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Abstract

In clustering, global feature selection algorithms attempt to select a common feature subset that is relevant to all clusters. Conse-
quently, they are not able to identify individual clusters that exist in different feature subspaces. In this paper, we propose a localized
feature selection algorithm for clustering. The proposed algorithm computes adjusted and normalized scatter separability for individual
clusters. A sequential backward search is then applied to find the optimal (maybe local) feature subsets for each cluster. Our experimental
results show the need for feature selection in clustering and the benefits of selecting features locally.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering is a common unsupervised learning technique
used to discover the nature groups of similar objects, rep-
resented by vectors of measurements, in multidimensional
spaces. A clustering algorithm typically considers all fea-
tures of the data in an attempt to learn as much as possible
about the objects. However, with high dimensional data,
such as in visual recognition and document classification
cases, many features are redundant or irrelevant. The
redundant features are of no help for clustering; even
worse, the irrelevant features may hurt the clustering
results by hiding clusters in noises. To alleviate this prob-
lem, one of the most extensively used methods is feature

selection. The objective of feature selection is threefold:
improving the performance of clustering, providing fast
and cost-efficient solution, and providing a better under-
standing of the underlying process that generates the data.

Feature selection involves searching through various
feature subsets, followed by the evaluation of each of them
0167-8655/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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using some evaluation criteria (Blum and Langley, 1997;
Dong and Kothari, 2003; Kohavi and John, 1997; Yu
and Liu, 2004). The mostly used search strategies are
greedy sequential searches through the feature space, either
forwards or backwards. Different types of heuristics, such
as sequential forward or backward search, floating search,
beam search, bidirectional search, and genetic search, have
been suggested to navigate the possible feature subsets
(Caruana and Freitag, 1994; Kohavi and John, 1997; Pudil
et al., 1994; Yang and Honavar, 1997). In supervised learn-
ing, classification accuracy is widely used as evaluation cri-
terion (Blum and Langley, 1997; Kohavi and John, 1997;
Motoda and Liu, 2002; Yang and Honavar, 1998; Yu
and Liu, 2004). However, in unsupervised learning, feature
selection is more challenging since the class labels are
unavailable to guide the search.

Feature selection in supervised learning has been widely
studied (Dong and Kothari, 2003; Kohavi and John, 1997;
Yu and Liu, 2004). However, for unsupervised learning, the
research is relatively recent (Dash et al., 2002; Dy and Brod-
ley, 2004; Law et al., 2004; Mitra et al., 2002; Modha and
Spangler, 2003). The objective is to select important fea-
tures for clustering in the absence of class labels. In (Mitra
et al., 2002), a maximum information compression index is
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used to measure feature similarity so that feature redun-
dancy is detected. The algorithm described in (Dash and
Liu, 2000) evaluates the clustering tendency of each feature
by an entropy index. In (Modha and Spangler, 2003),
weights are assigned to different feature spaces for k-means
clustering based on within-cluster and between-cluster
matrices. Feature saliency is integrated in EM algorithm
in (Law et al., 2004) so that feature selection is performed
simultaneously with clustering process. Dy and Brodley
recently proposed a wrapper criterion for clustering (Dy
and Brodley, 2004), which evaluates the quality of clusters
using normalized cluster separability (for k-means) or nor-
malized likelihood (for EM clustering). In their approach,
the bias on the feature subsets with respect to dimensional-
ity is ameliorated by cross-projection normalization.

In the aforementioned algorithms, the candidate feature
subsets are evaluated globally. Regardless what the evalua-
tion criteria are, global feature selection approaches com-
pute them over the entire dataset. Thus, they can only
find one relevant feature subset for all clusters. However,
it is the local intrinsic properties of data counts during clus-
tering (Ke and Kanade, 2004). Such a global approach can-
not identify individual clusters that exist in different feature
subspaces. An algorithm that performs feature selection for
each individual cluster separately is highly preferred.

In this paper, we propose a localized feature selection
algorithm for clustering. The proposed algorithm computes
adjusted and normalized scatter separability for individual
clusters. A sequential backward search is then applied to
find the optimal (maybe local) feature subsets for each clus-
ter. Our experimental results show that the proposed local-
ized feature selection outperforms global approaches on
various datasets.

The rest of the paper is organized as follows. The moti-
vation and details of the proposed algorithm are described
in Section 2. Our algorithm is evaluated using both a syn-
thetic dataset and several real-world datasets in Section 3.
In Section 4, some conclusions are provided.

2. Localized feature selection for clustering

2.1. Motivation

Our motivation for localized feature selection can best
be illustrated using a synthetic dataset. We generate 400
data points with four clusters {C1,C2,C3,C4} in four
dimensional space {X1,X2,X3,X4}. Each cluster contains
100 points. Clusters C1 and C2 are created in dimensions
X1 and X2 based on a normal distribution. X3 and X4 are
white noise features in these two clusters. The means
and standard deviations are: lC1

¼ ½0:5;�0:5; 0; 0�, lC2
¼

½�0:5;�0:5; 0; 0�, and rC1
¼ rC2

¼ ½0:2; 0:2; 0:6; 0:6�, respec-
tively. Clusters C3 and C4 exist in dimensions X2 and X3

with white noise in X1 and X4, and are created in the
same manner. The means and standard deviations are:
lC3
¼ ½0; 0:5; 0:5; 0�, lC4

¼ ½0; 0:5;�0:5; 0�, and rC3
¼ rC4

¼
½0:6; 0:2; 0:2; 0:6�, respectively. Fig. 1 shows the data in
different subspaces. A general clustering algorithm, such
as k-means or EM, is unable to obtain satisfactory cluster-
ing results for this data, either on all features
{X1,X2,X3,X4}, or on relevant feature subset {X1,X2,X3}
(may be generated by a global feature selection algorithm,
i.e. Law et al., 2004), because each cluster still has one irrel-
evant feature. For data in higher dimensional space, this
problem becomes more prominent.

On the other hand, if we further remove X3 from the fea-
ture subset {X1,X2,X3}, we can completely separate C1 and
C2, as shown in Fig. 1a. Similarly, C3 and C4 can be well
separated by removing X1 as shown in Fig. 1b. In addition,
the clustering results of localized feature selection provide a
better understanding of the underlying process that gener-
ates the data. For example, C1 � {X1,X2} clearly indicates
that cluster C1 is mainly generated by features X1 and X2.

Usually, there are two major components of a feature
selection algorithm: evaluation criteria and feature subset
search methods. In the following, we first discuss the eval-
uation criterion for the localized feature selection algo-
rithm, then the search method.

2.2. Evaluation criteria

In this section, we first provide a brief introduction to
scatter separability criterion, one of the well-known cluster-
ing criteria (Dy and Brodley, 2004), and then show how
this criterion can be adapted to localized feature selection.

Let Sw and Sb denote within-class scatter matrix and
between-class scatter matrix, respectively, we have,

Sw ¼
Xk

i¼1

piEfðX � liÞðX � liÞ
TjCig ¼

Xk

i¼1

piRi ð1Þ

Sb ¼
Xk

i¼1

pjðli � l0Þðli � l0Þ
T ð2Þ

l0 ¼ EfXg ¼
Xk

i¼1

pili ð3Þ

where pi is the probability that an instance belongs to clus-
ter Ci, X the d-dimensional input dataset, k the number of
clusters, li the sample mean vector of cluster Ci, l0 the total
sample mean, Ri the sample covariance matrix of cluster Ci,
and E{Æ} the expected value operator.

Since Sw measures how scattered the samples are from
their cluster mean, and Sb measures how scattered the clus-
ter means are from the total mean, the scatter separability
is defined as

CRIT ¼ trðS�1
w SbÞ ð4Þ

Although there are a bunch of other separability criteria
available, the measure CRIT enjoys a nice property that
it is invariant under any nonsingular linear transformation
(Fukunaga, 1990). However, this criteria requires a nonsin-
gular within-class scatter matrix Sw. In the case that the Sw

is singular, the following separability criteria can be used
instead,
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Fig. 1. Synthetic data plotted in different feature sets. Data from different clusters are marked with different colors. (a) in X1 and X2, (b) in X2 and X3, (c) in
X1 and X3.
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CRIT ¼ trðSbÞ=trðSwÞ ð5Þ
In the rest of this paper, we use trðS�1

w SbÞ in our discussion.
However, be aware that tr(Sb)/tr(Sw) is used for a singular
Sw. Similar to the definition of Sw, we define SðiÞw , the with-
in-class matrix of an individual cluster Ci as,

SðiÞw ¼
1

ni
EfðX � liÞðX � liÞ

TjCig ¼
1

ni
Ri ð6Þ

where ni is the number of points in cluster Ci. Now, we are
ready to define the scatter separability of cluster Ci.

Definition 1. The scatter separability of cluster Ci is defined
by,

CRITðCiÞ ¼ trðSðiÞ�1
w SbÞ ð7Þ

Assuming that identical clustering assignments are
obtained when more features are added, the scatter separa-
bility CRIT prefers higher dimensionality since the crite-
rion value monotonically increases as features are added
(Fukunaga, 1990). The same conclusion could be drawn
for the scatter separability of an individual cluster. Specif-
ically, in (Fukunaga, 1990), it is shown that a criterion of
the form X T

d SdX d , where Xd is d-column vector and Sd is
a d · d positive definite matrix, monotonically increases
with dimension. Based on this, we have:

Proposition 1. CRIT(Ci) monotonically increases with

dimensions as long as the clustering assignments remain the

same.

Proof. Since Sb can be expressed as
Pk

j¼1ZjZT
j where Zj is a

column vector

CRITðCiÞ ¼ trðSðiÞ�1
w SbÞ ¼ tr SðiÞ�1

w

Xk

j¼1

ZjZT
j

 !

¼
Xk

j¼1

trðSðiÞ�1
w ZjZT

j Þ ¼
Xk

j¼1

trðZT
j SðiÞ�1

w ZjÞ

¼
Xk

j¼1

ZT
j SðiÞ�1

w Zj ð8Þ

Every term of Eq. (8) monotonically increases with dimen-
sion, thus the criterion for an individual cluster CRIT(Ci)
monotonically increases with dimension. h
To alleviate this problem, normalization of the separa-
bility criterion with respect to dimensions is necessary for
feature selection (Dy and Brodley, 2004). Moreover, for
localized feature selection strategies, each cluster is associ-
ated with a distinct feature subset. It is usually impossible
to compute Sb without proper normalization.

In the proposed algorithm, the normalization is per-
formed using cross-projection over individual clusters.
Suppose we have a cluster set C,

C ¼ fðC1; S1Þ; . . . ; ðCi; SiÞ; . . . ; ðCk; SkÞg ð9Þ

where Si is the feature subset corresponding to cluster Ci.
To calculate the scatter separability of (Ci,Si) in cluster
set C, we project all the clusters of C into feature subset
Si, and extend the scatter separability of cluster Ci as
follows.

Definition 2. The scatter separability of cluster Ci in cluster
set C on feature subset Si is given by,

CRITðCi; SiÞjC ¼ trðSðiÞ�1
w SbÞjC;Si

ð10Þ

where jC;Si
denotes the project of cluster set C onto feature

subset Si.

Assume an iteration of search produces a new cluster set
C
0

on subspace S0i,

C0 ¼ fðC01; S0iÞ; . . . ; ðC0i; S0iÞ; . . . ; ðC0k; S0iÞg ð11Þ

Let us also assume that cluster ðC0i; S0iÞ corresponds to clus-
ter (Ci,Si), i.e., ðC0i; S0iÞ is the cluster that has the largest
overlap with (Ci,Si) in set C

0
. We then generate a new clus-

ter set, C*, by replacing (Ci,Si) in C with ðC0i; S0iÞ,

C� ¼ fðC1; S1Þ; . . . ; ðC0i; S0iÞ; . . . ; ðCk; SkÞg ð12Þ
Note that CRIT(Ci,Si)jC and CRITðC0i; S0iÞjC� cannot be
compared directly because of the dimension bias. We have
to cross-project them onto each other,

NVðCi; SiÞjC ¼ CRITðCi; SiÞjC � CRITðCi; S
0
iÞjC ð13Þ

NVðC0i; S0iÞjC� ¼ CRITðC0i; S0iÞjC� � CRITðC0i; SiÞjC� ð14Þ

After the cross-projection, the bias is eliminated and the
normalized value NV can be used to compare two clusters



Y. Li et al. / Pattern Recognition Letters 29 (2008) 10–18 13
in different feature subspaces. A larger value of NV indi-
cates larger separability, i.e., better cluster structures.

2.2.1. Penalty of overlapping and unassigned points

Localized feature selection implicitly creates overlapping
and/or unassigned data points. Overlapping points are the
data which belongs to more than one cluster, while unas-
signed points are the data which belongs to noncluster.
Specifically, the overlapping measure O can be computed
as,

O ¼
Xk

i6¼j

jCi \ Cjj
meanðjCij; jCjjÞ

ð15Þ

where Ci and Cj are two different clusters. Unassigned mea-
sure U can be computed as,

U ¼ nu

n
ð16Þ

where n and nu are the total number of data and the num-
ber of unassigned points, respectively. Overlapping and/or
unassigned data are allowed in some applications, and may
be forbidden by other applications. Depending on the do-
main knowledge, we could adjust the impact of overlap-
ping and unassigned points by introducing a penalty and
to obtain the adjusted normalized value ANV.

Definition 3. The adjusted and normalized scatter separa-
bility pair of cluster Ci in cluster set C on feature subset Si,
and cluster C0i in cluster set C* on feature subset S0i is given
by,

ANVðCi; SiÞjC ¼ NVðCi; SiÞjC � eð�aDO�bDUÞ ð17Þ
ANVðC0i; S0iÞjC� ¼ NVðC0i; S0iÞjC� � eðaDOþbDUÞ ð18Þ

where DO and DU are the changes on the overlapping and
unassigned measure, respectively, if cluster (Ci,Si) is re-
placed by cluster ðC0i; S0iÞ. a and b are two constants.

In Definition 3, a and b are used to control the sensitiv-
ity with respect to overlapping points and unassigned
points. Large values of a and b discourage the occurrence
of overlapping and unassigned data. On the other hand,
if a or b is zero, the corresponding effect of overlapping
or unassigned data will be ignored when two clusters are
compared. The values of a and b depend on the given
application and have to be determined empirically. For
example, if a large portion of data is unassigned after clus-
tering, b needs to be increased.

When two clusters (Ci,Si) and ðC0i; S0iÞ are compared, if
ANVðCi; SiÞjC > ANVðC0i; S0iÞjC� , we choose (Ci,Si). If
ANVðCi; SiÞjC ¼ ANVðC0i; S0iÞjC� , we prefer the cluster in
the lower dimensional space. In addition, when two identi-
cal clusters are obtained in two different feature subsets,
they have equal adjusted normalized value ANV, which
is exactly what we want. More formally,

Proposition 2. Given two identical clusters C1 = C2, and the

corresponding feature subspaces S1 and S2, the adjusted

normalized value ANV(C1,S1) = ANV(C2,S2).
Proof. Since C1 = C2, we have C = C*. Thus,

NVðC1; S1Þ ¼ CRITðC1; S1Þ � CRITðC1; S2Þ
¼ CRITðC2; S2Þ � CRITðC2; S1Þ ¼ NVðC2; S2Þ

And DO = DU = 0. Thus,

ANVðC1; S1Þ ¼ ANVðC2; S2Þ � ð19Þ
2.2.2. Unassigned/new data

In case that some new data are obtained or unassigned
data are not allowed by an application, assignments have
to be made after clustering for these new/unassigned
points. The similarity of an instance and a cluster could
be measured by either distance (k-means clustering), or
likelihood (EM algorithm). The additional difficulty intro-
duced by localized feature selection algorithm is that clus-
ters are associated with different feature subsets, making
the direct comparison between clusters meaningless. For
distance based similarity, a straightforward solution is to
normalize the distance measure over its variance within
each cluster, and assign the instance to a cluster that min-
imizes the normalized distance,

arg min
Cj

d ¼ arg min
Cj

kX ijSj
� ljk

r2
j

 !
ð20Þ

where Xi is an unassigned point, lj the cluster mean vector
of Cj, Sj the feature subset of Cj, X ijSj

the projection of Xi

into Sj, and kÆk is the norm of a vector. A similar method
can be developed for likelihood-based similarity measure.

2.3. Search methods

The cross-projection normalization scheme assumes that
the clusters to be compared should be consistent in the
structure of the feature space (Dy and Brodley, 2004). Con-
sequently, we select sequential backward search instead of
the sequential forward search adopted in (Dy and Brodley,
2004). The tradeoff is the slower clustering speed.

Specifically, the data are first clustered based on all
available features. Then, for each cluster, the algorithm
determines if there exists a redundant or noisy feature
based on the adjusted normalized value ANV defined in
Eqs. (17) and (18). If so, it will be removed. The above pro-
cess is repeated iteratively on all clusters until no change is
made, at which time the clusters with the associated feature
subsets will be returned. The sequence of steps shown in
Fig. 2 illustrates our algorithm in detail.

The complexity is O(ndik) for the conventional k-means
algorithm, and O(nd2ik) for the GFS-k-means algorithm,
where n is the number of points, d the number of features,
i the number of iteration (usually unknown), and k the
number of clusters. The complexity of our approach, in
worst case, is O(nd3k2i) with backward sequential search.
It shows that for datasets with very high dimensions and
large number of clusters, the proposed algorithm is slow



Fig. 2. The proposed localized feature selection algorithm.
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compared to general k-means and global feature selecting
algorithms. However, the complexity is in polynomial
form, and thus is still acceptable in practice.

3. Experiment and results

We evaluate the localized feature selection algorithm
using both synthetic and real-world datasets. The experi-
mental results are obtained by choosing k-means as the
clustering algorithm. However, note that the adjusted nor-
malized value ANV is not restricted to k-means. It can be
used together with any general clustering algorithm.

In general, it is difficult to evaluate the performance of a
clustering algorithm on high dimensional data. Localized
feature selection presents an additional layer of complexity
by associating clusters with different feature subsets. There-
fore, we take a gradual approach for our evaluation. We
first test the proposed algorithm on a small synthetic data-
set with known data distribution along each feature dimen-
sion. Then, we investigate five real-world datasets
downloaded from UCI repository (Blake and Merz,
1998). On all UCI datasets, we perform a semi-supervised
learning strategy for evaluation purpose. This makes it pos-
sible for us to compute a pseudo-accuracy measure for easy
comparison among different algorithms. However, one
should be aware that the ‘‘true’’ class labels are not always
consistent with the nature grouping of the underlying data-
set. Thus, the quality of clusters should be further analyzed
in addition to the pseudo-accuracy. For this purpose, we
also illustrate our results by visually examining the clusters
in the selected feature subspace on synthetic data and Iris
data.

For each dataset, we compare our localized feature
selection algorithm (with k-means, denoted by LFS-k-
means) with global feature selection algorithm (also with
k-means, denoted by GFS-k-means), and k-means without
feature selection. GFS-k-means is implemented in a similar
fashion as Dy and Brodley (2004). The only difference is
that we adopted the backward search strategy due to the
reason discussed in Section 2.3.
In the experiments described above, the number of clus-
ters k is set to the ‘‘true’’ number of classes. This is not
always applicable in real world applications. How to deter-
mine the value of k is a common problem in unsupervised
learning. It may strongly interact with the predicted cluster
structures, as well as the selected feature subset in feature
selection algorithms (Figueiredo and Jain, 2002; Fukunaga,
1990; Law et al., 2004). Another typical problem asso-
ciated with clustering is how to initialize cluster centroids.
Bad initial clusters/centroids might lead to low quality clus-
ters. Techniques, such as preliminary clustering and choos-
ing the best from several independent runs, are frequently
used to alleviate the chance of bad initial clusters. In the
proposed algorithm, bad initial clusters for backward
searching may occur, particularly when many noise fea-
tures are presented, and thus lead to unsatisfactory final
clusters and feature subsets. This problem can be alleviated
by preliminary clustering with a global feature selection
algorithm. To this end, we perform another set of experi-
ments as an example solution for unknown k and prelimin-
ary clustering in Section 3.4. Specifically, we evaluate our
algorithm over three UCI datasets with a large number
of features and examples, assuming the k is unknown.
We first employ the global feature selection algorithm pro-
posed in (Law et al., 2004) to estimate the number of clus-
ters, global feature saliency and cluster centroids. Then, we
use them as initial parameters and run our localized algo-
rithm. Clusters obtained are labeled to its majority portion
of true classes, and errors are calculated accordingly.

3.1. Synthetic data

The synthetic data is described in Section 2.1, and illus-
trated in Fig. 1. Penalties of overlapping and unassigned
points (a and b) are set at 1.

Table 1 shows the confusion matrix and error rate of k-
means with full feature set, k-means without the totally
irrelevant feature X4, GFS-k-means, and LFS-k-means,
and Table 2 shows the selected feature subsets. Clearly,
by employing all four available features, k-means performs
poorly with a error rate of 0.225, which indicates that irrel-
evant features greatly reduce the clustering performance.
Meanwhile, GFS-k-means does a terrible job with an unac-
ceptable error rate of 0.708. The output feature subset con-
tains only the noisy feature X4. This surprising result could
be explained as follows: since each feature is irrelevant to at
least two clusters and each cluster has at least two irrele-
vant features, no feature subset is relevant to all clusters.
We also evaluated k-means algorithm on the feature subset
X1, X2, X3, which are the globally relevant features that can
probably be obtained by a smart global feature selection
algorithm, as shown in Table 2. The error rate is as high
as 0.428, indicating that the group structures cannot be rec-
ognized with globally relevant feature subset. The reason is
that the structures are buried not only by the irrelevant
feature X4, but also by the relevant features X1 and X3.
On the other hand, the proposed localized feature selection



Table 1
Confusion matrix and error rate on the synthetic data

Label k-Means k-Means w/o X4 GFS-k-means LFS-k-means

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

T1 77 22 1 0 59 40 1 0 37 17 46 0 99 0 0 1
T2 3 76 0 21 45 49 0 6 33 22 45 0 0 100 0 0
T3 1 7 89 3 0 3 69 28 26 16 58 0 0 1 98 1
T4 23 0 9 68 3 0 45 52 35 14 51 0 2 0 0 99

Error 0.225 0.428 0.708 0.01

C1–C4 are the output cluster labels, and T1–T4 are the true cluster labels.

Table 2
Feature subset distribution on the synthetic data

Algorithm Feature subset(s)

C1 C2 C3 C4

k-Means {1,2,3,4}
GFS-k-means {4}
LFS-k-means {1,2} {1,2} {2,3} {2,3}

C1–C4 are the output cluster labels.

Table 4
Feature subset distribution on iris data

Algorithm Feature subset(s)

C1 C2 C3

k-Means {1,2,3,4}
GFS-k-means {3}
LFS-k-means {4} {3,4} {3,4}

C1–C3 are the output cluster labels.
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algorithm produces an excellent result with an error rate of
0.01. From Table 2, we can see clearly that the relevant fea-
tures for each cluster are selected correctly, and the clusters
are well separated in the corresponding feature subspaces
(Fig. 1a and b). This result confirms that selecting features
locally is meaningful and necessary in clustering.
3.2. Iris data

Iris dataset from UCI is a widely used machine learning
benchmark dataset for both supervised learning and unsu-
pervised learning. This dataset has three classes, four fea-
tures, and 150 instances. In this experiment, we set a and
b to be 1 and 6, respectively.

Table 3 shows the confusion matrix and error rate of k-
means, GFS-k-means, and LFS-k-means, respectively, and
Table 4 shows the corresponding feature subsets. k-means,
with all four features, is able to successfully identify cluster
1, ‘‘iris-setosa’’. However, it does not perform well on
cluster 2, ‘‘iris-versicolor’’, with an error rate of 0.22, and
cluster 3, ‘‘iris-virginica’’, with an error of 0.28. The
GFS-k-means discards feature 1, 2, and 4, and recognizes
the structure of the dataset much better with only feature
3. The proposed LFS-k-means results in the best pseudo-
Table 3
Confusion matrix and error rate on iris data

Label k-Means GFS-k

C1 C2 C3 C1

T1 50 0 0 50
T2 0 39 11 0
T3 0 14 36 0
Error 0.167 0.0467

C1–C3 are the output cluster labels, and T1–T3 are the true cluster labels.
accuracy. The selected feature subsets show that cluster 1
can be separated along feature 4, clusters 2 and 3 can be
separated along features 3 and 4. The right panel of
Fig. 3 shows the scatter plot of iris data along features 3
and 4. Clearly, cluster 1 can be separated either by feature
3 or by feature 4. In other words, one of the features is
redundant to cluster 1. The proposed algorithm keeps fea-
ture 4 and removes feature 3 from the subset. The selected
features for clusters 2 and 3 (features 3 and 4) are also con-
sistent with our visual inspection. The left panel of Fig. 3
clearly shows that features 1 and 2 are not helpful to differ-
entiate these two clusters.

The experimental results on iris dataset show that the
proposed algorithm is capable of reducing redundant/noisy
features for each individual cluster. It can also provide us a
better understanding of the date generation.
3.3. Other UCI data

We also evaluate LFS-k-means and compare the results
with k-means and GFS-k-means on four other UCI data-
sets, Wine, Ion, Sonar, and Glass, which are more compli-
cated than Iris dataset in terms of number of features and
number of classes. From Wine to Ion to Sonar, the number
-means LFS-k-means

C2 C3 C1 C2 C3

0 0 50 0 0
46 4 0 48 2
3 47 0 4 46

0.04
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of features increases from 13 to 32 to 60 with two or three
classes. From Ion to Wine to Glass dataset, the number of
classes increases from 2 to 3 to 5. Table 5 shows the exper-
iment results.

For Wine dataset, GFS-k-means keeps 12 out 13 fea-
tures with accuracy of 0.039. On the other hand, LFS-k-
means selects 10, 13 and 8 features for different clusters
with a better accuracy of 0.023.

For the Ion dataset, GFS-k-means selects 10 features for
both clusters. Compared to GFS-k-means, our proposed
algorithm results in 1 feature for cluster C1 and 10 features
for the other cluster C2. Notice that these 10 features for
C2 are identical to those selected by GFS-k-means. This
implies that localized feature selecting algorithm performs
at least the same as global feature selecting algorithm. Fur-
thermore, it also shows that it is often unsuitable to only
select one feature subset for all the clusters in unsupervised
learning.

Experiments on Glass and Sonar datasets give similar
results. In summary, LFS-k-means leads to variant feature
subsets for different clusters, and provide best (on Wine
and Sonar) or similar (on Ion and Glass) pseudo-accuracy
compared to conventional k-means algorithm and GFS-k-
Table 5
Comparison of k-means, GFS-k-means and LFS-k-means on other UCI data

Dataset Subfeature

Name Patt. Feat. Clas. k-Means GFS

Wine 178 13 3 13 {1 2 3 4 5 6 8 9 10 11 12 13}

Ion 351 32 2 32 {3 7 11 13 15 17 19 29 30 31}

Glass 214 9 5 9 {2 3 5 6 7 8 9}

Sonar 208 60 2 60 {35 36 37 38 41 42 44 46 47 51 55 56
means. In addition, the feature subsets selected by LFS-k-
means are usually much shorter than GFS-k-means. These
results confirm that clusters do exist on localized feature
subsets for certain problems.

3.4. UCI data with estimation of k and initial clusters

In this section, we evaluate our algorithm on three UCI
datasets, WDBC, Image, and Zernike. WDBC is the Wis-
consin Diagnostic Breast Cancer dataset with 30 features
and 576 patterns from two classes (benign or malignant).
Image is the image segmentation dataset with 2310 patterns
and 19 features (18 of them are nonsingular) from seven
categories (brickface, sky, foliage, cement, window, path,
and grass). Zernike contains 47 Zernike moments extracted
from 2000 handwriting numerals (0–9), 200 for each digit.
These datasets with large number of features and examples
present a more difficult problem for the proposed localized
feature selection algorithm.

We suppose that the number of clusters k is unknown.
We first run global feature selection algorithm in (Law
et al., 2004) with 30 initial clusters, and obtain the esti-
mated value of k, cluster centroids, and global feature sal-
sets

Error

LFS k-Means GFS LFS

C1: {1 3 4 5 7 8 10 11 12 13} 0.034 0.039 0.023
C2: {1 2 3 4 5 6 7 8 9 10 11 12 13}
C3: {3 4 5 9 10 11 12 13}

C1: {13} 0.288 0.296 0.296
C2: {3 7 11 13 15 17 19 29 30 31}

C1: {4 5 7 9} 0.192 0.201 0.196
C2: {2 3 4 5 7 8 9}
C3: {3 5 7 9}
C4: {6 8}
C5: {5 6}

57 58 59 60} C1: {9 10 49 50 51 56 58} 0.452 0.466 0.375
C2: {9 10 49 50 51 56 58}



Table 6
UCI datasets with estimated number of clusters and initial centroids

Dataset GFS LFS Error

Name Patt. Feat. Clas. k̂ Salient feat. Feat. subset GFS LFS

WDBC 576 30 2 8 {29 features} C1: {24 features} 0.09 0.10
C2: {25 features}
C3: {13 14 16 17 23 26 29}
C4: {26 features}
C5: {25 features}
C6: {4 13 14 16 23 26}
C7: {4 13 14 16 23 26 29}
C8: {4 14 16 23 26 29}

Image 2310 18 7 18 {17 features} C1:{7 8 14 17} 0.19 0.28
C2: {12 13}
C3: {2 3 9 11 13 14 15 16 18}
C4: {3 4 5 9 10 13 16 18}
C5: {5 18}
C6: {18}
C7: {18}
C8: {17 features}
� � �

Zernike 2000 47 10 17 {45 features} C1:{16 features} 0.49 0.48
C2: {22 features}
C3: {13 features}
C4: {13 features}
C5: {2 features}
C6: {44 features}
C7: {16 features}
C8: {44 features}
� � �
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iency. Only features with saliency greater than 0.5 are kept.
We then run the proposed algorithm using the estimated k

and corresponding centroids. The experimental results are
reported in Table 6. For Image and Zernike datasets, only
the first eight clusters are shown.

On WDBC, the GFS algorithm leads to 29 salient fea-
tures out of 30. Our approach produces different feature
subsets for each cluster. The size of feature subsets varies
from 6 to 26, with an average value of 15.8, which is much
less than the size of feature subset obtained by GFS. Same
results are observed on both Image and Zernike datasets:
On Image dataset, feature subset size varies from 1 to 17
with an average value of 6.3, while the size of GFS’s is
17. On Zernike dataset, feature subset size varies from 2
to 45 with an average value of 22.7, while the size of GFS’s
is 45.

The error rates of GFS and LFS on WDBC are almost
the same (0.09 and 0.10, respectively), as well as the error
rate on Zernike (0.49 and 0.48, respectively), which implies
that our clustering results are comparative to GFS over
those datasets. Note that the error rate on Image is differ-
ent: 0.19 for GFS and 0.28 for LFS. However, one cannot
conclude that the clustering quality of LFS is much worse
than that of GFS on this dataset, since the cluster struc-
tures may be ambiguous between the true classes in this
dataset. The benefit of LFS here is a much smaller subset
of features for individual clusters.
4. Conclusions and future work

In clustering, global feature selection algorithms attempt
to select a common feature subset that is relevant to all
clusters, which may not be feasible for many high dimen-
sional datasets with many clusters. In order to identify indi-
vidual clusters that exist in different feature subspaces, we
proposed a localized feature selection algorithm. We devel-
oped adjusted and normalized scatter separability (ANV)
for individual clusters, based on which our algorithm was
capable of reducing redundant/noisy features for each clus-
ter separately. The proposed algorithm can also provide us
a better understanding of the underlying process that gen-
erates the data. Our experimental results on both synthetic
and real-world datasets showed the need for feature selec-
tion in clustering and the benefits of selecting features
locally.

In this paper, we employed the cross-projection method
to evaluate the quality of an individual cluster, which made
it impracticable to change the number of clusters during
clustering and feature selection process. Thus, a fixed k esti-
mated in advance was required to perform localized feature
selection with our approach. However, in the area of unsu-
pervised learning with feature selection, algorithms that
simultaneously compute the number of clusters and the
local feature subset will be more desirable. In future work,
this is the direction that we are actively pursuing.
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