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Abstract: As the central relay station of the human brain, the thalamus
modulates sensory signals to and from the cerebral cortex. The reciprocal
connectivity between the cerebral cortex and the thalamus is believed to
play an essential role in consciousness and various neurological disorders.
Thus, in-vivo analysis of thalamo-cortical connectivity is important for our
understanding of normal and pathological brain processes. In this paper

• We propose a new partitioning paradigm, called coclustering, in
order to segment the thalamus into thalamic nuclei based on their
cortical projections. In contrast to the traditional clustering paradigm,
a coclustering procedure not only simultaneously partitions cortical
voxels and thalamic voxels into groups, but also identifies the
corresponding strong connectivities between the two classes of groups

• We develop the first coclustering algorithm, Genetic Coclustering
Algorithm (GCA), to solve the coclustering problem

• WeapplyGCA to segment the thalamus into thalamic nuclei and visualise
main thalamo-cortical fibre tracts.
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1 Introduction

The thalamus is believed to relay information selectively to various parts of the
cortex, as functionally specific neuronal clusters in the thalamus (thalamic nuclei)
project to different cortical areas. Thalamic nuclei have strong reciprocal connections
with the cerebral cortex, forming thalamo-cortical circuits that are believed to
be involved in consciousness and play an important role in many neurological
disorders (Bagary et al., 2002; Juhasz et al., 2001; Henderson et al., 2000; Banati
et al., 2000; Creutzfeldt, 1995). Since a better understanding of the connectivity
pattern between the cortex and thalamus is crucial for neuroscience in general and
the treatment of neurological diseases in particular, a computational framework
for the assessment of thalamic nuclei and their cortical projections is greatly
needed.

Unfortunately, currently available methods for the in-vivo analysis of
thalamo-cortical connectivity are still suboptimal. Existing brain analysis work either
focuses on fibre tracking (which groups fibres into bundles (Corouge et al., 2004;
Anders Brun et al., 2004; Ding et al., 2003; Brun et al., 2003; Shimony et al., 2003;
Zhang and Laidlaw, 2002), or focuses on thalamic nuclei segmentation (Deoni et al.,
2005; Jonasson et al., 2005; Wiegell et al., 2003; Imig and Morel, 1985). In this
paper, we propose a method that not only supports the functionalities of both
these methods but also supports the assessment of thalamo-cortical connectivity.
As shown in Figure 1, each thalamic nuclei is mainly connected to a particular
region of the cortex. For example, most voxels in thalamic nuclei T2 are connected
to voxels of cortical region C2, with only few connections to other cortical
regions, and vice versa. Therefore, in order to perform an accurate in-vivo analysis
of the thalamo-cortical connections, what is needed is a partitioning procedure
that not only simultaneously partitions cortical voxels and thalamic voxels into
groups, but also identifies the corresponding strong connectivities between the two
classes of groups. Traditional clustering algorithms, such as K-means (Han and
Kamber, 2001), CHAMELEON (Karypis et al., 1999), and DBSCAN (Ester et al.,
1996), are not applicable since they can only perform partitioning on one class
of objects, either on cortical voxels, on fibres, or on thalamic voxels, without
the consideration of the above anatomical connectivity constraint. As a result,
they will fail to identify accurately the corresponding thalamo-cortical connectivity
patterns.

The main contributions of this paper are:

1 We propose a new partitioning paradigm, called coclustering, to model the
thalamo-cortical connectivity analysis problem. In contrast to the traditional
clustering paradigm, a coclustering procedure not only simultaneously partitions
cortical voxels and thalamic voxels into groups, but also identifies the
corresponding strong connectivities between the two classes of groups.

2 We develop the first coclustering algorithm, Genetic Coclustering Algorithm
(GCA), to solve the coclustering problem.

3 We apply GCA to perform in-vivo analysis of the thalamo-cortical connections
and produce a 3-D visualisation of seven thalamic nuclei groups together with
their cortical projections.
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Figure 1 Strong connectivity between a thalamic nuclei and its corresponding cortical region
(see online version for colours)

This paper extends (Lin et al., 2006)with a comprehensive studyof the effects of various
operators and parameters on the convergence performance of the GCA algorithm
(Section 5). First, the image acquisition and data preprocessing procedure is described
in Section 5.1. Second, the evaluationof the effects of operators viz., selection,mutation
and K-means, as well as parameters of population size and mutation probability
on the convergence performance of the GCA algorithm is reported in Section 5.2.
Finally, a 3-D visualisation of the thalamic nuclei as well as their connectivities to the
corresponding cortical regions is presented in Section 5.3; this visualisation adds more
detailed annotations to the one presented in Lin et al. (2006).We also extend (Lin et al.,
2006) with a description of the background and related work in Section 2.

Organisation. The rest of the paper is organised as follows: Section 2 presents the
background of this research and related work. Section 3 formalises the coclustering
model with respect to thalamo-cortical connectivity analysis. Section 4 introduces
our coclustering algorithm, the Genetic Coclustering Algorithm (GCA), to solve the
coclustering problem. Section 5 presents experimental results obtained from analysis
of real brain data. Finally, Section 6 concludes the paper and comments on future
directions of this research.

2 Background and related work

As the central relay for a human brain, the thalamus modulates sensory signals
to and from the cerebral cortex. Multiple functional pathways relay through the
thalamus and form the thalamic cytoarchitecture, which is divided into functionally
specific clusters that are referred to as thalamic nuclei (Wiegell et al., 2003). Thalamic
nuclei have strong reciprocal connections with the cerebral cortex, forming the
thalamo-cortical network. The pathological changes of such connections have been
implicated in a large number of diseases, such as neocortical epilepsy (Juhasz et al.,
2001), Parkinson’s disease (Henderson et al., 2000), Schizophrenia (Bagary et al., 2002),
and multiple sclerosis (Banati et al., 2000). These diseases can be treated by surgical
ablationor electric stimulation,which requires both the studyof the global connectivity
and localisationof the place of individual structureswithin theoverall scheme (Scannell
et al., 1999).

Although an area of intense research, computational frameworks that efficiently
model connectivity patterns in human brains are still suboptimal. For example,
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Shimony et al. (2003) apply a fuzzy c-means algorithm in which each fibre is associated
with a cluster by a membership function that indicates the degree that a fibre belongs
to a cluster. Zhang and Laidlaw (2002) used a hierarchical clustering algorithm
for the fibre clustering, Brun et al. (2003) consider fibres are similar to each other
if they start from and end at the same area and define a measure that uses the
distance between the end points. Other work focused on thalamus nuclei segmentation
(Imig and Morel, 1985; Deoni et al., 2005; Jonasson et al., 2005; Wiegell et al., 2003)
or cortex segmentation (Goldenberg et al., 2002). However, none of the above work
provided an efficient computational framework to assess thalamo-cortical connectivity
patterns.

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance (MR) acquisition
technique that measures the directional dependence of motion of water molecules in
tissue (Moberts et al., 2005). DTI is a non-invasive technique which allows in vivo
assessment of the internal structure of organised issue, such as white matter. In fibrous
tissue of human brain white matter, water tends to diffuse less in the directions
perpendicular to the fibre structure. This makes it possible to study the local fibre
orientations indirectly by interpreting the water diffusion within the voxel (Anders
Brun et al., 2004). Therefore, performing fibre tracking may provide valuable insights
into fibre tract connectivity, by creating fibre traces from virtual particles, which travel
along the direction of maximum diffusion, starting from a set of seed points (Corouge
et al., 2004; Brun et al., 2003; Ding et al., 2001). DTI has been applied to a wide variety
of fields, including neocortical epilepsy, brain development, brain tumor, and multiple
sclerosis (Hesseltine et al., 2006; Tummala et al., 2003; Taber et al., 2002).

3 The coclustering model

In this section, we present our coclustering model, which models the thalamo-cortical
analysis problem. In this model, the structure of the cortex and thalamus is represented
as a bipartite graph G = (C, T, F ) as illustrated in Figure 1, where C is the set of
cortical voxels, each of which is represented by a vector

−→
Xn = (x, y, x), encoding

its three-dimensional coordinates; T is the set of thalamic voxels, represented by−→
Yn = (x, y, x); and F is the set of fibres connecting C and T . Although not required
by ourmodel, the working hypothesis is that most thalamic voxels within one thalamic
nuclei usually connect to a specific cortical region, and the connectivities to other
cortical regions are relatively weaker, and vice versa. The goal of a coclustering
procedure is to group the two classes of objects simultaneously while minimising the
cross-connectivity cost between them. More specifically, a coclustering procedure will
partition both classes of objects into K groups so that

1 for each class, similar objects are within the same group, while dissimilar objects
are in different groups

2 there is a one-to-one correspondence between the clusters in the first class
(Class of cortical voxels) and the second class (Class of thalamic voxels);
the corresponding cluster to a cluster is called its spouse cluster

3 the total cross-connectivity cost which results from those edges between a cluster
in one class and a non-spouse cluster in the other class is minimised.
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To achieve the above goals, we define several notions. First, we define the centroid of
a cluster and its Within-Cluster Variation (WCV) to quantify the similarity of objects
within one cluster.

The centroid of a cortical cluster CK is defined as:

−→µk =

∑
−→
Xn∈Ck

−→
Xn

|Ck|
where |Ck| represents the number of cortical voxels in clusterCk. Similarly, the centroid
of a thalamic cluster Tk is defined as:

−→νk =

∑
−→
Yn∈Tk

−→
Yn

|Tk|
where |Tk| represents the number of thalamic voxels in cluster Tk.

The WCV of cortical cluster Ck is defined as:

WCV(Ck) =
∑

−→
Xn∈Ck

D∑
d=1

(Xnd − µkd)2.

Similarly, the WCV of thalamic cluster Tk is defined as:

WCV(Tk) =
∑

−→
Yn∈Tk

D∑
d=1

(Ynd − νkd)2.

Second, we define the Total Within-Cluster Variation to quantify a particular
partitioning. The Total Within-Cluster Variation (TWCV) of a cortical partition
(C1, . . ., CK) is defined as:

TWCV(C1, . . ., CK)

=
K∑

k=1

WCV(Ck)

=
K∑

k=1

∑
−→
Xn∈Ck

D∑
d=1

(Xnd
− µkd

)2

=
K∑

k=1

∑
−→
Xn∈Ck

D∑
d=1

(Xnd
)2 +

K∑
k=1

∑
−→
Xn∈Ck

D∑
d=1

(µkd
)2 −

K∑
k=1

∑
−→
Xn∈Ck

D∑
d=1

(2Xnd
µkd

)

=
K∑

k=1

∑
−→
Xn∈Ck

D∑
d=1

Xnd

2 +
K∑

k=1

|Ck|
D∑

d=1

(µkd
)2 −

K∑
k=1

D∑
d=1

(2 × SCFkd
× µkd

)

=
K∑

k=1

∑
−→
Xn∈Ck

D∑
d=1

Xnd

2 +
K∑

k=1

D∑
d=1

(SCFkd
)2

|Ck| −
K∑

k=1

D∑
d=1

2 × SCFkd

2

|Ck|

=
K∑

k=1

∑
−→
Xn∈Ck

D∑
d=1

Xnd

2 −
K∑

k=1

1
|Ck|

D∑
d=1

(SCFkd
)2
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where SCFkd
is the sum of the dth features of all voxels in Ck. Similarly, the TWCV

of a thalamic partition (T1, . . ., TK) is defined as:

TWCV(T1, . . ., TK)

=
K∑

k=1

WCV(Tk)

=
K∑

k=1

∑
−→
Yn∈Tk

D∑
d=1

(Ynd
− νkd

)2

=
K∑

k=1

∑
−→
Yn∈Tk

D∑
d=1

Ynd

2 −
K∑

k=1

1
|Tk|

D∑
d=1

(STFkd
)2,

where STFkd
is the sum of the dth features of all voxels in Tk.

Third, in order to minimise the cross-connectivity cost, for each thalamic cluster,
we define the set of cortical voxels that are connected to it as its shaded thalamic
cluster. More formally, given a thalamic partition (T1, . . ., TK), the shaded cortical
cluster C ′

K (k = 1, . . ., K) is defined as:

C ′
k = {c | c ∈ C,∃t ∈ TK , (c, t) ∈ F};

A shaded cortical cluster T ′
k can be defined similarly.

For example, in Figure 2, all the cortical voxels that are connected to voxels in
thalamic cluster T1 forms the shaded cortical cluster C ′

1, while all thalamic voxels
that are connected to the voxles in cortical cluster C1 forms the shaded thalamic
cluster T ′

1. In an ideal coclustering, as C ′
2 and T ′

2, a shaded cluster should coincide
with the corresponding spouse cluster. However, this is not always the case in general.
The cross-connectivity cost can be characterised by the disagreement between shaded
clusters and spouse clusters andquantifiedby the totalwithin cluster varianceof shaded
clusters with respect to their corresponding spouse clusters, called STWCV, which is
defined as follows.

Figure 2 Shaded cortical and thalamic clusters (see online version for colours)

The Shaded Within-Cluster Variation (SWCV) of cortical cluster C ′
K is defined as:

SWCV(C ′
k) =

∑
−→
X′

n∈C′
k

D∑
d=1

(X ′
nd

− µkd
)2.
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Note that, instead of using the centroid of C ′
k, the centroid of the Ck is used to

calculate SWCV(C ′
k). The intuition is that, in an ideal partitioning, the shadedpartition

C ′
1 . . . C ′

K should mostly coincide with C1 . . . CK .
Similarly to the shaded cortical partition, the centroid of the Tk is used to calculate

SWCV(T ′
k) forfinding theoptimal solution.TheSWCVof thalamic clusterT ′

k is defined
as:

SWCV(T ′
k) =

∑
−→
Y ′

n∈T ′
k

D∑
d=1

(Y ′
nd

− νkd
)2.

The Shaded Total Within-Cluster Variation (STWCV) of cortical partition
(C ′

1, . . ., C
′
K) is defined as:

STWCV(C ′
1, . . ., C

′
K) =

K∑
k=1

SWCV(C ′
k) =

K∑
k=1

∑
−→
X′

n∈C′
k

D∑
d=1

(X ′
nd

− µkd
)2.

Similarly, the STWCV of thalamic partition (T ′
1, . . . , T ′

K) is defined as:

STWCV(T ′
1, . . ., T

′
K) =

K∑
k=1

SWCV(T ′
k) =

K∑
k=1

∑
−→
Y ′

n∈T ′
k

D∑
d=1

(Y ′
nd

− νkd
)2.

Statement of the problem: Finally, the coclustering problem can be formally stated as
follows: given a cluster number K, a bipartite G = (C, T, F ), and a distance metric
d for nodes in C and T , partition (C, T ) into K cluster pairs (C1, T1), (C2, T2), . . . ,
(CK , TK), such that the following objective function OTWCV is minimised:

OTWCV = TWCV(C1, . . ., CK) + TWCV(T1, . . ., TK)
+ STWCV(C ′

1, . . ., C
′
K) + STWCV(T ′

1, . . ., T
′
K).

4 Our proposed GCA algorithm

In this section, we propose the first coclustering algorithm, Genetic Coclustering
Algorithm (GCA), to solve the coclustering problem. It is based on the genetic
algorithm approach (Maulik and Bandyopadhyay, 1994) by working on a coding
of the solution space over which the search has to be performed. These encoded
solutions are called chromosomes and the objective function value OTWCV can be
calculated for each solution according to its definition in Section 3. Each solution
is encoded by a string of symbols and GCA evolves solutions over generations.
During each generation,GCAproduces a new population from the current population
by applying genetic operators viz., selection, mutation, and K-means operator.
Each solution in the population is associated with a figure of merit (fitness value)
depending on OTWCV. The selection operator selects a solution from the current
population for the next population with a probability proportional to its fitness value.
The mutation operator toggles each position in a string with a probability, called the
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Mutation Probability (MP). Finally the K-means operator is introduced to speed up
GCA’s convergence to the global optimum (Krishna and Murty, 1999). The rational
that we use a genetic algorithm approach is that it has been shown that genetic
algorithms thatmaintain the best discovered solution either before or after the selection
operator asymptotically can converge to the global optimisation (Rudolph, 1994).

More specifically, GCA maintains a population (set) of Z coded solutions,
where Z is a parameter specified by the user. Each solution is coded by a string
(c1 . . . cN , t1 . . . tN ) for N cortical voxels and N thalamic voxels, where each ci or ti,
called an allele, denotes a cortical voxel or a corresponding thalamic voxel. Each allele
takes a value from 1, . . ., K, representing the cluster number to which the voxel
belongs. For example, (c1c2c3c4c5, t1t2t3t4t5) = (21332, 21345) encodes a bicluster
partitioning of five cortical voxels and five thalamic voxels, in which c1 and c5 belong
to cortical cluster 2, while their connected thalamic voxels t1 and t5 belong to thalamic
clusters 2 and 5, respectively.

Figure 3 illustrates the flowchart of GCA. It starts with the initialisation phase,
which generates the initial population P0, and then run the selection operator,
the mutation operator, and the K-means operator sequentially on the current
population Pi to obtain the next generation Pi+1. This sequence of operators are
run iteratively to produce one generation after another until a termination condition
is reached.

Figure 3 Flowchart of the GCA algorithm (see online version for colours)

During evolution, some solutions in which some cortical clusters or thalamic clusters
are empty might be produced. These solutions are called illegal solutions. As will be
shown later, although illegal solutions are not needed eventually, they are helpful for
GCA’s convergence to the global optimum. To deal with illegal solutions, we define
the notion of legality ratio. Given a solutionSz that is encoded by (c1 . . . cN , t1 . . . tN ),
let n1 be the number of nonempty cortical clusters and n2 be the number of nonempty
thalamic clusters in Sz , the legality ratio of Sz is defined as:

e(Sz) = (n1 + n2)/(2 × K).

A solution Sz is legal if e(Sz) = 1 and illegal otherwise. For example, given K = 4,
the solution c1c2c3c4c5, t1t2t3t4t5 = ‘43223, 43223’ is illegal since cortical cluster 1 is
empty. We describe our design of the operators in the sequel.
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4.1 Phase 1: initialisation operator

GCA starts with the initialisation phase, which randomly generates the initial
population P0 of Z solutions, where Z is a parameter specified by the user. Each allele
ci in a solution (c1 . . . cN , t1 . . . tN ) is initialised to a cluster number randomly selected
from the uniform distribution over the set {1, 2, . . ., K}; ti is initialised to a value equal
to its corresponding ci.

Illegal solutions are permitted but are considered as the most undesirable solutions
by defining their OTWCVs as +∞ and assigning them with low fitness values (will be
defined in the next subsection). With a low fitness value, an illegal solution will have
a lower probability for survival. This flexibility of allowing illegal solutions in the
evolution process not only avoids the overhead of illegal solution elimination and thus
improves the time performance of the algorithm, but also provides the chances for
illegal solutions to mutate to legal solutions during the mutation phase.

4.2 Phase 2: the selection operator

Weuse proportional selection for the selection operator inwhich, the population of the
next generation is determinedbyZ independent randomexperiments. Each experiment
randomly selects a solution from the current population (S1, S2, . . ., Sz) according to
the probability distribution (p1, p2, . . ., pZ) defined by

pz =
F (Sz)∑Z

z=1 F (Sz)

where F (Sz) denotes the fitness value of solution Sz with respect to the current
population and is defined as follows.

F (Sz) = (OTWCVmax − OTWCVSz
) × e(Sz)

where OTWCVmax is the maximal value of OTWCV that has been encountered till
the present generation.

The intuitionbehind this fitness function is that each solutionwill have aprobability
to survive by being assigned with a positive fitness value, but a solution with a smaller
OTWCV has a greater fitness value and hence has a higher probability to survive.
Illegal solutions are also allowed to survive but with lower fitness values than all
legal solutions in the current population. Finally, illegal strings that have more empty
clusters are assigned with smaller fitness values and hence have lower probabilities for
survival.

4.3 Phase 3: the mutation operator

The mutation operator is very useful for GCA to reach better solutions based on the
evolutional theory that offsprings produced by mutations might be superior to their
parents. More importantly, the mutation operator performs the functionality of
shaking the algorithm out of a local optimum and of moving it towards the global
optimum (Rudolph, 1994).

Given a solution Sz = (c1 . . . cN , t1 . . . tN ), the mutation operator mutates each
allele ci or ti to new values k1 and k2 simultaneously (might be equal to citi), where
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k1 and k2 are numbers randomly selected from (1, 2, . . ., K) with probability MP
respectively and independently where 0 < MP < 1 is a parameter called theMutation
Probability which is specified by the user. To define the probability mass function of
mutation, we firstly define the closeness measurement between cortical voxels

−→
Xi and

cortical cluster Ck1 as

CS(−→Xi,−→µk1) =
K

max
k=1

{d(−→Xi,−→µk)} − d(−→Xi,−→µk1),

where d(−→Xi,−→µk1) is the Euclidean distance between cortical voxel
−→
Xi and the centroid

−→µk1 of the k1th cortical cluster.
The closeness measurement between thalamic voxel Yi and thalamic cluster Ck2 is

defined by

TS(−→Yi ,−→νk2) =
K

max
k=1

{d(−→Yi ,−→νk )} − d(−→Yi ,−→νk2)

where d(−→Yi ,−→νk2) is the Euclidean distance between thalamic voxel
−→
Yi and the centroid

−→νk2 of the k2th cluster on thalamus.
During mutation, we replace each allele citi by k1k2 for i = (1, . . ., N)

simultaneously where k1 and k2 are selected from (1, . . ., K) with the probability
distribution (p11, p12, . . ., pk1k2 , . . ., pKK) in which

pk1k2 =
CS(−→Xi,−→µk1) + CS(−→Xi

′,−→µk2) + TS(−→Yi ,−→νk2) + TS(−→Yi
′,−→νk1)∑K

k1=1
∑K

k2=1(CS(−→Xi,−→µk1) + CS(−→Xi
′,−→µk2) + TS(−→Yi ,−→νk2) + TS(−→Yi

′,−→νk1))
.

The distance between a voxel and an empty cluster is defined to be 0 to increase the
chance of converting an illegal solution to a legal one. The above mutation operator
is defined such that

1
−→
Xi and

−→
Yi might be reassigned randomly to each cluster with a positive

probability

2 the probability of changing allele value citi to a cluster number k1k2 is greater if−→
Xi and

−→
Yi are closer to the centroid of the k1th cortical cluster and the k2th

thalamic cluster.

The first property ensures that an arbitrary solution, including the global optimum,
might be generated by the mutation from the current solution with a positive
probability; the second property encourages that each

−→
Xi and

−→
Yi are moving towards

a closer cluster with a higher probability.

4.4 Phase 4: the K-means operator

In order to speed up the convergence process, we introduce the following K-means
operator based on the idea of the classical K-means algorithm (Han and Kamber,
2001). Even though there have been many genetic algorithms (Bhuyan et al., 1991;
Jones and Beltramo, 1991) that may converge to the global optimum because of
mutation operator, they employed either an expensive crossover operator to generate
valid child chromosomes from parent chromosomes or a costly fitness function or
both (Krishna and Murty, 1999). To address this issue, GCA hybridises the genetic
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algorithm with k-means operator and replaces crossover operator, resulting in an
algorithm that combines the effectiveness and simplicity of k-means and robustness
of GA. In addition, We treat illegal solutions and legal solutions separately.

For an illegal solutionSz = (c1 . . . cN , t1 . . . tN ), we replace each citi by new values
k1k2 for i = 1, . . ., N simultaneously, where k1 and k2 are numbers selected from
(1, 2, . . ., K) such that the value returned by the following τ function is minimised.

τ(k1, k2) = d(−→Xi,−→µk1) + d(
−→
X ′

i,
−→µk2) + d(−→Yi ,−→νk2) + d(

−→
Y ′

i ,−→νk1).

The distance between a voxel and an empty cluster centroid is defined to be 0
with the effort to convert an illegal solution to a legal one. For a legal solution
Sz = (c1 . . . cN , t1 . . . tN ), we replace each citi by new values kk for i = 1, . . ., N
simultaneously, where k is a number selected from (1, 2, . . ., K) such that the value
returned by the following λ function is minimised:

λ(k) = d(−→Xi,−→µk) + d(
−→
X ′

i,
−→µk) + d(−→Yi ,−→νk ) + d(

−→
Y ′

i ,−→νk ).

Here, we replace citi to the same new cluster number to reduce cross-connectivity cost.

5 Experimental results

In this section, first, we present how we acquire the datasets based on medical imaging
techniques; second, we provide our study of the convergence performance of GCA;
and finally, we present our 3-D visualisation of the analysis results.

5.1 Image acquisition and data preprocessing

MRIdatawas acquiredonaGE1.5TeslaSignaunit (GEMedical Systems,Milwaukee,
Wisconsin). Initially the DTI sequence consists of an image volume with no diffusion
weighting (b = 0 s/mm2) followed by the acquisition of image volumes in six gradient
directions ([1, 0, 1], [−1, 0, 1], [0, 1, 1], [0,−1, 1], [1, 1, 0], [1,−1, 0]) with a b-value of
1000 s/mm2. For each b-value and gradient direction, six images were acquired and
magnitude averaging was used to avoid artifacts from subject motion.

In order to test the performance of an automated source/target definition
procedure for the creation of fibre tracts connecting different parts of the brain, we
have designed a prototype software environment, which allows the coregistration
of each of the seven gradient volumes obtained from the DTI acquisition sequence
independently to a high-resolution SPGR image volume. Independent coregistration
of each gradient volume is often necessary due to patient motion. Moreover, the
gradient image volumes are resampled in order to match the resolution of the SPGR
image volume. Subsequently, fibre tracts were calculated based on the direction of the
principal eigenvector in each image voxel. The calculation of fibre tracts requires the
following constraints:

1 fibre tracts originate only from those voxels with an FA value of > 0.2

2 tracking is terminated when it reaches a voxel with FA < 0.2

3 the fibre tract is terminated when the deviation between adjacent eigenvectors is
larger than 75 degrees.
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Moreover, theFractionalAnisotropy (FA) andApparentDiffusionCoefficient (ADC)
of each fibre tract are calculated as follows:

FA =

√√√√(
3

3∑
i=1

(λi − λmean)2
)/(

2
3∑

i=1

λ2
i

)

ADC =

(
3∑

i=1

λi

)
/3

whereλi is the eigenvalue calculatedonavoxel-by-voxel basis fromtheStejskal-Tanner
equation (Stejskal and Tanner, 1965). The FA is based on the normalised variance
of the eigenvalues and shows the differences between an isotropic diffusion (where
the diffusion tensor is represented by a sphere) and a linear diffusion (‘cigar-shape’
ellipsoid). Its range is between 0 and 1 with 0 representing an isotropic diffusion and
1 representing a highly directional diffusion. Finally, ADC equals the mean eigenvalue
and characterises the diffusivity of an image voxel. All fibre tracts that originate
in a source volume can be displayed and inspected in the 3D space. Figure 4 shows
a representative rendering of a portion of fibre tracts obtained using tracking of fibres
within a brain.

Figure 4 Fibre tracts detected with diffusion tensor imaging data. Fibres (red) are shown
relative to a sagittal cut through a T1-weighted MR image volume. Fibre end points
on the cortical surface are rendered as white dots (see online version for colours)

5.2 GCA convergence performance evaluation

Our experiments were conducted on a Dell Dimension 8200 PC machine with 2.4
GHz CPU and 512M RAM. GCA was implemented in C with Microsoft Visual
Studio. As GCA has very fast convergence speed (within 10 minutes for running
80 generations), no large generation number G is required for reaching a convergence
value. Therefore, we only need to focus on the effect of each operator and other two
parameters on our coclustering results. In each case, GCA was run for ten times and
the average values were recorded in Figures 5 and 6.
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5.2.1 Effects of K-means on GCA’s convergence performance

Figure 5(a) and (b) shows the effects of K-means operator on GCA’s convergence
performance. Figure 5(b) is a zoom-in version of Figure 5(a) without case 3 that
is described below. In this study, we choose population size Z = 200, mutation
probability MP = 0.1, and generation number G = 80. We compare four cases:

1 case 1: GCA with illegal solutions elimination during the selection phase

2 case 2: GCA without the mutation phase

3 case 3: GCA without the K-means phase

4 case 4: GCA with all phases.

Figure 5 (a) Effects of K-means on GCA’s convergence performance and (b) effects
of selection and mutation on GCA’s convergence performance (see online version
for colours)

Figure 6 (a) Effects of population size on GCA’s convergence performance and (b) effects
of mutation probability on GCA’s convergence performance (see online version for
colours)

As shown in Figure 5, GCA with all the phases has the best convergence performance
after 80 generations with OTWCV of 328520.6199. The K-means operator is critically
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important for the convergence ofGCAsincewithoutK-means,GCAhardly converges
and ends upwith the largest OTWCVvalue of 5868383.83 among the four cases, which
is 17 times greater than the convergence of the best case – GCA with all phases.

5.2.2 Effects of selection on GCA’s convergence performance

Figure 5(b) shows the effects of the selection phase on GCA’s convergence
performance. It demonstrates the benefits of allowing illegal solutions to survive with
low probabilities. First, this strategy avoids additional computational overhead for
eliminating illegal solutions. Second, it increases the convergence speed and improves
the time performance of the algorithm. Finally, such a strategy promotes the chance
of converting illegal solutions to legal ones, which might lead to the best solution after
mutation andK-means phases. Figure 5(b) shows if illegal solutions elimination is not
part of the selection phase, then after 80 generations, GCA converges to the OTWCV
value of 411885, which is worse than case 2 and case 4.

5.2.3 Effects of mutation on GCA’s convergence performance

Figure 5(b) shows that the mutation phase improves the convergence performance
of GCA. In particular, after 80 generations, the OTWCV value derived by the GCA
without the mutation phase is around 14% greater than the one derived by the GCA
with all phases. The reason is that the mutation phase performs the functionality
of shaking the algorithm out of a local optimum and of moving it towards the
global optimum. In our experiment, the curve for the GCA without the mutation
phase remains a fixed value after reaching a turning point (between 388537.2691 and
395949.7706), while the curve for the GCA with all phases continues to converge to a
much smaller OTWCV value of 328520.6199.

5.2.4 Effects of population size on GCA’s convergence performance

Figure 6(a) illustrates how the population size affects the convergence performance
of GCA. Specifically, there are five curves with MP = 0.1 and G = 80, each curve
varies on the value of Z. Our experiments showed that tuning the value of Z has
no distinct effects on the convergence speed and all of the five curves remain similar
shapes. However, it significantly changes the convergence values, from 449419.6154
(Z = 30) to 448844.382 (Z = 50), and then OTWCV reduces to 328520.6199 when Z
is equal to 200. After that, the convergence value rises up from 406181.9956 (Z = 220)
to 412310.9311 (Z = 300) within 80 generations. Afterwards, the computation time
become gradually intolerable as Z increases.

According toGrefenstette (1986), Goldberg et al. (1992a, 1992b) and Smith (1993),
for a fixed number of generations of genetic algorithm, there exists an optimal
population size under which the algorithm has the best convergence performance;
therefore, larger population size does not necessarily imply better convergence
performance. This explains our observation that the convergence performance is better
for a population of 200 than a population of 300.

5.2.5 Effects of mutation probability on GCA’s convergence performance

Figure 6(b) illustrates the effects of mutation probability on the convergence
performance of GCA. Five curves are drawn with Z = 100 and G = 80, each curve
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varies on the value of MP. Obviously, the shape of the curve with MP = 0.8 is not as
smooth as any other curves. It is because when mutation probability is relatively high,
OTWCV may drop down sharply in one generation, although the convergence value
does not fall into the lowest within 60 generations. As MP increases from 0.01 to 0.1,
the convergence value tends to decrease from 448677.5381 to 377731.778663 and then
to 328520.619907, which is the best convergence value we observed so far. After that,
as MP continues to grow to 0.5, OTWCV begins to increase to 527926.9647, being
apart from the best convergence value.

5.3 3-D visualisation of the GCA results

The number of thalamic nuclei varies with the histologicalmethods employed.Here we
partition the thalamus into seven clusters, and five of them can be automatically
identified, which correspond to five functionally defined nuclear groups: Medial
Dorsal nucleus (MD), Lateral Geniculate Nucleus (LGN),Medial Geniculate Nucleus
(MGN), Ventral Lateral nucleus (VL), Ventral Anterior nucleus (VA). Figure 7
shows segmentation of the thalamus based on the connectivity of thalamic voxels
to different cortical projection areas. Using the proposed coclustering method we
were able to identify thalamic voxels belonging to the MD, which project towards
areas of the frontal lobe (e.g., cingulate gyrus) via the anterior thalamic peduncle.
Thalamic voxels comprising both the VL and VA could be clustered based on their
projection (via the superior thalamic peduncle) to the primary motor cortex (M1) as
well as premotor cortex (PMC). Moreover, thalamic voxels representing the LGN
were clustered according to their posterior projections to the occipital cortex via the
optical tract. Finally, voxels in the thalamus representing theMGN could be identified
through their projections to the middle and superior gyri of the temporal lobe via the
temporopontine tract.

Figure 7 Segmentation of the thalamus based on projection areas of thalamic nuclei to the
cortex. Strong connectivity between thalamic voxels and the cortex could be
determined for the Medial Dorsal nucleus (MD), Lateral Geniculate Nucleus
(LGN), Medial Geniculate Nucleus (MGN) as well as for both the Ventral Lateral
nucleus (VL) and Ventral Anterior nucleus (VA) (see online version for colours)

The confirmation of our results was obtained through visual comparison of the
obtained thalamic cortical projections to well-known Brodmann areas of the cortex.
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Brodmann areas represent region of the cortex defined based on in vivo tissue
staining which have been shown to roughly delineate functionally distinct areas
of the cortex. As the various thalamic nuclei connect to different functional areas
of the cortex, results of the GCA can be then judged on how well the projection
areas of thalamo-cortical fibre tracts overlap with the corresponding Brodmann areas
which have been independently identified on the cortical surface based on their
spatial relationship to cortical landmarks. As an example, the following Brodmann
areas in Figure 8 were considered: B46 – dorsolateral prefrontal cortex (DLPFC),
B04 – primary motor cortex, B06 – supplementary motor cortex, B01 – primary
somatosensory cortex, B07 – somatosensory association cortex, B17 – primary visual
cortex and B18 – visual association cortex. Figure 8 shows the superior thalamic
peduncle (green) projecting to B04 and B06 which are colour-coded on the cortical
mesh. Similarly, the optical tract (dark blue) projects to B17 and B18. Finally, the
anterior thalamic peduncle (orange) represents fibres originating from the MD and
projecting partly to B46. Although short of an exact mathematical validation, these
results indicate that our coclustering algorithm is consistent with anatomical data and
warrants the application of this method in subsequent more clinically oriented studies.

Figure 8 The left panel shows the spatial relationship of thalamo-cortical fibre tracts with
respect to finite cortical surface elements derived using landmark-constrained
conformal mapping (Zou et al., 2006). Sets of finite elements were assigned to
multiple Brodmann areas based on their spatial proximity to easily recognised
cortical landmarks such as the central sulcus, sylvian fissure and the parieto-occipital
sulcus. The right panel shows a superior view of the cortex with Brodmann areas
colour-coded bilaterally. The validation of our clustering results was achieved by
comparing the overlap between fibre projection areas (white circles) and
independently defined Brodmann areas (see online version for colours)

6 Conclusions and future work

In this paper, we defined the coclustering problem and developed a coclustering
algorithm, the Generic Coclustering Algorithm (GCA), which we then applied to the
in vivo analysis of thalamo-cortical connectivity patterns. Our results showed that our
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algorithm is able to segment the thalamus into seven thalamic nuclei groups based on
their connection to functionally distinct cortical areas.

Although the coclustering problem is motivated by the need to assess
thalamo-cortical connectivity patterns, we expect that it will have a wide range of
applications. For example, in social science, our coclustering technique might be used
in identifying social communities, in which husbands and wives can belong to the same
or different social communities. Moreover, we anticipate that GCAmight be useful in
bioinformatics, where it can be used to identify families of transcription factors and
their corresponding binding sites in the upstream promoter regions of genes.
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