meshing on these
models are shown in Tab. 2. It is noted that our embedding computa-
tion in 8D space is quite efficient, and all surface models provided in
this article need only dozens of seconds (only the large sizing model,
such as the dense Fertility model, needs hundreds of seconds).

Fig. 11 show some more volumetric RVD results on a Cube model
with domain [1, 11]3 and the sampling ranges from 6000 to 30,000.
The targeted Riemannian metric field is specified via a highly nonlin-
ear analytic function as M(x) = R(x)Tdiaд{Stretch(x)2, 1, 1}R(x),
where Stretch(x) = (0.025+ (1−e−0.01 |x

2+y2+z2−49 |))−1, and R(x)’s
columns are (x/

√
x2 + y2 + z2,y/

√
x2 + y2 + z2, z/

√
x2 + y2 + z2)T ,

and two orthogonal vectors. The stretching ratio is Stretch(x) ∈
[1, 40]. Fig. 12 shows the visualization of the stress tensor field
by using 3D volumetric RVD (with 10,000 samples) on the Brake
Lever model (filled with air inner part) with the stretching factor
in the major direction s1 (x) ∈ [0.5, 103] (data downloaded from
www.tensorvis.org).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Appendix of Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:3

F MORE COMPARISON RESULTS
In order to further demonstrate the better performance of our
method compared with other anisotropic meshing approaches, we
provide more experiments in the following, in addition to results in
the paper. All the meshing results of the comparison methods were
provided by the original authors.
Fig. 13 compares our method with anisotropic Delaunay refine-

ment (ADR) [Boissonnat et al. 2015] on the Fertility surface model
with the stretching ratio s2

s1 ∈ [1, 14].
Fig. 14 compares our method with conformal embedding [Zhong

et al. 2014] and particle-based method [Zhong et al. 2013] on the
Ellipsoid surface model with the stretching ratio s2

s1 ∈ [1, 10].
Tab. 3 shows the final mesh quality of different anisotropic surface

methods. Our results demonstrate that they can yield better mesh
angle and triangle quality based on the proposed high-d embedding
framework, so that match the input curvature-based anisotropy.

REFERENCES
J-D. Boissonnat, K. Shi, J. Tournois, and M. Yvinec. 2015. Anisotropic Delaunay Meshes

of Surfaces. ACM Trans. Graph. 34, 2 (2015), 14.
V. Borelli, S. Jabrane, F. Lazarus, and B. Thibert. 2012. Flat Tori in Three-dimensional

Space and Convex Integration. Proceedings of the National Academy of Sciences of
the United States of America 109, 19 (2012).

K. Shoemake and T. Duff. 1992. Matrix Animation and Polar Decomposition. In Pro-
ceedings of the Conference on Graphics Interface. 258–264.

Z. Zhong, X. Guo, W. Wang, B. Lévy, F. Sun, Y. Liu, and W. Mao. 2013. Particle-Based
Anisotropic Surface Meshing. ACM Trans. Graph. 32, 4 (2013), 99:1–99:14.

Z. Zhong, L. Shuai, M. Jin, and X. Guo. 2014. Anisotropic Surface Meshing with
Conformal Embedding. Graphical Models 76, 5 (2014), 468–483.

θ

Fig. 3. Vase model.

Fig. 4. Bone model.

Fig. 5. Knot model.

Fig. 6. Genus3 model.

Fig. 7. Rocker Arm model.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

62:4 • Zhong, Wang, Lévy, Hua, and Guo

Fig. 8. Club model with boundaries.

Fig. 9. Hand model with boundaries.

25,000 vertices 100,000 vertices

10,000 vertices

Fig. 10. Fertility models with 10,000, 25,000, and 100,000 vertices.

20,000 samples

30,000 samples

6000 samples

1

40

Stretching ratio

Fig. 11. The anisotropic 3D volumetric RVD results on the Cube model
with 6000, 20,000, and 30,000 samples. The stretching ratio is Stretch (x) ∈
[1, 40].

Table 1. Statistics for embedding errors (i.e., average relative edge length
errors) in different dimensions.

Model 4D 5D 6D 7D 8D 10D 20D

Surfaces

Gargo 16.70% 10.07% 7.38% 6.90% 6.72% 6.62% 6.53%
Upright 22.23% 4.69% 3.00% 2.65% 1.52% 1.48% 1.46%
Nefertiti 14.32% 6.39% 3.78% 3.24% 2.98% 2.95% 2.93%
Vase 15.71% 8.69% 5.12% 4.30% 4.18% 4.15% 4.10%
Bone 29.41% 12.09% 6.33% 4.15% 3.74% 3.55% 3.40%
Knot 20.22% 8.70% 6.11% 4.86% 4.49% 4.38% 4.31%

Genus3 17.46% 7.75% 4.37% 3.91% 3.70% 3.59% 3.46%
Rocker Arm 16.19% 10.90% 6.08% 5.77% 5.62% 5.59% 5.59%

Club 17.09% 10.04% 7.26% 6.18% 5.44% 5.40% 5.35%
Hand 14.69% 5.81% 3.06% 2.88% 2.68% 2.62% 2.47%

Fertility 20.60% 9.35% 5.68% 4.09% 3.86% 3.71% 3.68%
Ellipsoid 35.69% 5.14% 2.60% 1.65% 0.96% 0.94% 0.92%

Volumes
Cube2 (Fig. 15 b in paper) 13.20% 4.48% 2.90% 1.56% 1.30% 1.22% 1.17%
Cube3 (Fig. 16 in paper) 19.34% 7.78% 4.87% 2.75% 2.12% 2.10% 2.07%
Sphere (Fig. 18 in paper) 32.14% 13.13% 4.34% 2.18% 2.04% 2.02% 2.01%

Note: The values in bold are the 8D embedding results.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

Appendix of Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric • 62:5

Table 2. Statistics and timings for 8D embedding computation and surface meshing on models in appendix.

Model Input #Vert. Stretch Lr elavд Lr elmax Embed. Time Output #Vert. Gmin Gavд θmin θavд %<30◦ Mesh Time

Vase 20, 000 [1, 5] 4.18% 157.97% 17.09 s 2000 0.36 0.86 21.33◦ 49.52◦ 0.24% 7.48 s
Bone 16, 794 [1, 10] 3.74% 125.24% 13.45 s 3000 0.32 0.85 19.69◦ 48.47◦ 0.48% 8.69 s
Knot 24, 392 [2, 8] 4.49% 168.46% 21.16 s 5000 0.47 0.93 25.37◦ 53.79◦ 0.05% 26.41 s

Genus3 26, 620 [1, 10] 3.70% 110.08% 40.48 s 8000 0.42 0.90 23.12◦ 50.51◦ 0.09% 35.16 s
Rocker Arm 35, 840 [1, 7] 5.62% 138.31% 32.38 s 5000 0.33 0.86 19.54◦ 48.13◦ 0.15% 31.47 s

Club 30, 000 [1, 6] 5.44% 143.44% 27.82 s 5000 0.46 0.91 24.10◦ 51.25◦ 0.07% 29.94 s
Hand 36, 619 [1, 5] 2.68% 121.57% 35.78 s 10, 000 0.28 0.90 16.28◦ 50.14◦ 0.23% 55.50 s

Fertility 55, 902 [1, 10] 3.86% 169.84% 63.31 s 10, 000 0.32 0.86 18.02◦ 48.10◦ 0.21% 51.53 s
Fertility 55, 902 [1, 10] 3.86% 169.84% 63.31 s 25, 000 0.46 0.90 25.16◦ 51.51◦ 0.05% 121.18 s
Fertility 223, 626 [1, 10] 2.58% 97.36% 256.44 s 100, 000 0.62 0.92 28.00◦ 53.55◦ 0.006% 456.39 s

Note: Embed. Time: timing for embedding computation with 50 iterations. Mesh Time: timing for both particle optimization with 50 iterations and RVD computation.

Stretching factor

0.5

103

Fig. 12. The visualization of the stress tensor field by using 3D volumetric
RVD (with 10,000 samples) on the Brake Lever model (filled with air inner
part) with the stretching factor in the major direction s1 (x) ∈ [0.5, 103].

ADR Our method

Fig. 13. Comparison on anisotropic meshing results (12,480 vertices) with
ADR [Boissonnat et al. 2015] and our method on the Fertility surface model.

Conformal embedding

Particle

Our embedding

Fig. 14. Comparison on anisotropic meshing results (1000 vertices)
with conformal embedding method [Zhong et al. 2014], particle-based
method [Zhong et al. 2013], and our method on the Ellipsoid surface model.

Table 3. Comparison of mesh quality on anisotropic surface meshing meth-
ods.

Model Stretch Output # Vert. Gmin Gavд θmin θavд %<30◦

Ellipsoid (conformal embed) [1, 10] 1000 0.11 0.78 3.93◦ 44.03◦ 12.42%
Ellipsoid (particle) [1, 10] 1000 0.45 0.84 18.96◦ 48.50◦ 0.15%
Ellipsoid (our high-d embed) [1, 10] 1000 0.57 0.94 36.57◦ 55.13◦ 0

Fertility (ADR) [1, 14] 12, 480 0.002 0.56 0.06◦ 29.94◦ 41.79%
Fertility (our high-d embed) [1, 14] 12, 480 0.39 0.90 19.02◦ 51.17◦ 0.17%
Note: The values in bold emphasize the best results observed in the comparison experiments.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.

	HDE_Siggraph18
	HDE_Siggraph18_Appendix

