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Abstract - Recently, various conformal geometric methods have been presented for non-rigid surface matching and registration.
This work proposes to improve the robustness of conformal geometric methods to the boundaries by incorporating the
symmetric information of the input surface. We presented two symmetric conformal mapping methods, which are based on
solving Riemann-Cauchy equation and curvature flow respectively. Experimental results on geometric data acquired from real
life demonstrate that the symmetric conformal mapping is insensitive to the boundary occlusions. The method outperforms
all the others in terms of robustness. The method has the potential to be generalized to high genus surfaces using hyperbolic
curvature flow.
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1. Introduction

In recent decades, there has been a lot of research into

surface representations for 3D surface analysis, which is

a fundamental issue for many applications in computer

graphics, computer vision and geometric modeling,

such as 3D shape registration, partial scan alignment, 3D

object reconstruction, 3D object recognition, and classification

[5], [31], [14], [23].

In particular, as 3D scanning technologies improve,

large databases of 3D scans require automated methods

for matching and registration. However, matching surfaces

undergoing non-rigid deformation is still a challenging

problem, especially when data is noisy and with complicated

topology. Different approaches have been introduced in

the literature [23], [32], [26], [8], [21], [3], [25], [16],

[7], [27], [13], [19], [4], [12]. However, many surface

representations that use local geometric invariants can

not guarantee a global convergence and might suffer

from local minima in the presence of non-rigid deformations. 

Recently, many global parameterizations methods have

been developed based on conformal geometric maps

[37], [30], [10], [15], [24], [29]. Although the previous

methods have met with a great deal of success in both

computer vision and graphics, there is a major shortcoming

in conformal maps when applied to matching of real

discrete data such as the output of 3D scanners: inconsistent

boundaries. In real applications in graphics and CAD,

many categories of surfaces of interests are symmetric,

such as human faces, human bodies, most furniture, buildings,

automobiles etc. To address the above critical issue, we

propose to incorporate the symmetry of the input surface

to the conformal mapping, such that the conformal

mapping preserves the intrinsic symmetry of the surface

and is more robust to the inconsistency of the boundaries.

The conformal mapping preserves the symmetry in the

following ways: first the image of the mapping is still

symmetric; second, the area distortion factor on the

image is symmetric as well. Figure 9 shows the symmetric

conformal mappings, which are much more robust to

the boundary occlusions and inconsistency.

1.1 Conformal Geometric Methods
There are four categories of conformal geometric
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Fig. 1. Symmetric Conformal Mapping for human faces, (a)
Sub1.A and (b) Sub1.B, with different expressions. The property
of symmetry preserving is illustrated from the flat image and the
checkboard.
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methods for the application of surface matching and

registration, including Harmonic Maps [37], [30], [10],

Riemann-Cauchy Equation (such as least square conformal

maps (LSCMs) introduced in [15]) [29], [28], Holomorphic

Differentials [36], and Ricci Flow [9], [35], [34].

Recently, discrete surface Yamabe flow has been introduced

by Luo in [18], which has been reintroduced in [1].

Hyperbolic Yamabe flow was presented in [33]. A similar

method was applied for conformal parameterization in [2].

In general, harmonic maps, LSCMs are linear methods,

but can only handle surfaces with simple topologies,

such as topological disks. Holomorphic differentials can

handle multiply connected domains and high genus

surfaces, but it introduces singularities. Ricci flow method

is very general and has no topological limitations, but it

is a nonlinear optimization. All of them are very sensitive

to the boundaries. As shown in Figure 2, inconsistent

boundary conditions produce drastically different conformal

mappings and lead to the failure for partial matching

and registration. Figure 3 gives an example to show that

the conformal mapping has the property of intrinsic

symmetry preserving.

1.2 Contributions
We make the following contributions in our paper:
. A conformal mapping method based on solving Riemann-

Cauchy equation is introduced, which preserves the

symmetry of the input surface.
. A conformal mapping method based on discrete curvature

flow (Yamabe Flow) is introduced, which preserves

the symmetry of the input surface.
. A robust method for non-rigid surface matching and

registration based on symmetric conformal mapping

is introduced, which is very robust to boundary occlusion

and clutter.
. Although the work focuses on topological disks, it

can be generalized to surfaces with more complicated

topologies, such as multiply connected domains or

high genus surfaces, as long as the surface has intrinsic

symmetry. The Riemann-Cauchy equation method

can only handle topological disks, while the curvature

flow method can be generalized to handle arbitrary

topologies. Similarly, the symmetric constraints can

also be incorporated in the other two methods.

2. Mathematical Background

All surfaces embedded in  have the induced

Euclidean metric g. A conformal structure is an atlas,

such that on each local chart, the metric can be

represented as g = e2u(dx2+ dy2). we can use complex

parameter to represent it z = x + iy, which is called

isothermal coordinates. Suppose two charts have overlapping

region on the surface, then the chart transition function

is an analytic function. A surface with a conformal

structure is a Riemann surface, therefore, all surfaces in 3

are Riemann surfaces.

A complex valued function f : →  is holomorphic,

if it satisfies the following Riemann-Cauchy equation, f :

z → w, where z = x + iy and w = u + iv,

(1)

A mapping between two Riemann surfaces f : S1→ S2

∂u

∂x
------ ∂v

∂y
-----

∂u

∂y
------, ∂v

∂x
-----.–= =

Fig. 2. Comparison among different conformal mapping methods for faces Sub2.A and Sub2.B. The occluded face shares the same
symmetry plan with the original face. Symmetric conformal map is the most robust to boundary occlusion.

Fig. 3. Conformal mapping preserves symmetry. γ is the
intersection curve between the surface and the symmetric
plane. p and R

τ (p) are symmetric points. The symmetry is
preserved on the image of the conformal mapping φ.
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between two surfaces is conformal, if it satisfies the

following condition: Arbitrarily choosing a local isothermal

coordinates of S1, (Uα, φα), a local isothermal coordinates

of S2, (Vβ, φβ), then the local presentation of f is φβ○

f ○ φα
−1  is holomorphic. In this work, S1 is a genus zero

surface with a single boundary, S2 is a planar domain.

There are mainly four categories to compute conformal

mappings.

2.1 Harmonic maps
Let f : S → D be a mapping between two surfaces,

then the harmonic energy of f is defined as E(f) =

, where  is the gradient of f, dA is the area

element on S. The harmonic map is the critical point of

the harmonic energy, which satisfies the Laplace equation

∆f = 0.

The harmonic map can be achieved using the heat

flow method df = −∆ f, where ∆ is the Laplace-

Beltrami operator on S. In general, if the target domain

is convex, the boundary mapping f : →  is a

homeomorphism, then the harmonic map is a diffeomorphism.

Especially, if D is a genus zero closed surface, then the

harmonic map is also a conformal map. Figure 2(b) is

computed using harmonic maps as described in [30].

2.2 Solving Riemann-Cauchy equation
Conformal maps satisfy the Riemann-Cauchy equation

(1). Therefore by solving Riemann-Cauchy equation

with boundary conditions, a conformal map can be

obtained. in practice, one can solve the equation by

minimizing the following energy,

(2)

Figure 2(c) is computed by minimizing the above energy

using the method described in [15].

2.3 Holomorphic 1-form
Let ω be a complex-valued differential form on the

Riemann surface S, such that on each local chart (Uα,

φα) with isothermal coordinates zα, ω has local

representation ω = gα(zα)dzα, where gα is holomorhpic,

then ω is called a holomorphic 1-form. On another local

chart (Uβ, φβ) with isothermal coordinates zβ, ω has

local representation ω = gβ(zβ)dzβ where gα = gβ,

where  is a holomorphic function. All the holomorphic 1-

forms form a group, which is isomorphic to the first

cohomology group of the surface.

The holomorphic 1-form group basis can be computed

as follows: first we compute the homology group basis

of the surface, the the dual cohomology group basis,

then use Hodge theory to get the unique harmonic 1-

form for each cohomologous class; finally, use Hodge

star to compute the conjugate harmonic 1-forms. Each

pair of harmonic 1-form and its conjugate form a

holomorphic 1-form. This method has been introduced

in [11]. Figure 2(d) is computed using holomorphic 1-forms.

2.4 Ricci curvature flow
Let S be a surface embedded in . S has a Riemannian

metric induced from the Euclidean metric of , denoted

by g. Suppose u : S →  is a scalar function defined on

S. It can be verified that = e2ug is also a Riemannian

metric on S. We say  is conformal to g, e2u is called

the conformal factor.

When the Riemannian metric is conformally deformed,

Gaussian curvatures will also be changed accordingly

to the Yamabe equation, = e2u(−∆gu + K), where ∆g is

the Laplace-Beltrami operator under the original metric g.

Yamabe equation can be solved using Ricci flow method

by a prescribed curvature ,

where t is the time parameter. If the target curvature is

zero on every interior point, then the surface can be

flattened onto a planar domain with the resulting metric.

Surface Ricci flow has been generalized to the discrete

setting by Luo and Chow in [6]. In surface case, Ricci

flow is equivalent to Yamabe flow. Discrete Yamabe

flow was first introduced by Luo in [18]. Figure 10 is

computed using curvature flow method [33].

3. Symmetric Conformal Mapping

All the existing conformal mapping methods are

sensitive to boundary conditions. Surface registration

algorithms based on conformal geometric methods are

susceptible to occluded boundaries, clutters and inconsistent

boundaries. We propose to improve the robustness of

conformal mapping methods by utilizing the symmetry

of the input surface.

Suppose the input surface S has some symmetries.

For example (see Figure 3), suppose τ  is a plane in ,

Rτ is the reflection about τ. If S is symmetric about τ,

then Rτ(S) = S. Let γ be the intersection curve of the

surface and the symmetric plane, γ = S τ, φ : S →
is a conformal mapping of the surface to the complex plane.

We say the conformal mapping preserves symmetry, if

φ(Rτ (p)) =

where  means the conjugate of . Namely, maps

γ to the imaginary axis, the images of the symmetric

points p and Rτ(p) are symmetric about the imaginary

axis. This can be accomplished by adding symmetric

constraints (complex position, or conformal factor) during

the optimization process. 

In practice, surfaces are approximated by triangle meshes,

conformal mappings are approximated by piecewise linear

maps.
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3.1 Riemann-Cauchy equation method
This method is a direct generalization of LSCM in

[15] by adding symmetric constraints. Let [pi, pj, pk] be

a face on the mesh (see Figure 4). The images of them

under the linear map f : [pi, pj, pk] → 2 are (ui, vi), (uj,

vj), (uk, vk). Let si = n × (pk− pj), sj = n × (pi− pk), sk =

n × (pj− pi), n is the normal vector of the face, then

− u = uisi + ujsj + uksk,

− v = visi + vjsj + vksk,

Riemann-Cauchy energy on face [pi, pj, pk] can be

approximated by E([pi, pj, pk]) = . The

energy (2) can be approximated as

where A([pi, pj , pk]) represents the area of the face.

The symmetric constraints can be inserted naturally

during the optimization of the above energy. Suppose

pi, pj are symmetric vertices of the mesh, Rτ (pi) = pj,

then we add constraint ui = uj, vi = vj.

3.2 Yamabe flow method
Symmetry constraints can also be added to the curvature

flow method naturally. Here we use Yamabe flow method

introduced in [18]. On a triangle mesh, the discrete

metric is the edge length function l: E → +satisfying

triangle inequality. The vertex discrete curvature is

defined as angle deficiency,

where  is the corner angle at pi in the face [pi, pj, pk],

M is the boundary of M. Let u: V →  be the discrete

conformal factor. The edge length of [pi, pj] is defined

as lij : = exp(ui) exp(uj) , where  is the original edge

length in 3. The discrete Yamabe flow is defined as

with the constraint . The discrete Yamabe flow

converges, and the final discrete metric induces the prescribed

curvature; a detailed proof can be found in [18].

During the Yamabe flow, we can enforce the symmetry

in the following way. Assume pi and pj are two symmetric

interior vertices, Rτ(pi) = pj, pi, pj , therefore their

target curvatures are the same , then during the

Yamabe flow, we always ensure ui = uj.

4. Computational Algorithm

The computational algorithm for symmetric conformal

mapping is straight forward. It includes the following steps.

4.1 Finding symmetric plane
Assume the input surface has a reflective symmetric

plane τ, this step aims at find the plane. Although there

are rich literature on finding symmetry of images, we

focus on finding the symmetry of a 3D surface. The generalized

Hough transformation has been introduced in [20] for

finding the symmetry plane of 3D point clouds. We adapt

the method to locate the symmetry plane for our dense

point clouds of human face surfaces.

4.2 Finding feature points
The scanned data sets have both texture information

and geometric information. In current work, we only

utilize the texture information for locating feature points.

We apply conventional SIFT method [17] on the texture

image to find major feature points, such as eye corners,

mouth corners etc. The symmetry of feature points can

be computed by the method in [22]. Then we project

back the feature points from the texture image to the 3D

surfaces.

4.3 Cross registration

Given two 3D face surfaces S1 and S2 of the same

person with different expressions and different boundaries,

we want to register them using symmetric conformal

mapping. First, we compute symmetric conformal maps

φ1 : S1→D1, φ2 : S2→D2, using the symmetric information

obtained in the first step. Then we compute a constrained

harmonic map g : D1→D2, such that g align the major

corresponding features and also preserves symmetry.

The correspondence between the major features are

specified by the user. The matching and registration accuracy

is directly influenced by the detected feature constraints.

The map g = (g1, g2) minimizes the harmonic energy

∇
∇
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2
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Fig. 4. Discrete approximation of Riemann-Cauchy equation.
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5. Experimental Results

We implemented our algorithm using generic C++ on

Windows XP and used conjugate gradient optimization

for acceleration. The human face data sets are acquired

using high speed 3D scanner based on phase-shifting

method in [30]. The scanning speed is 30 frames per

second, the resolution for each frame is 640 × 480. The

experiments are conducted on a HP xw4600 Workstation

with Intel Core 2Duo CPU 2.33 GHz, 3.98 GB of RAM.

The running time is reported in Table 1.

The symmetric conformal mapping for various human

face surfaces are illustrated in Figures 1, 2, and 5. The

(partial) registration results for face surfaces with different

expressions and postures are illustrated in Figure 6.

Although the boundaries are significantly different, and

the registrations are performed on the relatively small

overlapping regions, the texture pattern on the overlapping

regions among the four frames are very consistent. This

demonstrates the robustness of our method. Figures 7, 8

and 9 show our method tested on the other facial expression

sequences with different non-rigid deformations, where

the boundaries are almost fixed and the registrations are

also visualized by the check-board texture mapping.

The matching error is measured by computing the relative

Hausdorff average distance (RHAD) under iterative

closest point (ICP), harmonic map method (HM) [30],

and our symmetric conformal map method (SCM). We

matched the first frame to others within each class and

got the average matching error as follows: Sub1(0.054,

0.015, 0.008), Sub2(0.221, 0.035, 0.020), Sub3(0.090,

0.020, 0.013), and Sub4(0.028, 0.009, 0.006) for (ICP,

HM, SCM). For all the tested experiments, our method

outperforms both the ICP and HM methods.

Figure 10(a) demonstrates the symmetric Yamabe flow

method as described in previous section. The target curvatures

are set to preserve the symmetry. During the flow, the

conformal factors u are constrained to be symmetric.

The final conformal mapping image is also symmetric.

This example shows the flexibility of our method, that

can handle surfaces with complicated topologies.

Table 1 Computational time of symmetric conformal mappings

Name Sub1.A Sub1.B Sub2.A Sub3.A Sub3.B

#Face 148,305 147,038 50,000 156,401 147,430

#Vertex 74,699 74,063 25,246 78,773 74,281

Time (s) 8 17 16 28 14

Fig. 5. Symmetric LSCM for faces Sub3.A and Sub3.B with
inconsistent boundaries.

Fig. 6. Registration for a sequence of Sub3’s face surfaces with
different expressions and postures.

Fig. 7. Registration for a sequence of Sub2’s face surfaces with
significantly different expressions.

Fig. 8. Registration for a sequence of Sub4’s face surfaces with eye
and mouth motions.

Fig. 9. Registration for a sequence of Sub1’s face surfaces with
asymmetrical expression deformations.
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6. Conclusion and future works

Conventional conformal mapping methods are susceptible

to inconsistent boundaries. This work proposes to

improve the robustness of conformal geometric methods

by incorporating the symmetric information into the

mapping process. Novel conformal mapping algorithms

based on solving Riemann-Cauchy equation and curvature

flow are developed, which preserve the symmetry of

the input surface. Experimental results demonstrate the

symmetric conformal mapping is insensitive to the

boundary occlusions.

Although current work focuses on genus zero surfaces,

it can be directly generalized to high genus surfaces as

well. Figure 10(b) demonstrates such an example, a

genus two surface is conformally mapped to the hyperbolic

space periodically using hyperbolic Yamabe flow method.

In the future, we will continue the exploration for high

genus surfaces. Furthermore, we will investigate to generalize

the method for surfaces with symmetries other than

mirror reflection and incorporate more geometric structural

characteristics to conformal mappings to improve the

robustness and accuracy.
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