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Abstract. In this paper, we propose a novel area-preserving surface
flattening method, which is rigorous in theory, efficient in computation,
yet general in application domains. Leveraged on the state-of-the-art
flattening techniques, an infinitesimal area restoring diffeomorphic flow
is constructed as a Lie advection of differential 2-forms on the manifold,
which yields strict equality of area elements between the flattened and
the original surfaces at its final state. With a surface represented by
a triangular mesh, we present how an deterministic algorithm can be
faithfully implemented to its continuous counterpart. To demonstrate the
utility of this method, we have applied our method to both the cortical
hemisphere and the entire cortex. Highly complied results are obtained
in a matter of seconds.
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1 Introduction

Given the fact that many anatomical surfaces are intrinsically 2D and highly un-
dulated, flattening techniques constitute a major means of visualizing patholo-
gies that are deeply buried within the folds [4]. Flattening (parametrization) also
enables many procedures on a regular parameter domain, therefore resulting in
more efficient and stable computation. However, existing flattening methods, in-
cluding conformal mapping [2, 6, 5], typically suffer from severe, unpredictable
area distortion when dealing with extruding shapes that contains rich, com-
plex features, which largely impedes the capture of anatomical characteristics as
well as other associated imaging modalities on a planar domain. Although it is
known that surface cuts can effectively reduce the distortion of final flattening,
such practice is typically not preferred, since neighborhoods on opposite sides of
a cut will become far apart in the final flattened representation.

The technique presented in this paper theoretically ensures a uniform sam-
pling of the surface on the parameter domain. Each patch retains exactly the
same area when flattened to 2D. Based on the mathematical advance, a series of
analysis tasks regarding neuronal density, activation extent, cortical thickness,
among others, can be instead invoked in 2D where more compact data struc-
tures, more efficient discretization schemes and faster data access are available.
Towards the same goal, a handful of respectable efforts have been made [3, 4, 8,
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9]. However, the flattening results typically correspond only to local minima with
respect to certain objective functionals [3, 4], and lack provable guarantee of area
preservation. Pons et al. [8] designed a tangential motion according to a given
normal motion in a cortical inflating procedure, which preserves area exactly,
but is not capable of flattening a 3D surface into 2D. A mass (e.g., area/volume)
preserving mapping was explicitly sought in Rn by a gradient decent method
to the Monge-Kantorovich functional in [9], implemented on a regular Cartesian
grid. It is not clear how this method can be extended to a general manifold.

In contrast, our method computes global strict area-preserving (A.P.) flat-
tening of arbitrary 2-manifolds using Lie advection, a concept from classical
mechanics. To our best knowledge, this is the first work that employs Lie advec-
tion as a tool to manipulate area changes in the context of surface flattening.
Besides a general framework, our method also allows an efficient, yet accurate
discretization scheme that is motivated by preserving the original geometric and
algebraic structures of the continuous model in the limit, therefore rendering
better numerical fidelity.

A similar idea was mathematically sketched in [1]. The discussion was re-
stricted to a spherical domain. Despite similar concepts, our method is deter-
ministic and derived for arbitrary surface manifolds. In the remainder of this
paper, we take brain surface as an acting example, while the presented method
is principally applicable to general surfaces.

2 Basic Idea

Starting with an arbitrary initial diffeomorphism from an given surface to the
desired domain, e.g., a conformal parametrization [7, 5], we can subsequently
evolve it to an A.P. alternative as follows. Suppose M and N are two differ-
entiable 2-manifolds, associated by a diffeomorphism f : M → N . The area
element of a surface is a differential 2-form. Let ωi, i = M,N be the area form
of M and N , respectively. The pullback of ωN under f is a differential 2-form
on M , denoted as f∗(ωN ). Suppose M and N have the same area integral af-
ter an appropriate scaling, that is,

∫
M

ωM =
∫

N
ωN . Computing an A.P. map

µ : M → N now is equivalent to finding a diffeomorphism ϕ : M → M , such
that ϕ∗(ωM ) = f∗(ωN ). Therefore, µ is given by f ◦ ϕ−1. To accomplish this,
we first linearly interpolate a 2-form over time:

ωt = (1− t)ωM + tf∗(ωN ), t ∈ [0, 1]. (1)

Note that ω0 = ωM and ω1 = f∗(ωN ). In the following, we will design a one
parameter family of diffeomorphisms, such that the corresponding flow deforms
the area element in the same fashion as ωt.

More specifically, consider a smooth surface M with a smooth vector field
V on it. Given any point p ∈ M , there exist a unique integral curve γ(t) of V
passing through it, such that

{
dγp(t)

dt = V (γp(t)),
γp(0) = p.

(2)
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A one parameter family of diffeomorphisms (which are also automorphisms) φt,
parameterized by t ∈ [0, 1], can be defined on M as

φt(p) = γp(t). (3)

We want φ∗t (ω0) = ωt. Substituting p with ωt in Eq. (3) and computing time
derivative at t = 0, we get

dφ∗t ω
dt

∣∣∣
t=0

= ωM − f∗(ωN ), (4)

which, by definition, is the Lie derivative of ωt with respect to V . Hence, the
central equation to solve is

LV (t)ωt = ωM − f∗(ωN ), (5)

where LV (t) denotes the Lie derivative with respect to V (t). Intuitively, LV (t)

estimates the change of ωt along the flow of V (t). By using Cartan’s formula
LV = diV + iV d, where iV denotes the interior product with respect to V (t), we
have

d(iV ωt) + iV dωt = ωM − f∗(ωN ). (6)

Since ωt is a 2-form, dωt = 0 on M . Hence, we have

d(iV ωt) = ωM − f∗(ωN ). (7)

By definition, we can write ωM = h1du ∧ dv and f∗(ωN ) = h2du ∧ dv. h1

and h2 are the scaling factors from a mutual parameter domain to M and N ,
respectively. Now let

∆g = h2 − h1, (8)

where ∆ denotes the Laplacian-Beltrami differential operator. We substitute
Eq. 8 into Eq. 7. Using the fact that M and N are 2-manifolds, V (t) can be
solved as

V (t) =
1

(1− t)h1 + th2
∇g. (9)

Note that, as implied by Eq. (9), V (t) varies both in magnitude and direction
over time. we need to solve V (t) at each time. g is essentially a harmonic scalar
field on M . As a result, the corresponding gradient vector field ∇g is guaranteed
by construction to be highly smooth and free of extraneous critical points. Time
integration of V (t) yields a diffeomorphism. Finally, the A.P. mapping is given
by f ◦ φ−1

t=1 : M → N .

3 Algorithm

In practice, the surface is represented by a triangular mesh. The position of
vertex vi is denoted by vi ∈ R3. The 1-ring neighbors of vi is denoted as N1(i).
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For a vertex vi, the associated surface patch is chosen to be the barycentric finite
volume, denoted as Ai.

We first assume the target domain is a unit square, which is commonly used
to parameterize topological disks. Later, we will show how this framework can
be extended to the unit sphere to flatten closed genus zero surfaces in spherical
geometry. The square boundary condition is set up as follows: first, the boundary
is isometrically mapped to that of the unit square D; next, a discrete conformal
map of the interior is computed in the least squares sense [7]. Fig. 1(a) and
1(b) show the lateral and mesial views of a cortical hemisphere, respectively.
The initial (conformal) flattening is illustrated in Fig. 1(c), the area distortion
of which is color encoded in Fig. 1(d). Notice how some lateral cortical patterns
suffer from the intense geometric stretch, which greatly impairs inspection of
these regions. Note that, since our A.P. surface flattening method is independent
of the initial mapping, other surface parametrization methods can also be equally
employed in order to achieve specific functionality relevant in applications. In

(a) Lateral view (b) Mesial view (c) Conformal map (d) Area distortion

Fig. 1. Initial conformal flattening. (a) and (b) show the lateral and mesial views of a
cortical hemisphere. (c) is the initial (conformal) flattening on a unit square. The area
distortion is color-coded in (d).

the following, we describe the essential steps of the algorithm in the order they
occur in the procedure.

3.1 Solving ∆g = h2 − h1

For an area-preserving flattening, h1 is always 1, whereas h2 is the model area/parameter
area ratio at play. When the total areas of the model and the domain are not
equal, h2 is subject to a normalization to make them equal. The result will
therefore be of relative area preservation.

Given a continuous function on the surface, its discrete version is represented
as a vector, defined on the vertex set V . To solve Eq. (8) on a triangular mesh,
∆g is estimated at vi in the same manner as [3]. Note that this discrete approx-
imation requires acute angles. For obtuse ones, a proper remeshing procedure
should be employed. As such, Eq. (8) can be written as a linear system: Lx = b,
where x = g, b = h2 − h1, L represents the coefficient matrix of the discrete
Laplace-Beltrami operator. As L is sparse, Eq. (8) can be solved efficiently in
linear time. Fig. 2(a) shows the solved function g.
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(a) g(t = 0) (b) ∇g(t = 0) (c) A.P. map(t = 1) (d) Area/angle distortion

Fig. 2. Area-preserving flattening on a unit square. The solved function g is shown in
(a) and its gradient vector field in (b). After time integration of a dynamic diffeomorphic
flow following the vector field, the proposed A.P. flattening is obtained in (c). (d) shows
the histograms of area and angle distortion metrics.

3.2 Computing ∇g

Now that the g is obtained, we can proceed to compute the corresponding gra-
dient vector field on the triangulated domain. We consider a face fijk with its
three corners lying at vi, vj , vk in R3. Also, let n be a unit normal vector
perpendicular to the plane spanned by fijk. By assuming linear interpolation
within each triangle, the gradient vector can be easily computed by solving the
3× 3 linear system: 


vj − vi

vk − vj

n


∇g =




gj − gi

gk − gj

0


 , (10)

for which a closed-form solution exists. To obtain a unique vector at each vertex,
∇g at vertex vi is defined as an average of the gradients of the adjacent faces,
weighted by the incident angle αi

jk of each face fijk at vi. The resulting vector
field is shown in Fig. 2(b).

3.3 Time Integration of V (t)

Recall that the Lie derivative is defined as the instantaneous change of forms
evaluated at φt(x), which is a dynamic definition (See Eq. (4)). In fact, V (t)
only coincides with the flow vector field at t = 0. In other cases, V (t) needs be
transported accordingly. By an simple analytical integration, we have

∫ 1

0

V (t)dt =
ln h2 − ln h1

h2 − h1
∇g. (11)

When h1 = 1, we have limh2→1
ln h2−ln h1

h2−h1
= 1, which means that, when h2 is

sufficiently close to 1, the displacement vector field can be properly approxi-
mated by ∇g. Thus, the area-correcting process is divided into K sequential
steps. With each step, the area element is only modified by an small amount δh
towards the target setting such that the overall area adjustment is equal to Kδh.
More specifically, we let h2 = 1 + δh and h1 = 1 as the input of the analytical
integration (Eq. (11)), and the result gives the corresponding displacement for
the area change of δh. This procedure is discretized into 50 steps for the results
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shown. By choosing step length carefully, we can guarantee that the time inte-
gration converges. The final A.P. flattening of the cortical hemisphere is shown in
Fig. 2(c). Fig. 3(d) presents the statistics of the area (darkred) and angle (blue)
distortions; the employed metrics will be explained in Section 4. All boundary
vertices can either be fixed, or evolved by the covariant derivative of V (t) along
∂D. Empirically, the latter one gives better approximation to the continuous
case, but less robust to degenerate mesh triangles.

3.4 Genus Zero Surface Flattening

The entire brain surface is often modeled as a topological sphere, i.e., a closed
surface of genus zero, thus is preferred to be flattened on a unit sphere (S2)
without any topological changes. Our method can easily adapt to this case as
well. We first compute its initial mapping using the method described in [5]. The
Lie advection flowing to the area preservation is then performed in the tangent
spaces of the spherical domain. In practice, whenever a vertex moves out of the
unit sphere, it is pulled back by ṽi = vi/|vi|. Fig. 3(a) shows the entire cortex,
while its spherical conformal mapping is shown in 3(b). Its A.P. flattening is
shown in Fig. 3(c) and the corresponding histograms about the area (darkred)
and angle (blue) distortions is presented in 3(d).

(a) g(t = 0) (b) ∇g(t = 0) (c) A.P. map(t = 1) (d) Area/angle distortion

Fig. 3. Area preserving mapping of closed genus zero surface. (a) is the original brain
surface model. Its spherical conformal mapping and subsequent A.P. flattening are
shown in (b) and (c), respectively. Similarly, the statistics of the result is shown in (d).

4 Results

All brain surface models are reconstructed on the gray matter/white matter
interface of 3D MRI brain volumes. To verify that the area elements (associ-
ated with the vertice) are preserved globally independent of the triangulation,
we build up our distortion measures on their dual cells–triangular faces. To be
specific, we examine both the area distortion and the quasi-conformal distortion
per face over the mesh. The area distortion metric Υ and the quasi-conformal
distortion metric Λ are computed respectively as follows:

Υ = ln(γmax · γmin), Λ = ln
γmax

γmin
, (12)
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where (γmax, γmin) are the larger and smaller eigenvalues of the Jacobian of the
affine transformation that maps the domain triangle to the surface, normalized
in such a way that the total area of the surface equals that of the domain. In both
cases, a value of 0 indicates no distortion at all, while distortions can deviate on
both sides.

In Fig. 2(d) and Fig. 3(d), the statistics of the area distortion (darkred) and
the quasi-conformal ones (blue) are illustrated for both examples, respectively.
From the distribution of metric Υ , we can see that the areas of triangles are
clearly well preserved. Because for general manifolds, no isometric mapping exists
except for a few special cases, quasi-conformal distortion is expected for A.P.
maps, as indicated by the distribution of Λ.

In terms of runtimes, the underlying mesh of the cortical hemisphere model
is composed of 48,287 faces and the A.P. flattening was obtained in 57 sec; the
model of the entire cortex is with 99,736 faces and it took 122 sec. All experiments
were conducted on an Intel T6600 2.20GHz laptop with 3GB RAM. Generally,
the cost linearly depends on the size of the mesh and the number of discretized
steps needed for the desired accuracy.

For a visual analytical framework that is designed to integrate various com-
plementing neuroimaging modalities from multiple sources and for quantitative
analyses, A.P. flattening exhibits unique advantages. In Fig. 4, the brain surface
is sliced open along the medial plane at the bottom, without passing any signifi-
cant anatomical features. The entire brain surface is then mapped to a rectangle
with a height/width ratio of 1:2. To capture the statistics of abnormal brain
activity, a sufficient number of sampling points should be grouped at certain
resolution. Each unit forms a cortical element. Since the surface of the brain
is uneven and varies across human subjects, subdividing it into a set of equal
geometric elements is nontrivial. With A.P. flattening, we can easily define fi-
nite homotopic cortical elements on the parametric domain with simple isotropic
grid. Comparing to other “quasi” area-preserving/conformal mapping, each ele-
ment based on an A.P. flattening accounts for an identical amount of portion in
the original brain surface. With these well-defined equiareal cortical elements, a
variety of functional patterns can be readily quantified on a per element basis.

(a) Conformal flattening result (b) A.P. flattening result

Fig. 4. Application of quantitative surface-based analytics. The color visualizes the
integrated PET data. (a) shows the flattening result via conformal mapping, where
most anatomical and functional meaningful areas are squeezed in a few square elements.
In contrast, the cortical surface is more evenly sampled under A.P. flattening, as shown
in (b).
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5 Conclusion

In this paper, we have presented a special surface flattening methodology that is
strictly area-preserving. Given an arbitrary initial parametrization, an A.P. re-
sult can be efficiently and uniquely obtained via the Lie advection of area forms
along the domain. As our method only depends on the intrinsic surface geome-
try, it is insensitive to different discretized representations, including variations
in triangulation and/or resolution. Our implementation strives to preserve the
analytical ingredients of the computation as far as possible. As a result, our
method is highly efficient and stable in getting consistent results, as opposed
to an optimization approach. While conformal maps are known to be powerful
for shape analysis, in a number of other scenarios, such as studies of neuronal
density, cortical functional activation extent, and cortical thickness variations,
where accurate modality sampling and statistical sensitivity are critical, areal
preservation is highly preferable. Extensive comparison between our method and
existing approaches in clinical practice will be conducted in the near future.
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