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Abstract— Human-robot interaction (HRI) is a rapidly grow-
ing field that encompasses social and industrial applications.
Machine learning plays a vital role in industrial HRI by
enhancing the adaptability and autonomy of robots in complex
environments. However, data privacy is a crucial concern in
the interaction between humans and robots, as companies need
to protect sensitive data while machine learning algorithms
require access to large datasets. Federated Learning (FL) offers
a solution by enabling the distributed training of models without
sharing raw data. Despite extensive research on Federated
learning (FL) for tasks such as natural language processing
(NLP) and image classification, the question of how to use FL
for HRI remains an open research problem. The traditional FL
approach involves transmitting large neural network parameter
matrices between the server and clients, which can lead to
high communication costs and often becomes a bottleneck
in FL. This paper proposes a communication-efficient FL
framework for human-robot interaction (CEFHRI) to address
the challenges of data heterogeneity and communication costs.
The framework leverages pre-trained models and introduces
a trainable spatiotemporal adapter for video understanding
tasks in HRI. Experimental results on three human-robot
interaction benchmark datasets: HRI30, InHARD, and COIN
demonstrate the superiority of CEFHRI over full fine-tuning
in terms of communication costs. The proposed methodology
provides a secure and efficient approach to HRI federated
learning, particularly in industrial environments with data pri-
vacy concerns and limited communication bandwidth. Our code
is available at https://github.com/umarkhalidAI/
CEFHRI-Efficient-Federated-Learning.

I. INTRODUCTION

Human-robot interaction (HRI) is a rapidly growing field
encompassing social [1] and industrial applications [2], [3].
In social settings, HRI involves interactions for entertain-
ment, education, therapy, and personal assistance [4]. Con-
versely, Industrial HRI focuses on collaboration between hu-
mans and robots in industrial environments. Comprehending
Industrial HRI is vital for the design and utilization of secure
and efficient robotic systems in industrial environments,
ultimately leading to increased productivity and optimized
interaction between humans and robots. In the context of
Industrial HRI, machine learning plays a crucial role in
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facilitating the adaptability of robots to ever-changing and
intricate industrial environments [5]. This enhances their
capability to execute tasks precisely and autonomously, while
also reducing the potential for accidents and harm to human
workers.

Regarding the interaction between humans and robots in
industrial settings, data privacy is an essential concern as
companies need to protect sensitive data while machine
learning algorithms often require access to large datasets to
make accurate predictions [6]. Federated Learning (FL) [7]
offers a solution by enabling distributed training without
sharing raw data. FL ensures privacy while improving
human-robot interaction and productivity. Despite its poten-
tial, FL faces challenges in remote locations with limited
bandwidth, hindering communication and data transfer, im-
pacting its widespread deployment and effective utilization
[8]. The substantial communication costs in FL due to
parameter/data transmission between clients and servers also
present a bottleneck.

Our Approach. To address the FL communication cost
challenge, we propose a communication-efficient Feder-
ated Learning (FL) framework for Human-Robot Interaction
(HRI) action recognition, named CEFHRI. We leverage pre-
trained video models and fine-tune a carefully designed
adapter specifically for video understanding on HRI datasets.
The CEFHRI framework addresses challenges related to data
heterogeneity [9] and large communication costs in HRI. The
study is the first to investigate communication efficiency in
FL for video understanding in the context of HRI. The key
contributions of this study can be summarized as follows:

• This paper offers a pioneering study that systematically
explores the effects of pre-training in the context of
human-robot interaction (HRI) through FL.

• The study introduces a parameter-efficient fine-tuning
framework, CEFHRI, within the Vision Transformer
architecture. CEFHRI addresses challenges of data het-
erogeneity and large communication costs by using a
light-weight trainable spatiotemporal adapter.

• Furthermore, the proposed CEFHRI framework is eval-
uated for preserving model privacy on the server while
achieving efficient transfer learning.

• The proposed methodology is suitable for industrial
environments prioritizing data privacy and facing com-
munication and bandwidth constraints, providing a
communication-efficient alternative for HRI federated
learning. It can also be extended to other FL scenarios
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Fig. 1: Methods to fine-tune the pre-trained model (a) Full fine-tuning trains all the parameters of the pre-trained model. (b) Linear probing only fine-tunes
the penultimate linear layer (c) Fine-tunes the bias term along with the penultimate layer. (d) Prompt tokens are concatenated with the input tokens, where
prompt tokens are fine-tuned with the linear classifier layer. (e) Adapters are added to each layer of the model, where only the adapters and penultimate
linear layers are fine-tuned.

involving video understanding tasks.

II. RELATED WORK

a) Industrial Human-Robot Interaction: In recent
years, industrial human-robot interaction (HRI) has emerged
as a prominent research field, attracting considerable inter-
est [10], [11]. However, there are a limited number of studies
that have explored the computer vision domain specifically
action recognition in industrial HRI settings [12]. One study
by Huang et al. [13] proposes a model for gesture recog-
nition that uses Convolutional Neural Networks (CNNs) to
recognize hand gestures performed by human workers in
industrial environments. Rizzi et al. [14] explores the use of
deep learning to improve the performance of robotic grasping
in industrial environments, by training a model to predict the
optimal grasp point for objects based on visual cues. [15]
applied deep learning using a combination of convolutional
and recurrent neural networks to improve the perception of
robots in an industrial setting, enabling them to recognize
and locate objects on a conveyor belt.

b) Efficient Fine-Tuning: [16] proposes a novel struc-
tured pruning method for parameter-efficient fine-tuning
that preserves important network structures while discarding
unimportant connections. [17] realizes transfer learning in
NLP tasks with adapter modules, which adds a few trainable
parameters per task while keeping the backbone frozen.
Some recent works [18]–[20] extend the adapter design to
use the image foundation models for video understanding.
[21], [22] propose prompt tuning for adapting language
models. In the visual domain, [23] introduces visual prompt
tuning as a highly efficient and effective approach for large-
scale Transformer models in vision. Another efficient fine-
tuning alternative is bias-tuning [24], [25] which is a sparse
fine-tuning method that only fine-tunes a subset of the bias
terms of the model during training.

c) Federated Learning: Federated learning is an inno-
vative machine learning technique enabling model training

across numerous decentralized devices or servers, all while
avoiding the need to transfer data to a central server [26],
[27]. Until now, FedAvg [26] has been widely considered
the primary benchmark for federated learning. In FedAvg,
the weight aggregation is performed by averaging the model
weights obtained from different devices. FedAvg works well
when the data is homogenous. However, in heterogeneous
environments, the global model that is suitable for all clients
faces convergence challenges. FedProx[28], FedAdapt [29],
[30], FedNova [31] and SCAFFOLD [32] are some en-
hancements proposed to FedAvg which have attempted to
develop modified versions of the algorithm that can handle
non-IID data. In our evaluation, we establish that FedAvg
has the tendency to achieve satisfactory performance in the
heterogenous environment given a pre-trained foundation
model.

Although there are some recent works on FL for HRI [33],
[34], no study has yet explored HRI for action recognition.
Our research constitutes the initial investigation into the
video understanding of HRI within Federated Learning (FL)
settings. Additionally, this study serves as a fundamental
basis for the utilization of parametric-efficient fine-tuning in
conjunction with pre-trained models for the purpose of video
comprehension within FL.

III. EFFICIENT FEDERATED LEARNING FOR HUMAN
ROBOT INTERACTION RECOGNITION

A. Federated Learning in HRI Action Recognition

Industrial HRI action recognition is a multi-class classifi-
cation task where, given T training samples of a video dataset
XT = {(xt, yt)

T
t=1}, with y ∈ {0, 1, .., C−1} for C classes,

the goal is to achieve accurate classification on a set of
unseen videos Xu = {x1, ..., xM}, where M is the number
of videos in the test set. To set up the HRI recognition task
in the FL setting, we assume a system of N clients that can
coordinate with the centralized server without sharing their



local data. Further, let X be a subset of Rp representing
the instance space, Z a subset of Rd denoting the latent
feature space and Y a subset of R representing the output
space. The server model F , parameterized by Θ := [θf ;θp],
comprises two components: a feature extractor f : X →
Z parameterized by θf , and a predictor p : Z → ∆Y

parameterized by θp, where ∆Y is the simplex over Y .

In each communication round, the server randomly selects
a subset of available clients Sr ∈ [N] with |Sr| = n
and broadcasts the model to all clients. The clients, upon
receiving the model from the server, perform several steps
of stochastic gradient descent (SGD) updates on their local
training data Tk ⊂ XT , obtain the updated model, and send
their model parameters Θ := [θf

k ;θ
p
k]

n
k=1 back to the server.

Assuming the global model is initialized by F (Θ), the
clients minimize their loss in each round r using SGD
training as follows:

min
Θ

F
(r)
k (Θ) =

1

|Tk|

|Tk|∑
t=1

ℓk(Θ, xt), (1)

where ℓ is the loss function, r is the communication round,
and |Tk| represents the number of the training samples of
the kth client. The server collects all the parameter updates
from clients and conducts model averaging as [26]

Θ(r+1) =

n∑
k=1

|Tk|∑n
i=1 |Ti|

Θ
(r)
k . (2)

This parameter exchange between the clients and server goes
on from r = 0 to r = R − 1 until the convergence of the
global model.

B. Problem definition

As stated in Section III-A, the global model convergence
in FL is accomplished after several rounds of parameter
exchange between the local nodes and the global server.
The procedure is repeated for r rounds. In this paper, we
let C represent the communication cost associated with the
FedAvg baseline. This cost is directly related to the number
of parameters shared by the clients as C ∝ |θ| · |Sr|,
where θ ⊆ Θ the parameters that need to be transmitted.
We aim to minimize C without an accuracy drop for the
HRI recognition task. As the communication cost is directly
related to the number of trainable parameters, one intuitive
method is to freeze the backbone θf and only train the
penultimate linear layer θp. However, the drawbacks of linear
probing in terms of performance, which will be discussed in
Section IV-B, have prompted us to introduce our federated
learning framework for human-robot interaction recognition
(CEFHRI) which keeps tunable parameters, θ << Θ using
Vision Tansformers [35].

C. Proposed Framework

In this section, we provide a succinct overview of the
Vision Transformer (ViT) and its application in the video
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Fig. 2: The adapter design of the proposed CEFHRI framework. The
adapter is inserted in the ith layer of the backbone model while keeping
other blocks frozen.

understanding task of FL followed by an introduction to
spatial-temporal adaptation. We further discuss the utility of
such adaptation to preserve server privacy.

a) Overview: The transformer architecture [35] has
been extensively utilized in vision applications such as
video surveillance and action recognition. In this work,
we investigate the role of FL in recognizing human-robot
interaction which is another video understanding task. To
this end, we introduce CEFHRI, an FL framework that
employs the vision transformer for efficient decentralized
HRI learning. Within the CEFHRI framework, the local
and global models are customized by inserting an adapter
module. Taking inspiration from the adapter design in [19],
[36], we propose a variant of spatio-temporal adapter [19]
architecture, called the ST-Adapter specifically designed for
a video pre-trained model.

b) Adapter Design: The designed adapter architecture
allows for the preservation of both the spatial and temporal
characteristics of videos, while simultaneously facilitating
efficient fine-tuning. The present discourse will concentrate
on creating adapters for deep transformer backbones. In
particular, we have introduced a depth-wise 3D convolu-
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Fig. 3: (a) CEFHRI with client data privacy. (b) CEFHRI with server
model privacy



tion layer in a standard configuration, placed between the
bottlenecks of the vanilla adapter [36] and parallel to the
MLP block. The visual representation of this arrangement is
depicted in the accompanying Fig. 2.

Since the ST-Adapter branch is inserted alongside the
MLP block, we term the adapted MLP block as the ST-
adapted MLP and its output as X3D. The 3D branch will
transform the features in the subsequent manner:

X̃i = γ · ((DWConv3D(NL(X̂i) · WDOWN )) ·WUP ) (3)

where DWconv3D represents the depth-wise 3D-
convolution. Here, γ is a tuneable parameter to
scale the adapter output as in [36]. Before applying
DWConv3D, the features are reshaped from X′

i ∈ RN×d̂

to X′′

i ∈ RD×H×W×d̂, where X′
= NL(X̂i). X̃i features are

then fused with the MLP branch output features to generate
X3D,

X3D
i = MLP(NL(X̂i)) + X̃i (4)

Further, X̂ features are fused with X3D using a residual
connection as following,

Xi = X3D
i + X̂i (5)

We provide a detailed comparison of the proposed adapter
design with other parametric-efficient finetuning techniques
in Section IV-B under various FL settings. We further
evaluate the existing adapter designs from the literature in
Section V.

Algorithm 1 The CEFHRI Framework

Server: initialize the foundation model F parametrized by
Θ, and the compressed model F c with Θc

Clients: fetch the compressed model weights Θc, and ini-
tialize the tunable adapter weights, θ
Require: N clients, sampling rate R ∈ (0, 1], communication
round budget R, shared weight θ ⊆ Θ.

for each round r = 0, 1, 2, ..., R− 1 do
Sr ← Server samples |S| clients from N clients

Client update (k,Θc,θ(r)):
for each client k ∈ Sr do

Fk ← {Θc,θ
(r)
k }

training Fk by SGD on Dk for E epochs
θ
(r+1)
k ← θ

(r)
k − η∇Fk

return θ
(r+1)
k to server

Server executes:
for each client k ∈ Sr do

θ
(r+1)
k ← ClientUpdate(k,Θc,θ(r))

θ(r+1) ← aggregate updated parameters θ
(r+1)
k by

clients as in Eq. 2

c) Server-Side Privacy: We have additionally expanded
the applicability of the proposed adapter design to a situation
wherein the foundation model owner, i.e., the server is
precluded from disclosing their model to the data owner [37].
To overcome this challenge, we devise a strategy to fine-tune

the proposed adapter on the data owner’s dataset without
accessing the complete pre-trained model weights. In order to
safeguard model ownership while simultaneously enhancing
efficiency, we have implemented a technique known as lossy
compression on the frozen backbone model as shown in
Fig. 3. We leverage the findings of [38] which reveal that the
discriminative information crucial for accurate classification
is predominantly captured within the class tokens of the
final few blocks. Specifically, we have selectively dropped
a few layers from the model to produce a compressed
variant, an adapter counselor, F c with parameters Θc such
that Θc < Θ. The purpose of utilizing F c is to furnish
approximate gradient directions to update the adapters, while
simultaneously maintaining similarity to the original frozen
component weights, Θ. Nonetheless, it is imperative that the
F c precision be restrained, as a higher degree of accuracy
could potentially divulge information regarding the original
model. Furthermore, a smaller F c size facilitates a more
efficient fine-tuning process for downstream users. We report
our results for various compression ratios in Section V. The
outline of the proposed framework with client data privacy
and server model privacy has been described in Algorithm 1.

IV. EXPERIMENTS

We evaluate CEFHRI for downstream human-robot in-
teraction task across a wide range of FL settings. The
experimental setup is described in Section IV-A, and the
effectiveness of CEFHRI is demonstrated in Section IV-B.

A. Experiment Setup

a) Architecture and Datasets: In our experiments, we
use Kinetics-400 [39] dataset for pre-training. For the down-
stream FL task, we select three datasets with varying de-
grees of domain gap as compared to Kinetics-400: (i)
InHARD [40], (ii) HRI30 [12] and (iii) COIN Dataset [41].
We adopted experimental settings from [36], [42]. We use
plain ViT-B/16 [35] with supervised pre-train weights from
VideoMAE [42] official repository, where pre-trained check-
points on Kinetics-400 [39] dataset are publicly available.
An extra BatchNorm layer [43] without affine transformation
is inserted before the penultimate layer as in [36]. For all
datasets, we use 8 frames with a temporal stride of 4. The
tubelet size is set to 2 as in VideoMAE’s default settings
[42]. The VideoMAE codebase includes a downsampling
layer that converts original frames based on the tubelet size
ratio. Hence, the final number of tokens for the transformer
block is 4 × 14 × 14, where 4 is the downsampled number
of frames while the original input video has 8 frames.

b) Evaluation Metrics: We compare the proposed
CEFHRI with four commonly used fine-tuning baselines:
(1) Full Fine-tuning, (2) Linear Probing (fine-tuning
classification head only), (3) Bias-Tuning, and (4)
Prompt-Tuning. Here full fine-tuning indicates that all
the parameters of the foundation model are fine-tuned
on the downstream dataset. Linear probing indicates that



TABLE I: Human-robot interaction action recognition performance in terms of % accuracy under FL settings where maximum communication rounds,
R = 40. All results represent the HRI recognition accuracy for different FL settings across three datasets. Here, N and |Sr| indicate total clients and
sampled clients respectively.

Clients Method COIN InHARD HRI30
α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

N = 16, |Sr| = 16

Full Fine-Tuning 46.1±0.1 46.9±0.1 47.3±0.2 81.3±0.2 82.4±0.1 83.2±0.1 76.2±0.2 81.5±0.1 87.2±0.1
Linear Probing 33.4±0.1 34.1±0.1 34.4±0.2 44.7±0.2 51.2±0.4 55.6±0.1 35.1±0.1 36.6±0.1 42.6±0.2

Bias-Tuning 33.7±0.1 34.6±0.1 34.8±0.1 47.5±0.2 54.2±0.1 60.6±0.1 45.7±0.1 48.8±0.1 50.1±0.2
Prompt-Tuning 36.1±0.1 36.9±0.1 37.1±0.2 69.8±0.1 70.6±0.3 71.1±0.1 67.6±0.1 72.4±0.1 75.8±0.2

CEFHRI 44.6±0.1 45.1±0.1 45.8±0.3 80.6±0.1 81.3±0.1 82.1±0.3 73.6±0.1 81.2±0.1 85.8±0.2

N = 16, |Sr| = 4

Full Fine-Tuning 38.8±0.3 43.9±0.1 45.2±0.3 73.56±0.2 74.4±0.1 77.2±0.1 73.8±0.1 82.6±0.1 85.1±0.2
Linear Probing 29.4±0.3 32.6±0.2 32.9±0.3 33.3 ±0.2 38.8±0.1 42.6 ±0.1 39.6±0.1 35.6±0.1 34.8±0.2

Bias-Tuning 30.5±0.2 32.9±0.2 33.4±0.3 39.5±0.2 42.2±0.1 48.1±0.1 49.3±0.1 47.6±0.1 45.0±0.2
Prompt-Tuning 32.4±0.2 35.2±0.2 36.5±0.2 63.1±0.1 65.4±0.1 68.8±0.4 64.6±0.1 72.6±0.1 74.7±0.2

CEFHRI 38.6±0.1 43.1±0.1 44.2±0.2 72.9±0.2 73.3±0.3 76.5±0.1 73.2±0.1 80.6±0.1 81.5±0.2

only the penultimate linear layer is fine-tuned. Bias-
tuning [24], [44] aims to fine-tune only the bias parameters
for the downstream task while prompt-tuning [21], [23]
concatenates prompt tokens to the input embedding, where
each prompt token is a learnable d-dimensional vector.
The baselines are compared with CEFHRI with respect to
two evaluation criteria (i) Communication Efficiency, (ii)
Human-Robot Interaction recognition.

c) Training Settings: We distribute the training data
between clients based on the Dirichlet distribution (with α ∈
{0.1, 0.5, 1.0}) to achieve heterogeneous data partitioning
across clients. Lower α indicates a higher degree of data
heterogeneity [45]. In all experiments, we assume N = 16
clients are available, and we set the sampling rate to 25%,
and 100% which means either |Sr| = 4 or |Sr| = 16 in
each round. Each client performs E = 8 local epochs with
a batch size of 8 before global aggregation is performed for
R = 40 communication rounds. We keep the model weights
frozen during the fine-tuning of CEFHRI techniques. We set
γ = 2.5, while the bottleneck dimension, d̂ = 64 in our
default settings for the adapter. We followed the training
settings of [20] except the learning rate which we selected as
0.001. For prompt-tuning, the number of introduced tokens is
set to 8 based on optimal performance as mentioned in [36].
Any modification to the default settings will be clearly stated.

B. Main Results

The results reported in this section ensure the client’s data
privacy with the assumption that the client has an access to
the non-compressed version of the pre-trained model.

a) Human-Robot Interaction Recognition: Table I dis-
plays the interaction recognition results of the CEFHRI
framework. Our assessment shows that the CEFHRI frame-
work surpasses all other approaches, except for full fine-
tuning, across all datasets and FL configurations. As reported
in Table I, the CEFHRI framework achieves satisfactory
adaptation performance despite having significantly fewer
trainable parameters than full fine-tuning. Moreover, the
results presented in Table I indicate that irrespective of
the value of α, there is no substantial difference in the
performance gap for CEFHRI. This highlights the crucial
role of the pre-trained model in mitigating the impact of

heterogeneous data. These findings are in agreement with
recent studies conducted on image classification tasks [46],
[47].

b) Communication Cost: In this paper, we only con-
sider the uploading (i.e., from clients to server) communi-
cation cost, C, for FedAvg [26] baseline defined as C =
R × |θ| × |Sr|× 4B, where R stands for the total number
of communication rounds; |Sr| denotes the number of
participating clients, and |θ| ⊆ |Θ| represents the subset of
the total number of model parameters1 that are exchanged
between each client and server in each round, with each
parameter occupying 4 bytes (4B) of storage. With this in
mind, we report the communication efficiency results against
the pre-specified target accuracy for each dataset in Table II.
Upon comparison to full fine-tuning, it becomes evident that
the CEFHRI framework can achieve the target accuracy with
a significantly reduced communication cost of at least ≈
35× lower. Despite the linear probing approach having the
fewest tunable parameters, it falls short of attaining the target
accuracy for any of the datasets being examined. Fig. 4
further illustrates the performance vs cost tradeoff between
the baselines and CEFHRI. This suggests that the proposed
parameter-efficient fine-tuning prototype of the CEFHRI
framework is efficacious in mitigating communication over-
head, without compromising recognition performance.
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1Each dataset has different # of classes, so the # of model parameters are
different owing to varying linear classification head parameters.



TABLE II: The communication cost is computed with 4Bytes/parameter with N = S = 16, α = 0.5, and R = 40. The number in the bracket indicates
the target action recognition accuracy %. — indicates that the target accuracy is not achieved under that particular setting. Parameters are the trainable
parameters of each client. ↓ indicates smaller values are better.

Method COIN (45) InHARD (80) HRI30 (80)
Parameters (M)↓ Rounds↓ Comm. cost↓ Parameters (M) ↓ Rounds ↓ Comm. cost ↓ Parameters (M)↓ Rounds ↓ Comm. cost ↓

Full Fine-Tuning 86.36 20 5.39× 20 GB 86.23 14 5.38×14 GB 86.25 21 5.39×21 GB
Linear Probing 0.13 - - 0.01 - - 0.01 - -
Bias-Tuning 0.23 - - 0.10 - - 0.10 - -
Prompt-Tuning 0.20 - - 0.08 - - 0.09 - -
CEFHRI 1.33 35 85.12× 35 MB 1.20 38 76.80×38 MB 1.21 37 77.44×37 MB

c) CEFHRI vs Parametric Efficient Model: One
straightforward solution to reduce the communication cost
is to use tiny video networks such as the X3D-S model
[48]. Nevertheless, the architectures with low capacity are
incapable of achieving satisfactory performance even with
pre-training, as is evidenced in Table III. In particular, X3D-S
[48] could only achieve 30.8% HRI recognition performance
on HRI30 [12], while CEFHRI yields 84.6% accuracy for
α = 0.5. Our comprehension is that models with low
capacity are not effective in producing desirable perfor-
mance under data heterogeneity scenarios. Consequently, the
CEFHRI approach offers a practical remedy for mitigating
the decrease in performance while still keeping the commu-
nication cost as minimal as that of smaller models, such as
X3D-S, for the purpose of HRI recognition.

V. ABLATION STUDIES

a) Impact of Model Initialization: To demonstrate the
applicability of the pre-trained model in the CEFHRI frame-
work, we undertake a more in-depth examination of two
fundamental questions: (1) How does the model initialization
impact the industrial HRI action recognition performance in
FL settings? (2) To what extent can pre-training alleviate
the accuracy drop caused by the heterogeneity of data from
clients in the context of industrial HRI action recognition?

Our findings show that using a pre-trained model can
drastically improve the performance of industrial HRI ac-
tion recognition in FL. Fig. 5 demonstrates the significant
advantage of using a pre-trained model over training from
scratch for the InHARD [40], and HRI30 [12] datasets. It is
evident that the server achieves notable performance within a
fewer number of rounds. This is in contrast to random initial-
ization, which is unable to narrow the performance gap even
after 100 rounds for heterogeneous FL settings. Our results
indicate that using pre-trained models not only outperforms

TABLE III: Performance comparison with parameter-efficient model
X3D-S. Here, R = 40 , N = 16, and |Sr| = 4. All results represent
the averaged percentage accuracy of HRI recognition over several runs for
α = 0.5. ↑ indicates larger values are better and ↓ indicates smaller values
are better. # of parameters indicates the tunable parameters.

Dataset Architecture # of Parameters ↓ Accuracy(%) ↑

COIN X3D-S 3.34M 15.9±0.3
CEFHRI 1.33M 43.1±0.1

InHARD X3D-S 3.00M 26.9±0.1
CEFHRI 1.20M 73.3±0.3

HRI30 X3D-S 3.03M 30.8±0.1
CEFHRI 1.21M 80.6±0.1

random initialization but also effectively mitigates the data
heterogeneity effect in the industrial HRI action recognition
task.
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Fig. 5: FL results for the industrial HRI action recognition task reveal
the advantages of utilizing the pre-trained model. The figure illustrates that
employing a pre-trained model in FL saves communication costs while
achieving superior performance. Here, R = 100, N = 16, and |S| = 16.

b) Performance Gain of the Proposed Adapter Design:
CEFHRI adapter is different in design from [20] and distinct
in application from [19]. Firstly, the ST-adapter proposed
by [19] is specifically designed for frozen CLIP models,
and its effectiveness in FL has not been explored. Secondly,
the sequential implementation doesn’t maintain the original
features achieved by the frozen backbone. We argue that the
parallel design of the adapter maintains the original features
as the adapter branch is added parallel to the original MLP
block and only scaled feature aggregation is performed. As
shown in Table IV, our analysis indicates that the parallel
adapter structure outperforms the sequential design. As a
result, we use the parallel ST-adapter design by default for
the CEFHRI prototype, which distinguishes it structurally
from that of [36].

TABLE IV: Performance comparison with different adapter designs.
Here, R = 40 , N = 16, and |Sr| = 4. All results represent the
averaged percentage accuracy of HRI action recognition over several runs
for α = 0.5.

Dataset Adapter Design Accuracy(%)

InHARD
Adaptformer [36] 55.9 ±0.3

CLIP-Adapter [19] 52.1±0.1
CEFHRI-Adapter 73.3±0.3

HRI30
Adaptformer [36] 60.7 ±0.3

CLIP-Adapter [19] 57.1±0.1
CEFHRI-Adapter 80.6±0.1

c) Performance while Preserving Server Privacy: In
order to protect the privacy of the foundation model with
l layers, we implement a model compression strategy by



TABLE V: Performance comparison with different # of layers dropped.
Here, R = 40 , N = 16, and |S| = 4. All results represent the averaged
percentage accuracy of HRI action recognition over several runs for α =
0.5.

Dataset Layers Dropped Accuracy(%)

InHARD

1 72.3±0.3
2 71.8±0.1
3 70.1±0.1
4 67.3±0.1

HRI30

1 79.8 ±0.2
2 79.1±0.1
3 77.5±0.1
4 72.1±0.1

removing a specified number of layers, n from the ViT-
B/16 [35] model. The resulting compressed model is fine-
tuned using knowledge distillation, with mean square error,
under the supervision of the original model using Kinet-
ics400 [39] dataset for 20 epochs. The fine-tuned compressed
model is then distributed to the clients as a point of reference.
The clients then use this reference model to train the l − n
adapters, which are later inserted into the server model’s
last l − n layers. The results of our experiments indicate
that knowledge distillation was essential in attaining the
best performance. We also find that dropping the last n
layers produced superior results compared to dropping the
first n layers of the transformer model, which is consistent
with [38]. Therefore, the reported results in Table V are
generated using the strategy of dropping the last n layers
for model compression. Here, we can observe that as the #
of removed layers is more than 3, the performance drop is
significant.

VI. CONCLUSION

In this research, we present a new FL framework called
CEFHRI, which aims to improve the performance of human-
robot interaction recognition tasks in industrial settings
through the utilization of pre-trained video models. To
mitigate the communication overhead that is commonly
encountered in FL systems, the CEFHRI framework proposes
a parameter-efficient fine-tuning prototype. We conduct a
comprehensive evaluation of the CEFHRI framework by
comparing its performance against other baselines with re-
gard to both recognition for human-robot interaction and
communication cost. Our findings indicate that the CEFHRI
framework not only effectively addresses the communication
bottleneck issue but also outperforms other FL fine-tuning
techniques, such as linear probing and bias-tuning. Addi-
tionally, our results show that the proposed CEFHRI adapter
performs satisfactorily in scenarios where the downstream
dataset has a major domain shift compared to the pre-trained
dataset. In conclusion, our work sheds new light on the
potential for improving communication efficiency in FL for
video understanding tasks and lays the groundwork for future
advancements in this area.
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