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ABSTRACT 
 
Recent advances in imaging technologies, such as Magnetic 
Resonance Imaging (MRI), Positron Emission Tomography (PET) 
and Diffusion Tensor Imaging (DTI) have accelerated brain 
research in many aspects. In order to better understand the synergy 
of the many processes involved in normal brain function, 
integrated modeling and analysis of MRI, PET, and DTI across 
subjects is highly desirable. The current state-of-art computational 
tools fall short in offering an analytic approach for intersubject 
brain registration and analysis. In this paper we present an 
approach which is based on landmark constrained conformal 
parameterization of a brain surface from high-resolution structural 
MRI data to a canonical spherical domain. This model allows 
natural integration of information from co-registered PET as well 
as DTI data and lays a foundation for the quantitative analysis of 
the relationship among diverse datasets across subjects. 
Consequently, the approach can be extended to provide a software 
environment able to facilitate detection of abnormal functional 
brain patterns in patients with neurological disorder. 
 
Index Terms— Conformal Mapping, Brain Image Analysis, 
Information Integration, Registration. 
 

1. INTRODUCTION 
 
Advanced imaging technologies have accelerated brain research in 
many aspects [10, 12, 13]. In order to enable comparison of 
localized functional information across individuals, various brain 
mapping techniques have been developed in recent years [3, 5]. 
Most of them achieves standardization by non-linear spatial 
warping of individual's brains to an anatomical template and then 
performs all data analyses in template space. Furthermore, as 
human cortical brain surfaces are highly convoluted, conventional 
geometric shape analysis methods based on Euclidean geometry, 
e.g., FreeSurfer [2] or BrainVoyager [7, 8], are suboptimal in 
handling the complexity of the cortical mantel. As an example, 
given two points on the cortical surface that are close to each other 
in R3, their geodesic distance might be very long. The 
inconsistency between the Euclidean distance in the embedding 
space and the Riemannian metric distance on the surface makes 
conventional mapping algorithms suboptimal. Methods based on 
Euclidian distances are problematic when brains are analyzed 
which largely differ in size and shape, frequently encountered in 
analyses that include both pediatric and adult brains [11].  

Recently, conformal mapping techniques have gained a wider 
application in brain mapping [1]. For example, Hurdal and 
Stephenson proposed a discrete mapping approach that uses 
spherical packing in order to produce a “flattened” image of the 
cortical surface onto a sphere or onto an Euclidean or hyperbolic 
plane [6]. They obtained maps that are quasi-conformal 
approximations to classical conformal maps. Furthermore, Gu et 
al. proposed to optimize the conformal parameterization by 
composing an optimal Möbius transformation so that it minimizes 
the landmark mismatch energy [4] and Wang et al. introduced the 
application of compound energy (harmonic and landmark 
matching energy) to optimize the brain conformal mapping [14, 
15].  

In this paper we present the development of Conformal Brain 
Model (e.g., CBM, a unit sphere with brain cortical surface 
parameterization) based on high-resolution volumetric MR images, 
serving as a homotopic canonical space for subsequent data 
representation and integration. The landmark constrained 
conformal mapping procedure is used to determine the homotopic 
location of cortical surface in each subject’s native space. This 
characteristic sets this method apart from other techniques which 
perform spatial warping of image volumes to a predefined 
template, such as Statistical Parametric Mapping (SPM) [3]. Our 
method integrates complementing imaging data within the 
homotopic brain model, CBM, allowing statistical analysis across 
subjects. The normative brain pattern with respect to PET tracer 
concentrations and DTI fiber tracts can be derived from control 
subjects of various ages. Subsequently, the decision whether a 
particular cortical element derived from a patient falls into the 
normal range is based on this normative pattern. This data 
structure provides universal access and quantification to each 
individual’s brain functional information (from PET) and neural 
network information (from DTI). 
 

2. BRAIN MAPPING USING CONFORMAL GEOMETRY 
 
In differential geometry, surfaces are modeled as manifolds. A 
manifold M is a topological space with a set of local coordinate 
charts {(Ui, Φi)}, where Ui are open sets on M, the union of Ui 
covers M, Φi: Ui→ R2 is a homeomorphism that maps Ui to the 
planar parameter domain. One point p on M can be covered by 
multiple local coordinate charts (Ui, Φi) and (Uj, Φj), the 
coordinate transition function Φij: Φj◦Φi

-1 converts one local 
parameters Φi(p) to another one Φj(p). 



A Riemannian metric on surface M is a differential quadratic 
form. On a local coordinate chart, the metric can be represented as 

2 2 2( , ) ( , ) 2 ( , ) ( , )ds u v E u v du F u v dudv G u v dv= + +  
where (u, v) are the local coordinates. A Riemann surface is a two-
dimensional manifold, such that all transition functions are 
analytic functions, and on each chart the Riemannian metric has a 
special form  

2 2 ( , ) 2 2( , ) ( )u vds u v e du dvλ= + .                       (1) 
This kind of local coordinates are called isothermal coordinates. 
Suppose Φ: M → N is a diffeomorphism between two Riemann 
surfaces. Suppose (U, Ψ) is a chart on M, (x, y) is the local 
isothermal coordinates; (V, Ω) is a chart on N, (u, v) is the 
corresponding local isothermal coordinates, Φ(U) ⊂ V. Then Φ 
restricted on U induces a map between parameter domains, Φ: (x, 
y)→ (u(x, y), v(x, y)). If 
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                               (2) 

holds for any restrictions of Φ, then Φ is called a conformal map 
between M and N. Conformal means angle preserving. Suppose γ1, 
γ2 are two arbitrary curves on M intersect at the point p with angle 
α, Φ is a conformal map from M to N, then Φ(γ1) and Φ(γ2) are two 
curves on N, intersect each other at the point Φ(p) with angle α. 
Angle preserving property is very valuable for real applications. 
Because the local shape features are preserved after mapping, it is 
convenient and reliable to conduct registration and alignment in 
the parametric domains. 

Due to the fact that the cortical surface of a brain is a genus 
zero surface and topologically equivalent to a sphere, conformal 
mapping provides a convenient way to parameterize brain surfaces 
without angular distortion, which is computed by minimizing the 
harmonic energy of the map [4], i.e., for genus zero surfaces M1, 
M2, f: M1 → M2 is conformal if and only if f is harmonic. Based on 
this fact, we can easily compute the conformal mapping between 
genus zero surfaces by minimizing the harmonic energy. In 
practice, we use the triangular mesh to approximate genus zero 
surfaces. Discrete harmonic energy and Laplacian operator are 
defined as in [4].  

Suppose f ∈ CPL, where CPL(K) represent a linear space 
consisting of all piecewise linear functions defined on the 
simplicial complex K, the implicit energy is defined as: 

2
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where u, v denote vertices, {u, v} denotes the edge linking between 
u and v. ku,v, are constant. The discrete Laplacian is the linear 
operator 0 0: C K C K∆ → on the space of piecewise linear 
functions on K, ∆ is defined by the formula 

,
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∆ = −∑ .                     (4) 

The function f minimizes the harmonic energy, if and only 
if ( )f v∆ ’s tangential component is zero for every interior vertex v 
of K. Note that the corresponding triangular mesh of a genus zero 
surface does not have boundary edges.  

For a vector valued function 3
1:f M R→ , 0 1 2{ , , }f f f f= , 

fi ∈ CPL (i=0, 1, 2), the energy of f is computed by 
2

0
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=

= ∑ . In a similar way, the piecewise Laplacian of f is 

computed by 0 1 2( , , )f f f f∆ = ∆ ∆ ∆ . More specifically, since M2 is 

S2, then the conformal mapping 2
1:f M S→ can be constructed by 

using the steepest descent method, which is not unique but forms a 
so-called Möbius group [4].  

With the zero mass-center constraint, all conformal maps are 
restricted to a 3D Euclidean rotation group. In order to determine a 
unique mapping, we first manually align the original surface to a 
pre-defined orientation strictly. For example, in cortical surface 
mapping (Figure 1), we define the Cartesian coordinate system by 
locate the coordinate origin at the mass center of the surface. The 
yz plan is defined by the brain’s hemisphere plane and xy plane 
passes the originating points of the central sulci which are close to 
the hemispheric cleft. This configuration ensures a unique solution 
of the computation. 

 

 
(a)                                    (b) 

Figure 1: (a) shows the brain cortical surface with its mass center 
positioned at the coordinate origin, the yz plane aligned to the 
hemisphere plane and the originating points of the central sulcus 
near hemisphere clefts defines the xy plane. (b) shows the 
conformal mapping of the brain cortical surface to a unit sphere. 
 
 
3. LANDMARK CONSTRAINED CONFORMAL MAPPING 
 
Conformally mapping brain surfaces to a unit sphere does not 
guarantee a consistent alignment of the anatomical features across 
subjects. In order to relate and compare anatomical features or 
functional activations across subjects, it is necessary to establish a 
mapping that specifies a unique correspondence between each 
location in one brain and the corresponding location in another, 
namely, to bring the two brains into registration. Since gyral and 
sulcal landmarks are typically accurate indicators of the many 
functional areas, it seems likely that using these features to drive 
the registration of the cortical surfaces will result in a more 
accurate alignment of corresponding functional areas. In this 
section, we present a novel method to register brain surfaces in the 
parameter domain, which not only explicitly match those labeled 
landmarks, but also make use of surface’s intrinsic geometry via 
conformal mapping to optimize the alignment for other anatomical 
features. 

After mapping the cortical surface of each individual subject 
onto a sphere, we morph them to register with an average, 
canonical template, guided by a combination of feature-alignment 
(sulcus/gyrus) and isometry-preserving forces (conformal 
geometry). In detail, major landmarks are aligned on the spherical 
domain by recomputing the conformal mapping with hard coded 
landmark constraints. As shown in Figure 2, some features, such as 
occipital pole, frontal pole, the hemispheric cleft and the left and 
right central sulci, are used, while we explicitly enforce that the 
hemispheric cleft must be mapped onto the hemispherical circle of 
the canonical domain (unit sphere) and that the frontal pole and 
occipital pole must be mapped to the south and north poles of the 



unit sphere, respectively. In order to determine a standard location 
for the landmark of left and right central sulci in the parametric 
domain, we choose the brain of one adult to be conformally 
mapped to the unit sphere without constraining the location of both 
central sulci. The generated result is regarded as the Standard 
Conformal Brain Model. We use it as the exemplary template 
indicating the locations of major landmarks, as well as other 
cortical structures in the spherical domain. Once this template is 
established, other subjects’ cortical surfaces can be conformally 
mapped to this template model with landmarks constrained at 
specific locations, such as aligning its central sulci with the 
corresponding ones of the standard CBM. Figure 2(a) shows the 
original cortical surface used as the template. The hemispheric 
cleft and both the central sulci are highlighted in blue, while the 
frontal and occipital poles are marked using a yellow point and a 
purple point, respectively. The standard CBM is shown in Figure 
2(b), where the hemispheric cleft is mapped as the meridian and 
the frontal and occipital poles are mapped to the north and south 
poles of this model. Note that the central sulci are conformally 
mapped without constraints in this case. A subjects’ cortical 
surface and its corresponding CBM are shown in Figure 2(c) and 
Figure 2(d), respectively. 

To achieve the aforementioned mapping, let’s suppose that C1 
and C2 are two cortical surfaces we want to compare and that 
f1: 2

1C S→ is the canonical cortical surface mapping. We manually 
label the major anatomical features as landmarks on the two 
cortical surfaces as discrete point sets based on the initial surface 
rendering of the brain, as shown in Figure 2 (a) and (c). We denote 
them as { 1ip C∈ } and { 2iq C∈ }, with pi matching to qi. We 

proceed to compute a map f2 : 2
2C S→  from C2 to S2. First, we 

still use the result of a normal conformal mapping as the initial 
condition. With an initial computation of conformal map, we 
assume that the corresponding features of the cortical surfaces for 
both the canonical template and the individual subject are very 
close to each other at the spherical domain. Then, the landmark-
constrained optimization is computed, which still minimizes the 
harmonic energy, but every labeled point is constrained to be 
aligned with its counterpart on C1 at the spherical domain.  

Our landmark constrained conformal cortical surface 
mapping approach is as follows: 
Algorithm: Input (aligned mesh M, step length tδ , energy 

difference threshold Eδ ), output ( 2
22 :f C S→ ) where 2f  

minimizes the harmonic energy based on the pre-assigned 
constraints. 
(a). Compute conformal mapping 2

2 2:cnff C S→ using the 
steepest descent method [4]. The difference here is that we 
use vertex projection instead of Gauss map, which is 
computed by  

( ) ,v cP v v M
v c
−

= ∈
−

 

where P(v) is the projection map from M to S2 at v, and c is 
the mass center of M. 

(b). Assign each vertex qi that is labeled as point on the landmarks 
to its constrained location indicated by pi. Then compute 
constrained harmonic energy E0. 

(c). For each vertex v∈M, compute absolute derivative D f by  

( ) ( ) ( ( ))D f v f v f v ⊥= ∆ − ∆ . 

 Then, with the steepest descent algorithm, the offset for each 
vertex is computed by ( ) ( )f v D f v tδ δ= − × . 

(d). Update ( )f v (vertices) by ( )f vδ and then “pull” each vertex 
qi back to its original position. 

(e). Compute current energy E, if 0E E Eδ− < , 

return ( )f v which is the constrained conformal mapping from 
its original domain. Otherwise, replace E0 by E and repeat 
steps (b) to (e). 

 
The result is shown by Figure 2 (b) and (d). Note that, the 

anatomical features in Figure 2 (a) and (c) appear to be very 
different from each other. With our proposed algorithm, the 
landmarks of Figure 2 (d) are now exactly aligned to that of Figure 
2 (b). Note that, after inspection to the result of such parametric 
registration, we observe that local adjustments for the lankmark 
matching do not generate any significant conformality degradation 
over the domain. 

 

 
          (a)                      (b)                      (c)                     (d) 
Figure 2: (a) shows the template brain cortical surface with 
hemisphere cleft, central sulci, etc. as the landmarks. (b) shows the 
result of mapping the cortical surface of (a) onto the unit sphere by 
the normal conformal mapping. (c) shows the cortical surface of a 
subject, with the same anatomical landmark specified. (d) shows 
the result of the cortical surface registration for the subject at the 
spherical domain. 

 
 

4. MULTIMODEL IMAGING INFORMATION 
INTEGRATION 

 
To model multimodality imaging data (MRI, PET, and DTI) 
obtained from an individual subject using the CBM model, we first 
co-register all image modalities to the original MRI and then 
extract the brain. Once the homologous CBM is established, all 
results derived in native space from co-registered MR, PET, and 
DTI data is integrated in the CBM and the spatial/functional 
relationship between such diverse datasets can be determined using 
rigorous statistical analysis. Note that we do not transform or 
parameterize PET or DTI volume data directly. All information 
from PET, DTI, and EEG is computed strictly based on 
individuals’ brain data in their native spaces in order to avoid any 
distortion. Specifically, the PET data is sampled based on the 
"inverse gradient" method. In order to match the resolution of the 
MR surface to the surface of PET for sampling, the high-resolution 
MR surface is smoothed and the direction of the normal vector 
(gradient) is calculated in each surface voxel. The co-registered 
PET image volume is sampled in the direction of the inverse 
gradient (into the cortical mantel up to a pre-defined depth) 
yielding PET sampling values. Functionally abnormal cortical 
regions can then be objectively determined using statistical group 
analysis methods. Furthermore, the depth of these cortical regions 
can be extended so that the volumes include fiber tracts which 



terminate at the cortical/white matter junction. Fiber tracts will be 
calculated in native space based on co-registered DTI data. 
Connection strength between standardized cortical volume 
elements can be calculated and measured quantitatively. Figure 3 
shows an example of information integration in the CBM model. 
For DTI data we currently employ the probability fiber tracking 
algorithm [5, 9]. The PET information and the fiber tracts can be 
transferred, parameterized and stored in its CBM model. Based on 
the CBM and its integrated information, our computational 
framework can provide many novel, accurate, and objective tools 
to aid in analysis of multimodal imaging data in this uniform data 
structure. 
 

 
             (a)                             (b)                                 (c) 

Figure 3: Integration of PET and DTI information in a brain’s 
CBM model. (a) Inverse gradient fusion of MR and PET data. (b) 
The CBM model with mapped PET information. (c) Rendering of 
fiber tracts in the same subject. The connectivity strength can be 
mapped to the CBM as well. 
 
 

5. CONCLUSION AND DISCUSSION 
 
This paper has presented an analytic approach for intersubject 
brain analysis based on landmark constrained conformal mapping 
of the brain. This novel conformal mapping allows reproducible 
transformation of each subject’s brain to a canonical spherical 
domain and is the basis for subsequent statistical analysis of 
cortical surface across subjects. The CBM model does not only 
serve as the unit of statistical analysis of PET images across 
individuals’ brains, but is also the basis for a quantitative 
assessment of fiber tract connectivity strength between anatomical 
territories of the brain. The evaluation of the intersubject 
registration accuracy will be conducted in the near future. In 
addition, advanced data mining and analysis tools will be 
developed based on the CBM data structure. 
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