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1 � Introduction

Normal brain development across the life span is affected 
by progressive and regressive neuronal processes due to 
cell growth and death [26]. And this brain development 
has been proved to follow a specific pattern during the nor-
mal aging process [10, 16, 17, 20, 30]. In terms of volume 
measure, study [10] showed a specific pattern of linear 
decline in gray matter (GM) with a significantly steeper 
decline in males, linear increase in cerebrospinal fluid as 
well as relative accelerated loss of white matter (WM) in 
local areas (frontal white matter, optic radiations, and so 
on) under normal aging by investigating 465 subjects aging 
from 17 to 79 years. Besides, evidences were provided [20, 
30] for a region-specific and nonlinear pattern of neuro-
degenerative age-related GM volume changes. Recently, 
Taki et  al. [29] studied 1,460 healthy individuals aged 
20–69 years and revealed a significantly negative correla-
tion between gray matter ratio (gray matter volume divided 
by intracranial volume) and age in both genders. In terms 
of surface measure, Shaw et al. [25] demonstrated that the 
complexities of cortical thickness development trajecto-
ries are different in different cortical regions by exploring 
375 subjects aging from 3.5 to 33  years. Lemaitre et  al. 
[16] revealed a concomitant global age-related reduction 
in cortical thickness, surface area, and volume by linear 
regressions of age. Pienaar et  al. [18] showed that curva-
ture measures and functions with a gradual decline through 
early childhood and further decline continuing through to 
adults. In 2010, the study by Ronan et al. [22] indicated that 
there was a relationship between differential development 
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and mean curvature. Recently, significant cortical thinning 
of parietal and insula region was observed during healthy 
aging while surface area and mean curvature were less 
affected by aging [17]. These studies suggest certain rela-
tionship exists between the brain pattern and human age. 
Hence, there is a probability to estimate human age from 
the brain pattern.

Furthermore, mental disorders such as schizophrenia or 
Alzheimer’s disease (AD) arise due to deflections from the 
normal brain pattern [4, 13, 21]. The estimated age with 
the deflected brain pattern is consequently far away from 
the true age, namely the gap between estimated age and 
the true age of the patient is larger than that of the normal 
people, which can be used to help doctors diagnose dis-
eases. Thus, human age estimation catches more attention 
recently.

To our best of knowledge, only a few studies focused 
on age estimation based on structural MRI or resting-state 
MRI scans [1, 2, 6, 9]. Dosenbach et  al. [6] used SVM 
regression with resting-state functional connectivity to gen-
erate a predicted “brain age” as an estimate of each sub-
ject’s functional maturity level. Brown et  al. [2] applied 
multimodal image features to age estimation and obtained 
very small mean error and high correlation coefficient. 
However, the age ranges of subjects used in these two stud-
ies are relatively narrow. Ashburner et  al. [1] and Franke 
et al. [9] utilized a relevance vector machine (RVM) with 
voxel-based features to estimate the ages of subjects with 
large age range. But this voxel-based method (voxel-based 
morphometry, VBM) is purely based on a volumetric repre-
sentation of the brain. The local amount of tissue is simply 
measured as the intensity within each voxel, and the meas-
ure can be affected by local cortical folding as well as local 
cortical thickness. Moreover, VBM contains no information 
about brain surface gyri and sulci, which is very important 
to age estimation [16, 17].

Since surface-based features have been shown to be 
more sensitive to age-related decline than VBM [12], we 
build an age estimation model with surface-based fea-
tures to overcome the aforementioned limitations [32]. 
The main contribution of our work is that we develop a 
reliable cortical surface pattern (CSP) combining corti-
cal thickness and surface curvatures to estimate human 
ages. The CSP is applied to estimate the age of 663 
subjects (age range 7–82) from two publicly accessible 
databases. The estimation results based on the large-
scale datasets with the wide age range demonstrates the 
precision of our age estimation model using CSP. Fur-
thermore, we employ the CSP to age groups classifica-
tion. The high cross-validation (CV) accuracy and the 
high sensitivity/specificity constitute a powerful evi-
dence of the reliability of our designed surface pattern 
for age estimation.

2 � Material, pipeline of age estimation model 
and experiments

2.1 � Databases and subjects

We used two publicly available databases to test our age 
estimation model in this study. One was the Information 
extraction from Images (IXI) database (http://www.brain-
development.org/) and the other was the International Data-
sharing Initiative (INDI) database (ADHD-200 Global Com-
petition, http://fcon_1000.projects.nitrc.org/indi/adhd200/
index.html). Several subjects were excluded according to the 
following schemes: (1) the subjects without age information 
were excluded; (2) we only retain subjects with the good-
quality images; (3) we excluded subjects whose images 
failed in the feature extraction. A total of 360 normal sub-
jects aged 20–82 years (age ± SD = 47.04 ± 16.16, male/
female: 175/185) were selected from IXI database, and 303 
normal subjects aged 7–22 years (age ± SD = 11.80 ± 2.90, 
male/female: 162/141) were chosen from the INDI data-
base. Table  1 gives the characteristics of the subjects from 
these two databases. And the MRI scanning parameters are 
described in the supplementary. 

2.2 � Pipeline of age estimation model

Figure 1 gives the pipeline of our age estimation model. In 
the model, we employed two kinds of surface-based fea-
tures (individual regional features and combined regional 
features) in relevance vector regression (RVR), respec-
tively. We applied linear search to choose the kernel width 
of RVR and cross validation (CV) to evaluate the goodness 
of the kernel width (inner CV). Then, in order to evaluate 
the model, 10-fold CV (outer CV) was operated 10 times 
to compute mean absolute error (MAE), root mean squared 
error (RMSE), and correlation coefficient (corr). Details 
will be introduced in the following section.

2.2.1 � Surface‑based features extraction

Structure images were processed by the software Free-
Surfer version 5.0.0 (http://surfer.nmr.mgh.harvard.edu/). 
FreeSurfer is a set of tool for the analysis and visualiza-
tion of structural and functional brain imaging data. In the 

Table 1   The information of different databases used in age estima-
tion model stability analysis

IXI database INDI database

Num (M/F) 360 (175/185) 303 (162/141)

Age mean ± SD 47.04 ± 16.16 11.80 ± 2.90

Age range 20–82 7–22

http://www.brain-development.org/
http://www.brain-development.org/
http://surfer.nmr.mgh.harvard.edu/
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work, we used FreeSurfer to reconstruct cortical surfaces 
and calculated surface-based features. The details are as 
follows (Fig. 2).

Preprocess All subjects’ T1-weighted images were firstly 
nonuniform intensity corrected. After image corrections, 
we scaled the intensities for all voxels. Then, the scaled 
images were skull-stripped [23]. Subsequently, voxels were 
classified as the white matter/nonwhite matter. A mesh of 
triangular faces was then tightly around this mass. The 
mesh was smoothed, inflated, and corrected topological 

defects [8, 24] to construct a surface. This surface was used 
as the starting point for a deformable algorithm to produce 
the white surface (GM/WM interface) and the pial surface 
[3]. Then, we calculated cortical thickness, surface area, 
and curvatures based on the pial/white surface.

Cortical thickness The measurement of cortical thick-
ness was explained in the paper [7]. In brief, cortical thick-
ness was defined as the distance between linked vertexes on 
the white and pial surfaces. The correspondence between 
such vertexes was created by the expansion of the pial 

Fig. 1   The pipeline of age 
estimation model

Fig. 2   Surface-based feature extraction by FreeSurfer version 5.0.0
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surface from the white surface. The distance between the 
vertex of white surface and the linked vertex of pial sur-
face was defined as the thickness at each location of vertex 
(Fig. 2).

Surface area We smoothed the white surface before 
surface area calculation. The smoothed white surface was 
represented as triangle-based mesh in FreeSurfer. Subse-
quently, the surface area was defined as the sum of areas 
of triangles in the region of interest (ROI) on the smoothed 
white surface (Fig. 2).

Curvatures The smoothed white surface was inflated to 
produce the inflated surface. Then, we calculated the unit 
normal vector at each vertex v of the inflated surface. A 
normal plane at vertex v was one that contained the normal 
and would therefore also contain a unique direction tangent 
to the inflated surface and cut the surface in a plane curve. 
This curve would in general have different curvatures for 
different normal planes at vertex v. The principal curvatures 
at v, denoted k1 and k2, were the maximum and minimum 
values of this curvature (Fig. 2). The two most widely used 
indexes, mean curvature and Gaussian curvature, were then 
defined as

2.2.2 � Feature selection

We used region-based features instead of vertex-based fea-
tures for the following reasons. Firstly, region-based features 
reduce the noise effects by averaging overall voxels in the 
region. Secondly, using region-based features can control for 
Type I error by limiting the number of statistical tests to a 
few ROIs. Thirdly, performing an ROI analysis is more effi-
cient than vertex-based analysis, since the dimension of fea-
tures used in vertex-based analysis is too high [19].

The cortical surface was divided into 148 distinct corti-
cal ROIs by Destrieux atlas [5]. After ROIs division, aver-
age thickness, average mean curvature, average Gaussian 
curvature, and surface area of each ROI were all calcu-
lated. Therefore, four kinds of individual regional features 
were obtained. Subsequently, different kinds of individual 
regional features containing complementary informa-
tion about age were combined to obtain a pattern for age 

(1)Mean curvature : M =
1

2
(k1 + k2)

(2)Gaussian curvature : G = k1 × k2

estimation. Previous studies [16, 17] have found signifi-
cant cortical thickness thinning in the life span (subjects 
aged from 18 to 87 years in [16], from 18 to 94 in [17]). 
Therefore, we inferred that it is essential to include corti-
cal thickness in the combined regional features. We con-
structed combined features on the basis of cortical thick-
ness as well as surface area, curvatures or both surface area 
and curvatures, respectively. Then, three kinds of combined 
regional features were obtained. Note that we denoted the 
feature of cortical thickness, surface area, and two curva-
tures as Thick, SurfArea, and 2Curv, respectively. Here, 
Thick and SurfArea were both 148-dimensional vector, 
and 2Curv was a vector with 296 dimension. The com-
bination of feature A = [A1, A2, . . . , Am]T and feature 
B = [B1, B2, . . . , Bn]T was defined as

 
Both individual features and combined features used in 

age estimation are shown in Table  2. In addition, SVM-
RFE (support vector machine recursive feature elimination) 
was also employed to further select surface-based features 
for age estimation [11], and the details are given in the 
supplementary.

2.2.3 � Relevance vector regression (RVR)

Relevance vector machine was proposed by Tipping [31] 
based on Bayesian estimation for regression (and classi-
fication) problem. The sparsity of RVM is induced by the 
hyperpriors on model parameters in a Bayesian frame-
work with the maximum a posteriori (MAP) principle.  
L1-norm-like regularization used in RVM encourages the 
sum of absolute values to be small, which often drives many 
parameters to zero and provides significantly fewer basis 
functions. This property is often important for good generali-
zation [33]. When RVM is used for regression problem, it is 
noted as RVR.

In our research, we used RVR model to find out the rela-
tionship between input p-dimension surface-based feature 
vector sl =

[

sl1, sl2, . . . , slp

]T
 of a subject l and the corre-

sponding target value agel:

where εl was the measure noise, assumed as independ-
ent and to be mean-zero Gaussian with variance σ2, i.e., 

(3)A ∪ B = [A1, A2, . . . , Am, B1, B2, . . . , Bn]T

(4)agel = y(sl) + εl,

Table 2   All features used in 
age estimation

Individual regional features Combined regional features

Thickness (thick)
Surface area (SurfArea)
Mean curvature (mCurv)
Gaussian curvature (gCurv)

Thickness ∪ surface area (Thick ∪ SurfArea)
Thickness ∪ 2 curvatures (Thick ∪ 2Curv)
Thickness ∪ surface area ∪ 2 curvatures– (Thick ∪ SurfArea ∪ 

2Curv)
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εl ∼ N
(

0, σ 2
)

. y(sl) was the real value predictor and defined 
as a linear combination of kernel functions K(sl, si):

where N was the number of training samples. si (i = 1, 2,…, 
N) was the p-dimension surface-based features of the ith train-
ing sample. φ(sl) = [1, K(sl, s1), K(sl, s2), . . . , K(sl, sN )] 
was the kernel vector. W = (w0, w1, w2, . . . , wN )T was the 
adjustable weight vector.

Then,

Following the assumption of Gaussian noise 
(εl ∼ N

(

0, σ 2
)

), we got

Assuming statistical independence of the N training 
samples, the maximum likelihood estimate for W was given 
by

where Age =
[

age1, age2, . . . , ageN

]T
 was the age values 

of N training samples and Φ = [φ(s1), φ(s2), . . . , φ(sN )]T.
To summarize, the main idea of the RVR was to estimate 

the weights of the Eq. (5) by maximizing the likelihood 
function (Eq. 8) and then use the real value predictor y(sl) 
to estimate the age of the subject.

2.2.4 � Cross validation

We applied linear search to choose the Gaussian kernel 
width of RVR and an inner CV to evaluate the proper-
ness of the kernel width. In order to avoid overfitting and 
obtain an unbiased results of the age estimation model, ten 
times tenfold CV [14] (outer CV) was used to evaluate the 
performance of the model. In each of the tenfold CV, all 
the subjects were randomly partitioned into 10 equal size 
subsamples. Of the 10 subsamples, a single subsample was 
retained as the validation data for testing the model and the 
remaining 9 subsamples were used as training data. The 
results were then averaged to produce a single evaluation.

We applied the CV framework to the age estimation 
model (the predicted age: pi, the real age: ri). Then, the 
accuracy of age estimation accuracy was measured by the 
mean absolute error and the root mean squared error:

(5)y(sl) =

N
∑

i=1

wiK(sl, si) + w0 = φ(sl)W ,

(6)εl = agel − y(sl) = agel − φ(sl)W

(7)p(agel|W , σ 2) =

(

2πσ 2
)−1/2

exp

[

−
1

2σ 2

(

agel − φ(sl)W
)2

]

(8)

p(age|W , σ 2) =

(

2πσ 2
)−N/2

exp

[

−
1

2σ 2
�age − ΦW�2

]

(9)
MAE =

1

N

N
∑

i=1

|pi − ri|

Besides MAE and RMSE, the correlation coefficient 
(corr) between predicted age and real age was calculated:

where p̄ was the mean value of all the predicted age and r̄ 
was the mean value of all the real age.

2.3 � Experiments

2.3.1 � Feature analysis

Age estimation models with different surface-based fea-
tures (Table 2) were applied to 360 subjects from the IXI 
database, respectively. Data-driven approach was utilized 
to find the best feature pattern, with which we can obtain 
the smallest MAE and RMSE and the highest corr of age 
estimation model. This best feature pattern is defined as the 
CSP. Consequently, “Choose one kind of feature” in the 
pipeline of age estimation model (Fig. 1) can be definitely 
replaced by “Choose the CSP”. Furthermore, we used 
SVM-RFE to check out whether the CSP can be further 
pruned or not.

In order to reveal why the age estimation model with the 
CSP performs best, we first calculated the correlation coef-
ficients (p < 0.05) between surface-based features and age, 
and then ranked regional features in terms of correlation 
coefficients. After that, we investigated the first ten feature 
(mean value) trajectories across age groups as well as the 
age effect on the most correlated features.

2.3.2 � Reliability of age estimation model using the CSP

Since normal subjects in the IXI database are all adults, to 
further test our model’s reliability to age ranges and data-
bases, we applied the age estimation model using the CSP 
to the selected 303 normal juveniles from the INDI data-
base. Detailed characteristics of subjects are shown in 
Table 1.

2.3.3 � Age group classification using the CSP

For the purpose of evaluating the efficiency of the CSP, we 
used the CSP to construct an age group classification for 
the selected 360 normal subjects (Column 1 of Table  1). 
For simplicity, here we only classify the young group 
(aging below 30) and the old group (aging above 60). After 
selection, there are 74 subjects in the young group and 105 

(10)RMSE =

[

1

N

N
∑

i=1

(pi − ri)
2

]1/2

(11)corr =

∑N
i=1 (pi − p̄)(ri − r̄)

√

∑N
i=1 (pi − p̄)2

√

∑N
i=1 (ri − r̄)2
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subjects in the old group, respectively. In this classification 
model, the feature is the CSP and the classifier is multi-ker-
nel learning (MKL, details are in the supplementary) [27]. 
Here, tenfold CV is utilized to evaluate the performance of 
the classification model.

Prediction accuracy, sensitivity (true positive rate), spec-
ificity (true negative rate), and J-statistic [34] were used 
to evaluate the classification performance. J-statistic com-
bined measure of sensitivity and specificity and is calcu-
lated as sensitivity +  specificity—1. The larger J-statistic 
is, the better the classification performed.

3 � Results

3.1 � Feature analysis

The prediction results of age estimation model with indi-
vidual regional surface-based features (Column 1 in 
Table 2) is shown in Table 3, and it indicates that regional 
thickness works best among the four kinds of regional fea-
tures. The prediction results of the model with combined 
regional surface-based features (Column 2 in Table 2) are 
shown in Table  4, which demonstrates the combined fea-
ture with cortical thickness and cortical curvatures per-
forms best among the combined regional features.  

Comparing Table 3 with Table 4, it is clear that using the 
combined features with two curvatures and thickness gives 
us the best result (MAE = 4.6 years, RMSE = 5.6 years, 
corr  =  0.94). This result is visualized in Fig.  3. The 

prediction result of each individual is represented as a point 
in the figure. The blue line shows the ideal case where pre-
dicted age matches real age. All points are very close to the 
blue line, which demonstrates that the predicted age and 
the real age are highly correlated (corr = 0.94) and conse-
quently substantiate the age estimation model with thick-
ness and curvatures. Therefore, the CSP we defined before 
is equivalent to the combined features with cortical thick-
ness and surface curvatures.

In order to investigate whether the CSP could be 
reduced dimension without losing age information or not, 
we firstly used SVM-RFE to reduce the dimension of CSP 

Table 3   Performance of different individual regional features with 
RVR based on tenfold cross validation

The bold represents the best performance

Thick regional thickness, mCurv regional mean curvature, gCurv 
regional Gaussian curvature, surfArea regional surface area

Thick mCurv gCurv SurfArea

MAE 6.05 ± 0.05 7.88 ± 0.07 11.21 ± .0.10 10.52 ± 0.22

RMSE 7.37 ± 0.03 9.55 ± 0.09 13.64 ± 0.15 12.96 ± 0.14

corr 0.89 ± 0.01 0.81 ± 0.01 0.55 ± 0.01 0.60 ± 0.01

Table 4   Performance of different combined regional features with 
RVR based on tenfold cross validation

The bold represents the best performance

A∪B means the combined feature of feature A and feature B, 2Curv: 
regional mean curvature regional Gaussian curvature

Thick ∪ surfArea Thick ∪ 2Curv Thick ∪ surfArea 
∪ 2Curv

MAE 5.97 ± 0.11 4.57 ± 0.04 5.06 ± 0.09

RMSE 7.35 ± 0.12 5.57 ± 0.04 6.10 ± 0.11

corr 0.89 ± 0.01 0.94 ± 0.01 0.93 ± 0.01

Fig. 3   Visualization of results from the age estimation model. Each 
point in the figure represents an individual. Both values are highly 
correlated (corr =  0.94). The blue line shows the value where pre-
dicted age matches real age (color figure online)

Fig. 4   The trends of MAEs along with different dimensions of 
selected features (chosen from the CSP by SVM-RFE). The horizon-
tal axis represents the number of the feature combination. The verti-
cal axis represents the MAE of the age estimation model
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to a specified dimension. Then, we applied these selected 
features in age estimation and calculated the correspond-
ing MAE. The trends of MAEs along with the dimension 
of features are shown in Fig. 4. The MAE of age estimation 
decreases as the dimension of the chosen feature increases. 
This monotone decreasing pattern illustrated in Fig. 4 indi-
cates the CSP obtained by the statistical method has the 
smallest dimension and cannot be reduced without losing 
the age information.

The mean values of the first ten features are plotted 
against age groups for sectional analysis, respectively, in 
Fig. 5, and the model with the best-fitting robustness was 
chosen to display the data in Fig.  6. Figure  5 shows that 
there are different tendencies of thickness and curvatures 
as well as no changes of surface area across life span in 
healthy aging. Figure  6 shows that the correlated coeffi-
cient of surface area is the smallest among these four kinds 

of features. Almost no change to surface area across life 
span and the lowest correlation with human age among all 
surface-base features suggests the surface area does not 
have much information about age.

Our estimation model is compared with previous studies 
[1, 9] using voxel-based features in Table 5. We can clearly 
see that our model improves about 8 % on MAE and 15 % 
on RMSE.

3.2 �R eliability of age estimation model using the CSP

The performance of age estimation model using the 
CSP to different databases is given in Table  6 which 
shows the estimation result of the INDI database is 
quite well (MAE =  1.38 ±  0.02, RMSE =  1.77 ±  0.02, 
corr = 0.79 ± 0.01). The age range of subjects in the INDI 
database is different from that in the IXI database. Overall, 

Fig. 5   Age groups effect on four kinds of regional features. The 
order of regions in the legend is according to the order of correlation 
coefficients between the region features and age. G Gyrus; S Sul-
cus; L Left brain. a Age groups effect on the first ten most correlated 

regional cortical thicknesses. b Age groups effect on the first ten most 
correlated regional mean curvatures. c Age groups effect on the first 
ten most correlated regional Gaussian curvatures. d Age groups effect 
on the first ten most correlated regional surface area
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our age estimation model is stable to age ranges as well as 
databases.

3.3 �A ge group classification using the CSP

We evaluate the CSP used in our age estimation model 
by applying it to classify the young group and the old 
group. Gaussian kernel and different sub-kernel weights 
are used in MKL for different kinds of features in the pat-
tern, respectively. After tenfold cross validation, we get the 
classification result of accuracy with 97.77  %, sensitivity 
with 97.30 %, specificity with 98.10 % and J-statistic with 
0.9540. The high CV accuracy (97.77 %) gives the prereq-
uisite of the application of surface pattern while the high 
sensitivity (97.30 %) and specificity (98.10 %) suggest the 
classification is little affected by class prior and misclassi-
fication cost which is supported by high J-statistic (0.9540) 
as well. The excellent performance of the classification 

Fig. 6   The best-fitting model between the most correlated fea-
tures and age. a The cubic model (R  =  0.595, p  <  0.001) for  
G_and_S_subcentral_L cortical thickness and age. b The cubic model 
(R = 0.516, p < 0.001) for S_circular_insula_sup_L mean curvature and 

age. c The cubic model (R = 0.361, p < 0.001) for S_circular_insula_
sup_L Gaussian curvature and age. d The cubic model (R =  0.315, 
p < 0.001) for G_front_inf_Triangul_L surface area and age

Table 5   Comparing our model with state-of-the-art methods

The bold represents the best performance

 The notation “---” represents the method doesn’t give the corre-
sponding value

Ashburner [1] Franke [9] Our model

MAE — 4.98 4.57

RMSE 6.5 6.73 5.57

corr 0.86 0.94 0.94

Table 6   Performance of age estimation model using the CSP to dif-
ferent databases with RVR based on 10-fold cross validation

(years: Mean ± SD) IXI database INDI database

Age range 20–82 2–22

MAE 4.57 ± 0.04 1.38 ± 0.02

RMSE 5.57 ± 0.04 1.77 ± 0.02

corr 0.94 ± 0.01 0.79 ± 0.01
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further proves that the CSP includes enough age informa-
tion and can be used for accurate age estimation.

4 � Discussion

In the present study, we developed a reliable CSP com-
bining cortical thickness with surface curvatures which is 
chosen from different kinds of surface-based features, and 
the MAE/RMSE of age estimation with the CSP is smaller 
than the previous work whose subjects have wide age range 
[1, 9].

Comparing with the recent work based on VBM [9], the 
estimation result improves about 8 % on MAE and 15 % 
on RMSE (Table 5) on account of employed features and 
features selection method used in our model. In terms of 
employed feature, surface-based features were found to 
be more sensitive to human age than voxel-based features 
[12, 16, 17]. In terms of feature selection method, we also 
tried to use PCA to reduce the vertex-based features of the 
model, but the MAE and RMSE of age estimation were 
both much larger than that obtained by the model using sta-
tistical method. Furthermore, we tried to use SVM-RFE to 
reduce the dimension of the CSP and we find that the CSP 
has the smallest dimension and cannot be reduced without 
losing the age information (Fig. 4). This result suggests that 
the feature selection in our model is very useful. There-
fore, we infer that the improvement is mainly because of 
the induced surface-based features and the feature selection 
method used in our model.

In order to reveal why the age estimation model with the 
CSP performs best, we analyzed the trajectories of surface-
based features across life span (Fig. 5) and investigated the 
age effect on the most correlated features by regression 
method (Fig. 6). Almost no change to surface area across life 
span and the lowest correlation with human age among all 
surface-base features were showed in Figs. 5, 6, suggesting 
the surface area is not sensitive to human age. This result is 
consistent with the previous studies [16, 17]. And that’s the 
reason why surface area is not included in surface pattern. 
The significant tendencies and relatively high correlation 
between human age and cortical thickness as well as curva-
tures demonstrate that cortical thickness and curvatures are 
very sensitive to human age. According to the previous study 
[18], Gaussian curvature is the intrinsic curvature which con-
cerns the differential relationship between different points 
on the surface, and mean curvature is the extrinsic curvature 
which quantifies the rate of deviation between one surface 
and another. In other words, these two curvatures comple-
ment each the other. Although the increased tendency of 
Gaussian curvature along age groups is not as obvious as 
that of mean curvature, these two curvatures concern the 
surface information from different perspectives. We hence 

both include the two curvatures in the CSP. Moreover, the 
evident decreased tendency of cortical thickness along age 
groups indicated that the cortical thickness is quite sensitive 
to human age, which also coincides with previous researches 
[16, 17]. Cortical thickness reflects the longitudinal change 
of cortical cortex along age groups, while two curvatures 
reflect the transverse change of cortical cortex along age 
groups. Hence, the CSP reflects cortical changes in both lon-
gitudinal direction and transverse direction, which makes 
CSP perform quite well in the age estimation.

We also utilize the CSP to classify age groups, which 
gives us a more accurate result than previous studies. Lao 
et  al. [15] tested an SVM-based classification with brain 
morphometry signature method by assigning their elderly 
subjects into one of four age groups and reached an accu-
racy rate of 90 %. Dosenbach et al. [6] performed a binary 
SVM classification of individual as either children or 
adults to assess the relative functional brain maturity and 
reached the accuracy of 91  %. A new MVPA approach 
based on sparse representation has been employed to inves-
tigate the anatomical covariance patterns of normal aging 
by classifying two age groups in [28] and the mean accu-
racy is about 97.4  %. Comparing with previous studies, 
the age groups classification with our CSP yields a high 
CV accuracy (97.77  %) and a high sensitivity/specificity 
(97.30/98.10 %). This result indicates that our CSP is sen-
sitive to brain development.

In the recent work, Brown et  al. [2] estimated human 
age with multimodal images and the estimation result was 
quite well. However, it is difficult to acquire multimodal 
images because of the high costs on time and money during 
scanning in the clinical practice. Since we only employ the 
single-modal images to estimate human age and obtain the 
high accuracy estimation, our age estimation model using 
the CSP is of greater practical value. What is more impor-
tant, our work studied human brain development in almost 
the whole life span (7–82  years) and demonstrated that a 
combination of noninvasive brain biomarkers can assess the 
dynamically changing phases of brain development from 
early childhood into old adulthood relatively accurately.

In addition, when analyzing the relationship between 
the surface-based features and human age, we find that, in 
terms of the regional age-related changes in cortical thick-
ness, predominant reductions were seen in subcentral gyri/
sulci, cingulate gyri/sulci, and frontal lobe. In terms of the 
regional age-related changes in surface area, some regions 
in the frontal lobe and occipital lobe showed the greatest 
age-related reduction (Fig.  5). These findings support the 
previous work [16] and also offer the evidence to prove that 
cortical thickness is more informative for age-related mor-
phometric changes across the life span, whereas surface 
area may be less sensitive to morphometric variations with 
aging than other surface-based features.
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5 � Conclusions

This paper has presented an age estimation model, which 
uses the CSP integrating cortical thickness and surface cur-
vatures as features and RVR as the regressor. The experi-
mental results show that our age estimation model improves 
the prediction accuracy about 8  % on MAE and 15  % on 
RMSE compared to the previous methods. It suggests that 
surface-based features are more sensitive to human age than 
voxel-based features. We also demonstrate that our age esti-
mation model is reliable to age ranges and databases, and 
the CSP used in the model is sensitive to human age.
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