
Coclustering Based Parcellation of Human Brain Cortex
Using Diffusion Tensor MRI

Cui Lin1, Shiyong Lu1, Danqing Wu1, Jing Hua1, and Otto Muzik2

1 Department of Computer Science, Wayne State University
{ cuilin, shiyong, dqwu, jinghua } @wayne.edu

2 PET Center at Children’s Hospital of Michigan, Radiology at Wayne State University
otto@pet.wayne.edu

Abstract. The fundamental goal of computational neuroscience is to discover
anatomical features that reflect the functional organization of the brain. Investiga-
tions of the physical connections between neuronal structures and measurements
of brain activity in vivo have given rise to the concepts of anatomical and func-
tional connectivity, which have been useful for our understanding of brain mech-
anisms and their plasticity. However, at present there is no generally accepted
computational framework for the quantitative assessment of cortical connectiv-
ity. In this paper, we present accurate analytical and modeling tools that can re-
veal anatomical connectivity pattern and facilitate the interpretation of high-level
knowledge regarding brain functions are strongly demanded. We also present
a coclustering algorithm, called Business model based Coclustering Algorithm
(BCA), which allows an automated and reproducible assessment of the connec-
tivity pattern between different cortical areas based on Diffusion Tensor Imaging
(DTI) data. The proposed BCA algorithm not only partitions the cortical mantel
into well-defined clusters, but at the same time maximizes the connection strength
between these clusters. Moreover, the BCA algorithm is computationally robust
and allows both outlier detection as well as operator-independent determination
of the number of clusters. We applied the BCA algorithm to human DTI datasets
and show good performance in detecting anatomical connectivity patterns in the
human brain.

1 Introduction

With ever-improving imaging technologies, the complexity and scale of brain imaging
data has continued to grow at an explosive pace. Recent advances in imaging tech-
nologies, especially that of Diffusion Tensor Imaging [1–3], have allowed an increased
understanding of normal and abnormal brain structure and function [4, 3]. It is well
understood that normal brain function is dependent on the interactions between spe-
cialized functional areas of the brain which process information within local and global
networks. Perhaps the most promising approach to parcelate the cerebral cortex into
such distinct functional areas originates from the notion that functionally discrete ar-
eas of the cortical mantel are characterized by cortico-cortical connectivity patterns,
which represent functionally integrated neural subsystems and determine the region’s
functional properties [5] and also allow their anatomical delineation and mapping.



At present, no generally accepted parcellation scheme exists for the human cortex,
although circumstantial evidence points to a distinct arrangement of functional terri-
tories within the cortex. As illustrated in Figure 1, most cortical voxels in one region
are strongly connected to a particular region of the cortex and the connections to any
other regions are relatively weaker. For example, most voxels on the top of the cortex
congregating in cortical region C2 are connected to voxels of cortical region C1, with
only few connections to other cortical regions. Therefore, in order to perform an accu-
rate in-vivo analysis of the cortico-cortical connectivity, what is needed is a partitioning
procedure that not only simultaneously partitions voxels into groups, but also identifies
the corresponding strong connectivities between the two classes of groups.

Traditional clustering algorithms [6–9] are suboptimal in incorporating anatomical
constraints and as a result will fail to identify accurately the corresponding connectiv-
ity between cortical regions. Moreover, our focus in this paper is to assess the neural
connections within a hemisphere (intra-hemispheric connections) sine these connec-
tions are relatively weak compared to the connections between the left and right hemi-
sphere, but represent crucial neural pathways which are abnormal in neurological dis-
ease. Consequently, we consider only clusters which connect cortical areas within one
hemisphere.
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Fig. 1. The coclustering process

The main contributions of this paper are:

1. We are the first to propose a new coclustering model for defining cortico-cortical
connectivity analysis as a computational problem.

2. Our BCA coclustering algorithm is able to define functional cortical areas based on
cortico-cortical fiber tract connections taking into account anatomical constraints.
In contrast to traditional clustering paradigms, the BCA algorithm is not only able
to partition image voxels within the cortical mantel into well-defined clusters, but
also is able to maximize the connectivity strength between such clusters. Moreover,
the BCA method is able to identify outliers as well as the number of cortical clusters
with high efficiency.

3. The application of the BCA algorithm to human DTI dataset allows automated and
reproducible assessment of the connectivity patterns in the human brain.



Organization. The rest of the paper is organized as follows: Section 3 formalizes the
coclustering model for the cortico-cortical connectivity analysis. Section 4 proposes our
coclustering algorithm, BCA, in order to assess fiber tract connectivity between remote
cortical areas. Section 5 presents 3-D visualization of the obtained results followed by
a discussion of the application in patient groups. Finally, Section 6 concludes the paper
and comments on future work.

2 Background and Related Work

The cerebral cortex sends connections (efferents) and receives connections (afferents)
from many subcortical structures, but the largest part of the connections arriving at the
cerebral cortex comes from the cerebral cortex itself. Assessing connectivity patterns
of cortico-cortical fiber tracts is important for our understanding of the mechanisms
involved in human brain functions and might provide clues towards the identification
and characterization of many neurological diseases.

Recently, Diffusion Tensor Imaging (DTI) tractography has been shown to produce
results that are consistent with known pathways formed by major white matter fiber
tracts in the human brain [10, 2], although limitations in data acquisition and process-
ing algorithms [11] related to clinical constraints produce data which cannot resolve
crossing or intersecting fibers. DTI is based upon the ability of MRI to evaluate in
vivo the direction and magnitude of water diffusion in tissues [2]. These attributes of
in vivo water diffusion depend upon microscopic tissue architecture [12]. Therefore,
changes in these parameters serve as markers for changes in tissue micro-architecture.
The principal eigenvector obtained from DTI provides information about the prefer-
ential direction of water diffusion in each imaging voxel. This direction corresponds to
the direction of the nerve fiber bundles, which predominantly constitute the given voxel.
Hence, different nerve fiber bundles can be identified and used to assess the integrity of
white matter tracts throughout the brain [13, 12]. Despite some success in delineating
functional cortical areas using DTI, a systematic framework allowing functional par-
cellation of the neocortex based on quantitative assessment of fiber tract connectivity
has not yet been produced, and the relationship among cortical territories, fiber tracts,
and neuronal connections remains controversial. Consequently, there is a need to fur-
ther develop advanced clustering algorithms that allow better characterization of brain
connectivity patterns and as a result improve our understanding of process interactions
in a complex biological system.

Traditional partitioning relocation clustering algorithms, such as the K-means [6],
K-medoids [7] are simple and efficient, however, their final results may be overly sen-
sitive to the initial cluster set and the presence of outliers. In addition, it is difficult
to implement when no information exists about the likely cluster number. Hierarchical
clustering algorithms [8, 14] do not require the number of clusters K as input, but they
require a termination condition. In addition, they do not support reclassification of ob-
jects to new clusters. Density-based algorithms [9, 15, 16] have good performance with
respect to noise handling and one-scan efficiency, but are suboptimal for the cortico-
cortical problem, as they do not consider the connectivity strength between clusters,



hence fail to identify accurately the corresponding strongest connectivity between cor-
tical regions.

Even though our first coclustering algorithm GCA [17] was effective in the analy-
sis of thalamo-cortical connectivity, it is not directly applicable to the cortico-cortical
connectivity problem as each fiber connects to two different cortical voxels. Direct ap-
plication of the GCA algorithm to cortico-cortical connectivity analysis might lead to
the following undesirable results: (1) the same voxel can be classified simultaneously
into several clusters, (2) two end voxels of a fiber tract might be classified into the same
cluster, and (3) two partitions of voxels given by GCA might be inconsistent and the
resolution of this inconsistency is not obvious.

3 The Coclustering Model

In this section, we present our coclustering model, which models the cortico-cortical
connectivity problem. The structure of the cerebral cortex and its cortical connections
is initialized as a graph G(V, F ), as illustrated in Figure 1, where V represents all
cortical voxels, and F represents all of the cortico-cortical connections between each
other.

Definition 1 (Outlier). Given a partition C of G(V, F ), C = {C1, C2, · · · , CK}, an
outlier is defined as:

o = {v|v ∈ V, ∀Ci ∈ C, v 6∈ Ci}

Definition 2 (Connection strength θ(Ci, Cj)). Given a cortical cluster Ci and Cj , the
connection strength between Ci and Cj is defined as:

θ(Ci, Cj) =
Nij

|Ci|
where Nij equals to the total number of connections between Ci and Cj .

Definition 3 (Spouse cluster). Given a partition P of G(V, F ), P = {C1, C2, ..., Ck},
SP (Ci) = {Cj |∀Ck ∈ P, θ(Ci, Cj) ≥ θ(Ci, Ck)}
Definition 4 (Cocluster set). < Ci, Cj > is called a cocluster set iff Cj is the spouse
cluster of Ci.

Example 1. In Figure 1, C2 is C1’s spouse cluster, they form a cocluster set coclusterA <
C1, C2 >, < C7, C1 > forms another cocluster set coclusterD. worth mentioning, the
two elements in a cocluster set are not commutative. thus, < Ci, Cj > does not neces-
sarily implies < Cj , Ci >. For instance, < C1, C7 > is an invalid cocluster set, because
only C2 can be identified as C1’s spouse cluster.

The goal of our coclustering procedures is to partition objects into groups while
minimizing the cross-connectivity costs between those groups. More specifically, the
coclustering procedures will separate objects into K groups so that (1) similar objects
are within the same group, while dissimilar objects are in different groups, (2) there is a
one-to-one correspondence /one-to-many correspondence between one cortical cluster



to another / other clusters; and (3) the total cross-connectivity cost between each cluster
and its non-spouse cluster is minimized.

To achieve the above goals, we define several notions. First, we define the centroid
of a cluster and its Within-Cluster Variation (WCV ) to quantify the similarity of objects
within one cortical cluster.

Definition 5 (Centroid). Given a cortical cluster Ck, its centroid −→µk is defined as:

−→µk =

∑
−→
Xn∈Ck

−→
Xn

|Ck|
where |Ck| represents the number of cortical voxels in cluster Ck.

Definition 6 (WCV). We define Within-Cluster Variation of cortical cluster Ck as:

WCV (Ck) =
∑

−→
Xn∈Ck

d(
−→
Xn,−→µk)

where d(
−→
Xn,−→µk) is the Euclidean distance between the cortical voxel

−→
Xn and the cen-

troid −→µk of cortical cluster Ck.

Second, we define the Total Within-Cluster Variation(TWCV) to quantify the quan-
tity of a particular partitioning.

Definition 7 (TWCV). The Total Within-Cluster Variation of a cortical partition (C1,· ·
·, CK) is defined as

TWCV (C1, · · · , CK)

=

K∑

k=1

WCV (Ck)

=

K∑

k=1

∑
−→
Xn∈Ck

D∑

d=1

(Xnd − µkd)2

=

K∑

k=1

D∑

d=1

Xnd

2 −
K∑

k=1

1

|Ck|
D∑

d=1

(SCFkd)2

where SCFkd
is the sum of the dth feature of all voxels in Ck.

Third, in order to minimize the cross-connectivity cost, for each cortical cluster, we
define the set of cortical voxels that are connected to it as its shaded cortical cluster.

Definition 8 (Shaded cluster). Given a cortical partition (C1, · · · , CK), the shaded
cluster SCk (k = 1, · · · ,K) is defined as:

SCk = {sc|sc ∈ C, ∀v ∈ Ck,∃v′ ∈ C, (v′, v) ∈ F, sc ∩ Ck = ∅}

Example 2. In Figure 2, all the cortical voxels that are connected to voxels in cortical
cluster C2 forms the shaded cluster SC1, while all voxels that are connected to the
voxles in cortical cluster C1 forms the shaded cluster SC2.
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Fig. 2. Shaded clusters

In an ideal coclustering, as CoclusterB, a shaded cluster should coincide with
the corresponding spouse cluster. However, this is not always the case in general. The
cross-connectivity cost can be characterized by the disagreement between shaded clus-
ters and spouse clusters and quantified by the Within-Cluster Variance of shaded clus-
ters with respect to their corresponding spouse clusters, called Shaded Within-Cluster
Variation(SWCV), that is defined as follows.

Definition 9 (SWCV). The Shaded Within-Cluster Variation(SWCV) of cortical clus-
ter SCk is defined as:

SWCV (SCk) =
∑

−→
X′n∈SCk

d(
−→
X ′

n,−→µk)

Note that, instead of using the centroid of SCk , the centroid of the Ck is used
to calculate SWCV (SCk). The intuition is that, in an ideal partitioning, the shaded
partition SC1, · · · , SCK should mostly coincide with C1 · · · CK .

Definition 10 (STWCV). The Shaded Total Within-Cluster Variation (STWCV ) of
cortical partition (SC1, · · · , SCK) is defined as:

STWCV (SC1, · · · , SCK) =

K∑

k=1

SWCV (SCk)

=

K∑

k=1

∑
−→
X′n∈SCk

D∑

d=1

(X ′
nd
− µkd)

2

The variance in distances between voxels is partitioned into variance attributable to
differences among distance within clusters and to differences among clusters. WCV (Ck)
measures the variability within the cluster Ci, while we introduce BCV (Ck)as a mea-
sure of the variability between cortical clusters.

Statement of the problem. Finally, the coclustering problem can be formally stated
as follows: given a Graph G = (V, F ) and a distance metric d for nodes between vi and
vj(i 6= j), coclustering is required to partition V into K clusters and cocluster sets,
as well as a set of outliers, formulated as {< C1, SP (C1) >, · · · , < CK , SP (CK) >



, O}, such that the connection strength of each cluster is maximized and the following
objective function OTWCV is minimized:

OTWCV (C1, C2, · · · , CK) =

K∑

k=1

TWCV (Ck) + STWCV (SCk)

4 The BCA Algorithm

In this section, we propose our coclustering algorithm, Business model based Coclus-
tering Algorithm (BCA), to solve the coclustering problem.

BCA starts with the density-based initialization, and produces a better solution from
the current solution by applying the following three phases, viz. Split, Transfer, and
Merge sequentially. Three procedures can run iteratively to produce one solution after
another until a termination condition is reached. During each iteration, the current solu-
tion Si is associated with the figure of merits that include a function of OTWCV and
the connection strength.

The goal of our algorithm’s initialization is to not only partition cortical voxels
into cocluster sets, but also to minimize the distance variance within one cluster while
maximizing each cluster’s connection strength.

4.1 Density-based initialization

The goal of our density-based initialization is to have an initial clustering of the corti-
cal voxels based on the following working hypothesis provided by our domain experts:
voxels within one functional cortical region should be close to each other and each
functional cortical region should contain at least one dense subregion. The initializa-
tion procedure is described by Algorithm Initialize in Figure 3. The algorithm takes
a cortico-cortical connectivity graph G and two parameters ε and δ as input and pro-
duces an initial coclustering as output. In addition, in the output, a set of voxels O will
be identified as outliers that will not be classified into any functional cortical region.
While ε is the maximum radius of a voxel’s neighborhood, δ is the minimum number
of voxels within the ε-neighborhood of a voxel for the voxel to be a core voxel. We first
introduce the following notions.

Definition 11 (ε-neighborhood and core voxel). Given a cortico-cortical connectivity
graph G(V, F ), the ε-neighborhood of a voxel v ∈ V , denoted Nε(v), is defined by
Nε(v) = {u ∈ V | dist(v, u) ≤ ε}. We call v a core voxel iff |Nε(v)| ≥ δ.

Definition 12 (Distance-reachable). A voxel u is directly distance-reachable from a
voxel v w.r.t. ε and δ if u ∈ Nε(v) and u is distance-reachable from v if there is a chain
of voxels v1, · · · , vn, such that v1 = v, vn = u, and vk is directly distance-reachable
from vk−1 for k = 2, · · · , n.

As shown in Figure 3, Algorithm Initialize firstly calculates N∗N distance-connection
matrix M to store the Euclidean distances between each pair of cortical voxels (line 5).



(1) Algorithm: Initialize
(2) Input: Cortico-cortical connectivity graph G(V, F ), maximum radius ε, and minimum number of voxels δ
(3) Output: initial coclustering {< C1, SP (C1) >, · · · , < CK , SP (CK) >, O}
(4) Begin
(5) Calculate from G the distance-connection matrix M to store dist(u, v) for all u, v ∈ V ;
(6) k = 0;
(7) For each voxel v ∈ V do
(8) If v is classified then
(9) Process the next voxel;
(10) Else /* v is not classified */
(11) If v is a core voxel then
(12) k := k + 1;
(13) Collect all voxels distance-reachable from v and assign them to Ck

(14) Else
(15) Process the next voxel;
(16) End If
(17) End If
(18) End For
(19) Collect all unclassified voxels and assign them to O ;
(20) Identify SP (Ck)(k = 1...K) according to Definition 3.
(21) End Algorithm

Fig. 3. Algorithm Initialize

We define dist(u, v) = +∞ iff u and v belong to different hemispheres of the brain
to implement the constraint that each resulting cluster will not span across different
hemispheres. The algorithm will iteratively consider each voxel v (lines 7 - 18). If v is
an unclassified voxel, then a new cluster is formed by all the voxels that are distance-
reachable from v; otherwise, either v is already classified (lines 8-9), or it is a non-core
voxel (lines 14-15), the processing of v will be skipped. After the iteration completes,
all the unclassified voxels will be assigned to a set O as outliers. Finally, for each identi-
fied cluster Ck (k = 1, · · · ,K), its spouse cluster SP (Ck) will be identified according
to Definition 3 (line 20) to produce the initial coclustering result.

Since the analysis performed in the initialization procedure focuses on region den-
sity and distances between cortical voxels rather than their connectivity, the BCA al-
gorithm further applies operators Split, Transfer, and Merge iteratively to improve the
coclustering result by minimizing its OTWCV value.

4.2 Split

The split operator attempts to split a cluster into two clusters when such a split will
improve the result of coclustering that is characterized by the following split condition.

Definition 13 (Split condition). Given a coclustering CO = {< C1, SP (C1) >, · · · , <
Ci, SP (Ci) >, · · · , < CK , SP (CK) >} and a cluster Ci ∈ CO, let Ci1 be the
set of voxels in Ci that are connected to SP (Ci), Ci2 be Ci − Ci1, and CO′ = {<
C1, SP (C1) >, · · · , < Ci1, SP (Ci1) >,< Ci2, SP (Ci2) >, · · · , < CK , SP (CK) >
}, then we say that Ci satisfies the split condition iff
1) |Ci1| >= δ and |Ci2| >= δ;
2) OTWCV (CO′) ≤ OTWCV (CO);
3) θ(C1, SP (C1)) ≤ θ(Ci2, SP (Ci2)).



(1) Algorithm: Split
(2) Input: CO = {< C1, SP (C1) >, · · · , < CK , SP (CK) >}
(3) Output: a new version of CO in which no more cluster satisfies the split condition
(4) Begin
(5) While there exists a cluster Ci ∈ CO satisfying the split condition do
(6) Split Ci into Ci1 and Ci2;
(7) Recalculate the spouse cluster for each cluster in CO according to Definition 3;
(8) End while
(9) End Algorithm

Fig. 4. Algorithm Split

Intuitively, the split condition ensures that after a split, 1) the number of voxels
in each new cluster is still greater than or equal to δ, 2) the OTWCV value for the
new coclustering will not increase, and 3) the connection strengths of the two new
clusters Ci1 and Ci2 will be no less than the connection strength of the original cluster
Ci. This is always true for Ci1, and thus we only need to require θ(C1, SP (C1)) ≤
θ(Ci2, SP (Ci2)) in the above definition of the split condition.

Algorithm Split is sketched in Figure 4. Basically, it iteratively splits the colustering
result until no more cluster satisfies the above defined split condition.

4.3 Transfer

The transfer operator attempts to reassign each voxel to a new cluster in order to im-
prove the result of coclustering that is characterized by the following transfer condition.

Definition 14 (Transfer Condition). Given a coclustering CO = {< C1, SP (C1) >
, · · · , < Ci, SP (Ci) >, · · · , < Cj , SP (Cj) >, · · · , < CK , SP (CK) >}, let v ∈
Ci for some Ci in CO, Cj be the cluster to whose centroid v is the closest, after
transferring v from Ci to Cj , Ci becomes C ′i, Cj becomes C ′j , and CO becomes
CO′ = {< C1, SP (C1) >, · · · , < C ′i, SP (C ′i) >, · · · , < C ′j , SP (C ′j) >, · · · , <
CK , SP (CK) >}, we say that v satisfies the transfer condition iff
1) |C ′i| >= δ;
2) OTWCV (CO′) ≤ OTWCV (CO);
3) θ(Ci, SP (Ci)) ≤ θ(C ′i, SP (C ′i)) and θ(Cj , SP (Cj)) ≤ θ(C ′j , SP (C ′j)).

(1) Algorithm: Transfer
(2) Input: CO = {< C1, SP (C1) >, · · · , < CK , SP (CK) >}
(3) Output: new version of CO in which no more voxel satisfying the transfer condition
(4) Begin
(5) While there exists a voxel v ∈ Ci satisfying the transfer condition do
(6) Transfer v from Ci to Cj where Cj is the cluster to whose centroid v is the closest;
(7) Recalculate the spouse cluster for each cluster in CO according to Definition 3;
(8) End while
(9) End Algorithm

Fig. 5. Algorithm Transfer



Intuitively, the transfer condition ensures that after a transfer, 1) Ci still contains
at least δ voxels, 2) the OTWCV value for the new coclustering will not increase, and
2) the connection strengths of the two affected clusters will not decrease. Algorithm
Transfer is sketched in Figure 5. Basically, it attempts to assign each voxel to a new
cluster if it satisfies the transfer condition. The procedure terminates when no more
voxel satisfies the above defined transfer condition.

4.4 Merge

Finally, the merge operator attempts to merge two clusters if such a merge will improve
the result of coclustering that is characterized by the following merge condition.

Definition 15 (Merge Condition). Given a coclustering CO = {< C1, SP (C1) >
, · · · , < Ci, SP (Ci) >, · · · , < Cj , SP (Cj) >, · · · , < CK , SP (CK) >}, and two
clusters Ci, Cj ∈ CO, we merge Ci and Cj into Cm and derive a new coclustering
CO′ = {< C1, SP (C1) >, · · · , < Cm, SP (Cm) >, · · · , < CK , SP (CK) >}. We
say Ci and Cj satisfy the merge condition iff
1) OTWCV (CO′) ≤ OTWCV (CO);
2) θ(Ci, SP (Ci)) ≤ θ(Cm, SP (Cm)) and θ(Cj , SP (Cj)) ≤ θ(Cm, SP (Cm)).

(1) Algorithm: Merge
(2) Input: CO = {< C1, SP (C1) >, · · · , < CK , SP (CK) >}
(3) Output: new version of CO in which no more cluster satisfying the merge condition
(4) Begin
(5) While there exists Ci, Cj ∈ CO satisfying the merge condition do
(6) Merge Ci and Cj into Cm;
(7) Recalculate the spouse cluster for each cluster in CO according to Definition 3;
(8) End while
(9) End Algorithm

Fig. 6. Algorithm Merge

Intuitively, the merge condition ensures that after a merge, 1) the OTWCV value
for the new coclustering will not increase, and 2) the connection strength of the new
merged cluster is no less than the connection strengths of the two original clusters.
Algorithm Merge is sketched in Figure 6. Basically, it merges two clusters into one if
the two clusters satisfy the above defined merge condition. The algorithm terminates
when no more pair of clusters satisfy the above defined merge condition.

5 3-D Visualization of the BCA results

All fiber tracts calculated from DTI data were rendered in relation to the cortical mesh
obtained from conformal brain surface mapping [18], as shown in Figure 7-(a)-Top. It
can be seen that there is a large number of fiber tracts connecting cortical areas. BCA
was performed based on the spatial relationship of voxels on the cortical surface and



Figure 7-(a)-Bottom exhibits clustered cortical fibers in frontal and lateral view. Figure
7-(b) shows the results of our BCA in a representative subject. Well-know anatomical
fiber tracts in the brain are reproduced such as the colossal fibers (pink) which connect
the two hemispheres and the forceps minor of the corpus callosum (yellow) connecting
the left and right side of the frontal cortex. Moreover, the intra-hemispheric connec-
tions of the arcuate fasciculus connecting Broca’s and Wernicke’s cortical areas can be
appreciated.

(a) (b)

Fig. 7. (a)-Top: frontal and lateral view of cortico-cortical fibers before coclustering; (a)-Bottom:
frontal and lateral view of clustered cortico-cortical connectivity; (b) Zoom in view of some
specific coritco-cortical clusters.

These results indicate that the developed algorithm is consistent with brain anatomy
and that it allows automated segmentation of the cortex based on DTI-derived cortical
connections within the brain. We therefore believe that our algorithm is well suited to
provide an efficient framework for further analysis including the quantitative assess-
ment of cortico-cortical connectivity.

6 Conclusions and Future Work

In this paper, we defined the coclustering problem and we applied this approach to
the analysis of cortico-cortical connections in the brain. Our approach represents an
efficient mathematical framework that is computationally robust and is able to be used
for quantitative analysis of cortico-cortical fiber tracts. This in turn might be relevant
for the identification of secondary epileptic foci in patients with intractable epilepsy and
might impact their clinical management.

Although the coclustering problem was initially motivated by the need of cortico-
cortical connectivity analysis, we expect that it will have a wide range of applications.
In the future, we plan to apply our BCA also to the analysis of thalamo-cortical connec-
tivity and the segmentation of thalamic nuclei.
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