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jects at different positions and time instants as well as find out 

all the tracks of pedestrians seen from different viewpoints. This is 

also known as re-identification (RE-ID) in multiple camera surveil- 

lance. A considerable amount of studies has been carried out on 

this topic [4–7] . However, our work is quite different from most 

of these RE-ID methods. In our work, we focus on dealing with 

the following problems: In a surveillance video, we build a clas- 

sification model by using some instances of p pedestrians (class). 

Then, (i) when any of these p pedestrians show up again, we can 

recognize them with a very high accuracy rate (AR). When a new 

pedestrian ( p + 1 th class) appears, we use several instances of this 

new class to update the classification model by incremental learn- 

ing. Then, (ii) the new pedestrian can be subsequently recognized 

with a very high AR. The pedestrians may undergo significant ap- 

pearance changes due to different camera parameters, illumination 

variations, occlusions, camera viewpoints, poses and sensor noises, 

especially for long distance surveillance. When the recognition per- 

formance deteriorates due to the environment changes, (iii) the 

classification model can maintain a very high AR by incremental 

learning. In addition, (iv) we want to explore some detailed but 

important aspects, such as the influence of different quantity of 

samples for learning on AR, the influence of foreground extraction 

on AR. From the point of efficiency, (v) we want to achieve a very 

high AR using only a small amount of instances of each pedestrian 

for modeling. To our knowledge, up to the present, the state-of- 

the-art RE-ID methods seldom focus on dealing with these prob- 

lems. A similar research has been carried out by Teixeira and Luis 

[8] . However, the problems of (ii), (iv) and (v) are not considered 

in this work. And our method achieved much higher AR than the 

method proposed in [8] . We compared it with other methods in 

our previous work [9] . 

Many previous methods of pedestrian recognition and tracking 

across multiple cameras were formulated under the assumption 

that camera topology or association is known. Therefore, camera 

calibration is required in these methods. Rahimi et al. [1] described 

a method to simultaneously recover the trajectory of a target and 

the external calibration parameters of non-overlapping cameras in 

a multi-camera system under the assumption that the associa- 

tion was known. Makris et al. [2] derived a model of activity for 

a multi-camera surveillance network to determine the network’s 

topography. Their method assumed that all departure and arrival 

pairs within a time window were implicitly associated. In these 

pioneer studies, the spatio-temporal relationships among multiple 

cameras were extensively used. 

However, in a large scale network of multi-camera system, cam- 

eras are difficult to calibrate. Especially for the disjoint cameras, 

the captures are independent of one another, and the tracking in- 

formation is discontinuous. The spatio-temporal reasoning requires 

camera calibration and the knowledge of topology of the cam- 

era network. The camera calibration of a large camera network 

is very difficult and time-consuming. Existing calibration meth- 

ods have various limitations and may not be efficient or accu- 

rate enough in deploying a large number of surveillance cameras 

[10] . In addition, it is difficult to determine the topology of the 

camera network structure and infer the distribution of transition 

times between cameras because the cameras may be widely sepa- 

rated in space and time. Therefore, the traditional trajectory-based 

pedestrian recognition methods are usually unavailable. These con- 

straints make pedestrian recognition a considerably challenging 

problem. In this situation, spatio-temporal information is not avail- 

able and only visual appearance information can be used. 

A lot of work has been recently reported in the field of 

appearance-based object recognition. The features developed to 

build the appearance model include color, shape and texture. How- 

ever, these appearance features are sensitive to changes in illumi- 

nation and deformable geometry of objects. As a result, many re- 

search studies have been carried out to address these problems. 

Prosser et al. [11] proposed a cumulative brightness transfer func- 

tion for mapping color between cameras located at different phys- 

ical sites, which makes a better use of the available color infor- 

mation from a very sparse training set. Madden et al. [12] pro- 

posed an illumination-tolerant appearance representation base on 

an online k-means color clustering algorithm which is capable of 

coping with the typical illumination changes. Recently, the scale 

invariant feature transform (SIFT) has been used as another fea- 

ture for object matching [13] . SIFT features are robust to illumina- 

tion changes but suffer from high-dimensional descriptors. Teixeira 

and Luis [8] proposed a novel algorithm to identify objects using 

a vocabulary tree to quantize SIFT features and obtain a multi- 

dimensional vector. To improve efficiency and accuracy, in our pre- 

vious work [9] , a vocabulary tree vector was combined with color 

features, and then introduced an approximate kernel-based PCA al- 

gorithm (AKPCA) to fuse these features. This method was found 

to be effective in recognizing objects. However, AKPCA is a non- 

linear dimension reduction method and it is memory and time- 

consuming. Most of these feature-based approaches depended on 

the spatio-temporal relationship among multiple cameras or were 

based on a set of assumptions that do not usually apply in a real 

world scenario. These challenges make the feature-based pedes- 

trian recognition a difficult task. 

Generally, pedestrian recognition can be conducted using clas- 

sifiers or distance metrics, such as Euclidean distance and Maha- 

lanobis distance. For wide-area video surveillance, the appearance 

of objects captured in different cameras is likely to change over 

time and new objects may appear. Here, a new object indicates 

the pedestrian who has no instance in the primary dataset, while 

having several instances in the new data. To obtain and main- 

tain a high level of recognition accuracy and identify new objects, 

the appearance model should be continuously updated when new 

data are available. In this situation, incremental learning classifiers 

are good choices and superior to traditional classifiers and dis- 

tance metrics. Incremental learning is a machine learning method 

in which the learning process is performed whenever a new sam- 

ple is added to update the model. Compared to traditional machine 

learning methods, incremental learning does not require a suffi- 

cient training set before the training process. Instead, the training 

examples can be augmented over time. 

In this paper, we propose a new methodology for pedestrian 

recognition across multi-camera networks using only visual in- 

formation in which spatio-temporal reasoning is unavailable. The 

major contribution of this paper is three-fold. First, we propose 

a novel multi-level important salient feature detection (MImSF) 

method based on data-adapting convolution filters and a data- 

driven algorithm, and then aggregate our important saliency map 

with color features to formulate an appearance model. MImSF can 

extract main representative features with a high discriminative 

power and the feature aggregation can improve the robustness 

of the appearance model. Second, we propose a novel support- 

vector-machine (SVM) based incremental learning method by us- 

ing modified regularization terms to build and update the appear- 

ance model online and recognize the object based on a classifica- 

tion method. We name our method as object recognition multi- 

category incremental modeling algorithm (ORMIM). Given that the 

scene undergoes large changes during the period of tracking, for 

example, when the model was built from a video captured in an 

evenly illuminated indoor scene, and the target object moved to 

lighted street at night, the recognition performance will be seri- 

ously impaired. Our model solves this problem because it can be 

built and updated by using or adding few samples. With incremen- 

tal learning, our model can maintain a very high recognition rate. 

Third, the proposed approach can effectively discriminate new tar- 

get objects that were never learned in the primary model and si- 
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multaneously improve the matching accuracy of old objects. The 

proposed methodology can achieve a much better performance in 

recognition accuracy, computation efficiency, robustness, require- 

ment for computing and storage space than existing state-of-the- 

art classification-based recognition methods. 

The paper is organized as follows: In Section 2 , we propose 

a novel framework for appearance modeling. In Section 3 , we 

present and discuss the proposed incremental classification algo- 

rithm. In Section 4 , the architecture of our method is described. 

Next, Section 5 reports the experimental results and discussion. Fi- 

nally, the conclusion is drawn in Section 6 . 

2. Pedestrian recognition via incremental learning 

The pedestrian recognition problem can be formulated as learn- 

ing and updating appearance models and decision functions from 

query images to successfully determine whether or not the can- 

didates observed in camera networks belong to one of the object 

targets. It can be defined as follows: 

Definition 2.1. Let V denotes a set of pedestrian images observed 

over a camera network. Given a sequence of training dataset 

S 1 , S 2 , . . . , S n , where S i = { (x i j , y i j ) } ⊂ V, x i j ∈ R 

d denotes a pedes- 

trian image, 1 ≤ i ≤ n , 1 ≤ j ≤ n i . y i j ∈ C i = { 1 , . . . , K i } ⊆ { 1 , . . . , K} . 
C i indicates the set of class label in S i , K is the total number of 

pedestrians of interest in V . Let A 1 denotes the appearance model 

built on S 1 . Based on A 1 a primary decision function vector F 1 = 

{ f 1 1 , . . . , f 1 K 1 } is trained. The decision function F 1 assigns a can- 

didate X i ∈ V to the class label k with k = arg j=1 , ... ,K 1 max f 1 j (x i ) . 
Then the incremental learning procedure L p of pedestrian recogni- 

tion can be illustrated as: L p (S i , A i , F i −1 ) = F i , 2 ≤ i ≤ n . 

Here the functions f i j are defined by f i j (x ) = w 

T 
i j 
φ(x ) + b i j . For 

long-distance pedestrian surveillance, new target objects may ap- 

pear. Some pedestrians may disappear from the camera network 

and never show up again, and in this case, the class labels are not 

used again, but the class labels still exist in the set of class labels. 

It does not affect the recognition of other target objects or new tar- 

get objects. Therefore, without loss of generality, we only consider 

the case where the number of class labels do not decrease dur- 

ing the incremental learning procedure, i.e., C 1 ⊆ C 2 ⊆ · · · ⊆ C n . The 

procedure of pedestrian recognition is to build a primary recog- 

nition model F 1 based on an effective appearance representation 

A 1 through a sample set S 1 , and when the changes of scene de- 

grade the performance of the model F 1 or a new object appears, 

the model F 1 can be updated to F 2 according to the new sample 

set S 2 and the new appearance representation A 2 , and so forth. The 

main objective of this paper is to explore an effective pedestrian 

appearance model A i and then an accurate recognition model F i 
can be built and updated by only a very small number of samples. 

The model F i can achieve a very high recognition performance and 

effectively recognize new objects. 

3. A novel framework for appearance modeling based on 

MImSF 

In this section, we present a novel framework for appearance 

modeling based on a proposed feature extraction method by ex- 

ploring the most important salient features. We first give the 

overview of saliency detection methods and then describe the pro- 

posed MImSF method and present the construction of the appear- 

ance model. 

3.1. Overview 

Visual saliency measures low-level stimuli to the human brain 

and visual system. In image/video saliency analysis, salient fea- 

tures are the image regions that most likely attract the human 

visual attention. Saliency is often attributed to variations in im- 

portant image features, such as color, gradient, edges and bound- 

aries; thus, extracting salient features is very helpful for object 

recognition. Detecting the salient regions is now becoming one 

of the most important tasks in many computer vision and graph- 

ics applications. A considerable amount of research has been per- 

formed on salient feature detection. The primary salient features 

are geometry-based features, such as edges, lines, ridges, corners. 

Recently, many bottom-up models (or systems) were proposed to 

calculate the saliency maps, such as region-based approaches [14] . 

Kadir and Brady [15] proposed a scale saliency algorithm to detect 

the salient points by estimating the information content in circular 

neighborhoods at different scales in terms of entropy. This algo- 

rithm is stable and robust, but the choice of parameters is com- 

plicated and the computational cost is high. Several simple and 

fast algorithms have also been proposed to cope with these dis- 

advantages such as spectral residual [16] and phase spectrum of 

Fourier transform [17] . These two approaches are independent of 

parameters and are able to detect salient objects rapidly, but are 

unable to highlight the uniform salient regions for large objects. 

Cheng et al. [18] proposed a histogram based contrast and a spa- 

tial information-enhanced region based contrast saliency extrac- 

tion algorithm. This approach is simple and efficient in calculating 

saliency maps. Nearly all of these methods only consider static im- 

ages rather than video sequences. To cope with this problem, the 

concept of saliency has been used for space-time content-based 

video retrieval and activity recognition, and many researchers de- 

veloped models to generate spatio-temporal saliency map. The 

space-time interest points are those points where the local neigh- 

borhood has a significant variation in both the spatial and temporal 

domain. Laptev et al. [19] proposed a well-known space-time in- 

terest point detector which uses an extension of the Harris corner 

detector to detect spatiotemporal events. Willems et al. [20] identi- 

fied saliency as the determinant of a 3D Hessian matrix, which can 

be efficiently calculated due to the use of integral videos. However, 

these methods need spatio-temporal information, which is diffi- 

cult to acquire. In addition, motion features are required, which 

increases the computational cost and not suitable for applying to 

real-time system. 

3.2. Proposed MImSF 

Suppose S = { (X 1 , Y 1 ) , (X 2 , Y 2 ) , . . . , (X m 

, Y m 

) , . . . , (X M 1 
, Y M 1 

) } is 

the training sample set, m = 1 , . . . , M 1 , X m 

is a training image of 

size a 0 × b 0 , X m 

∈ R 

d and Y m 

is the class label, Y m 

∈ { 1 , . . . , K} , K is 
the number of pedestrian of interest. The input training sample set 

S is used for learning the data-adapting convolution filter bank. For 

each image X i , we take a c 1 × c 2 patch around each pixel and com- 

pute the patch mean. We collect all of these overlapping patches 

and denote them as P = 

[
p i, 1 , p i, 2 , . . . , p i,ab 

]
∈ R 

c 1 c 2 , where p i, j is 

the j th vectorized patch in X i , a = a 0 − c 1 + 1 , b = b 0 − c 2 + 1 . Sup- 

pose ˆ p = p i, j − p i, j , where p i, j is the mean value of p i, j , we then 

get 

ˆ P i = 

[
ˆ p i, 1 , ˆ p i, 2 , . . . , ˆ p i,ab 

]
∈ R 

c 1 c 2 . (1) 

Constructing the same matrix for each training image in S and 

putting them together, we obtain 

P = 

[
ˆ P 1 , ˆ P 2 , · · · , ˆ p M 1 

]
∈ R 

c 1 c 2 ×M 1 ab . (2) 
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Our objective is to find a family of orthonormal filters U = 

[ u 1 , u 2 , . . . , u K ] to minimize the reconstruction error 

ε ( U ) = ‖ P −U U 

T P ‖ 

2 
F , s.t. U U 

T = I M 2 
, (3) 

where ‖ ‖ 2 
F 
denotes the Frobenius norm, M 2 is the number of fil- 

ters and I M 2 
is identity matrix of size M 2 × M 2 . Eq. (3) can also be 

expressed as 

max 
U∈ R c 1 c 2 ×M 2 

tr 
[
U 

T P P T U 

]
, s.t. U U 

T = I M 2 
. (4) 

The M 2 principal eigenvectors of PP 
T can be viewed as the solution, 

then the filters can be represented as 

f m 

= H c 1 ,c 2 ( V m 

) ∈ R 

c 1 ×c 2 , m = 1 , 2 , . . . , M 2 , (5) 

where H c 1 ,c 2 denotes a mapping function from U ∈ R 

c 1 c 2 to f ∈ 

R 

c 1 ×c 2 , and V m 

is the m th principal eigenvectors of PP T . We select 

the leading principal eigenvectors to represent the main character- 

istics of the training image patches. Therefore, we obtain the fea- 

ture maps X m 

i 
for i th training image X i , we called them multi-level 

important feature maps, that is 

X m 

i = X i ∗ f m 

, m = 1 , 2 , . . . , M 2 , (6) 

where ∗ is 2D convolution. To make X m 

i 
and X i have the same size, 

X i is zero-padded. Borji et al. [21] proposed a model integration 

scheme for saliency aggregation. Different from [21] , we aggregate 

the M 2 important feature maps 
{
X m 

i 
| 1 ≤ m ≤ M 2 

}
t o pr oduce a 

final important feature map I i using a different combination func- 

tion to keep maximum values. Then the aggregated important fea- 

ture value I i ( q ) at pixel q of X i is modeled as the probability 

I i ( q ) = P 
(
y q = 1 | I 1 i ( q ) , I 2 i ( q ) , . . . , I M 2 

i ( q ) 
)

∝ max 
1 ≤m ≤M 2 

I m 

i ( q ) 
, (7) 

where I m 

i ( q ) represents the feature value of pixel q in the impor- 

tant feature map X m 

i 
, y q is a binary random variable that takes the 

value 1 if q is an important pixel and 0 otherwise. 

Considering that the biological vision system is sensitive to con- 

trast in visual signal and the regions that contrast strongly with 

their surroundings [18] , the saliency value at each pixel q is de- 

fined as 

S i ( q ) = 

∑ 

q ∈ N q 
d ( q k , q h ) , (8) 

where d ( q k , q h ) is the color distance metric between Luv pixels q k 
and q h , N q is the neighborhood of pixel q . 

In addition to contrast, spatial relationship is another impor- 

tant piece information for human recognition. Therefore, we use 

spatial-relationship based contrast to detect saliency. We first seg- 

ment the video images into regions based on a graph-based 

method [22] , and then build the color histogram for each region. 

The saliency value of each region is calculated using a global con- 

trast score, measured by the region contrast and spatial distances 

between regions [18] . For a region r k , the saliency value is given by 

B i ( r k ) = 

∑ 

r k ,r h ∈ X i 
r k 	 = r h 

w (r h ) d ( r k , r h ) , (9) 

where w ( r h ) denotes the weight of region r k and d ( r k , r h ) denotes 

the color distance metric between these two regions. The weights 

are set to smaller values for farther regions and larger ones for 

closer regions. The color distance between two regions r k and r h is 

defined as 

d ( r k , r h ) = 

n k ∑ 

i =1 

n h ∑ 

j=1 
P 
(
c k,i 

)
P 
(
c h, j 

)
d 
(
c k,i , c h, j 

)
, (10) 

where P ( c k,i ) is the probability of the i -th color c k,i among all n k 
colors in the k th region r k . The probability of a color in the nor- 

malized color histogram of a region is used as the weight. 

To improve the robustness of the appearance model, we pro- 

pose the multi-level important salient features by aggregating the 

important feature map I i and the salient feature map B i . The aggre- 

gated important salient feature values V i , 1 ( q ) and V i , 2 ( q ) at pixel q 

of X i are modeled as 

V i, 1 ( q ) = max ( I i ( q ) , B i ( q ) ) (11) 

V i, 2 ( q ) = 

1 

2 
( I i ( q ) + B i ( q ) ) . (12) 

Therefore, the total important salient feature vector V i for X i can 

be presented as 

V i = ( V i , 1 �V i , 2 ) (13) 

in that order, the symbol ’ �’ denotes the concatenation of the two 

sub-vectors. 

Color histogram is an effective and common global feature and 

has high discrimination ability for object recognition due to be- 

ing robust to the changes in views and poses. Color histogram can 

be built from various color spaces such as RGB, HSV, and LAB. In 

our work, the color histogram in the HSV color space is extracted 

because it gets close to the subjective understanding of color and 

suitable for addressing the object recognition problem. For a given 

object, its HSV color histogram feature vector C i can be represented 

by 

C i = 

{
c i 1 , c i 2 , ..., c i j , ..., c i 256 

}
, j = 1 , ..., 256 , (14) 

where c i j is the value of each HSV bin. 

To obtain the representative features for object recognition, we 

fuse our important salient feature vector V i with color feature vec- 

tor C i to produce the final appearance model 

A i = ( V i �C i ) . (15) 

The flowchart of our MImSF algorithm is illustrated in Fig. 1 . 

we summarize the main steps as follows. First, we extract multi- 

level important feature maps X m 

i 
according to Eq. (6) and aggre- 

gate them according to Eq. (7) to produce feature map I i . Second, 

salient features S i are detected based on Eqs. (9) and 10 . Third, the 

important salient features V i are computed according to Eqs. (11) –

(13) . Finally, the final appearance model A i is built by aggregating 

V i and color histogram feature vector C i according to Eq. (15) . 

4. Pedestrian recognition based on ORMIM 

In this section, we describe a new algorithm for learning and 

updating the appearance model online based on incremental SVM. 

We first give the overview of incremental methods, and then 

present the proposed ORMIM method and give the procedure of 

pedestrian recognition. 

4.1. Overview 

Generally, pedestrian recognition can be conducted using clas- 

sifiers or distance metrics, such as Euclidean distance and Ma- 

halanobis distance (M-distance). Recently, distance metric learn- 

ing has been shown to significantly increase the performance of 

distance-based classifier. Among the previous work, learning the 

M-distance for K -nearest neighbor (KNN) classifier has received 

much attention [23,24] . Mensink et al. [25] explored near-zero 

shot metric learning (NZ-ML) for KNN, which use large margin 

nearest neighbor (LMNN) to improve the performance. Extensions 
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Fig. 1. Processing pipeline of our MImSF algorithm. 

of metric learning have also been studied for multiple kernel 

learning [26,27] , semi-supervised learning [28] , etc. A novel reg- 

ularization framework (RF-ML) was developed to learn similarity 

metrics [29] , and the objective function was formulated by in- 

corporating the robustness to the large intra-personal variations. 

Wang et al. [27] presented a kernel classification framework (KCF) 

to learn M-distance metric. This paper generalized many metric 

learning methods into a kernel classification framework, which 

achieved competitive classification accuracies with state-of-the-art 

metric learning methods. To show the effectiveness of our pro- 

posed method, we compare it with these above mentioned metric 

learning algorithms. 

For wide-area video surveillance, the appearance of pedestrians 

captured in different cameras is likely to change over time and 

new objects may appear. To obtain and maintain a high level of 

recognition, the appearance model should be continuously updated 

when the scene changes. In this situation, incremental learning 

classifiers are good choices and superior to traditional classifiers 

and distance metrics. Compared to traditional machine learning 

methods, incremental learning does not require a sufficient train- 

ing set before the training process. Instead, the training examples 

can be augmented over time. 

Significant research has been performed on incremental learn- 

ing resulting in the development of algorithms such as incremental 

Bayesian approach [30] , Learn ++ [31] and an improved method 

called Learn ++ . MF [32] , incremental KNN model [33] , etc. Re- 

cently, incremental learning methods have been applied to visual 

tracking. Ross et al. [34] proposed a tracking method which can in- 

crementally learn a low dimensional subspace representation and 

adapt to appearance changes. Jiang et al. [35] proposed an incre- 

mental label consistent K-SVD (LC-KSVD) dictionary learning al- 

gorithm for recognition, which combines a new label consistency 

constraint with the reconstruction error and classification error to 

construct the object function and the experimental results demon- 

strate this algorithm outperforms many recently proposed sparse- 

coding techniques. However, many parameters are required to be 

regulated and adjusted when new data are available. The regula- 

tion of parameters is a difficult task and the recognition results 

largely depend on these parameters. 

In general, a common trend in pedestrian recognition is to de- 

tect sparse, informative feature points, which increases robustness 

to noise, illumination changes and pose variation. However, most 

of the existing methods rely on geometry models, trajectory asso- 

ciation, spatio-temporal relationships and topology of camera net- 

works, which are often unavailable for long distance surveillance. 

Moreover, most methods require a large set of samples to build a 

recognition model. Our proposed method can be built based on a 

very small quantity of samples and does not require any prior in- 

formation. 

4.2. Proposed ORMIM 

In long distance video surveillance, incremental learning is an 

effective tool to construct and update the recognition model, so 

that history data does not have to be stored and the model can be 

continuously adapted to changes in appearance. In this study, we 

proposed a novel SVM based incremental learning algorithm that 

adds modified regularization terms, and adapts them to variations 

in regulation and kernel parameters. 

Suppose ˆ S = { ( ̂  A 1 , ̂  Y 1 ) , ( ̂  A 2 , ̂  Y 2 ) , . . . , ( ̂  A m 

, ̂  Y m 

) , . . . , ( ̂  A M 2 
, ̂  Y M 1 

) } is 

the primary training sample set, m = 1 , . . . , M 1 , ˆ A m 

∈ R 

d is a fea- 

ture vector and ˆ Y m 

is its corresponding label, ˆ Y m 

∈ { 1 , . . . , K} . We 

used the formalism of linear classifier for clarity. The primary 

multicategory classifier is denoted as a matrix ˆ W = { ̂  w 1 , . . . , ˆ w K } , 
where ˆ w i is the hyperplane separating one of the K categories 

from the others. When the new data are available, we use S = {
(A 1 , Y 1 ) , (A 2 , Y 2 ) , . . . , (A m 

, Y m 

) , . . . , (A M 1 
, Y M 2 

) 
}
to denote the new 

sample set, m = 1 , . . . , M 2 . Suppose that a new object (not belong- 

ing to the former K categories, and therefore, assigning a new class 

label to K + 1 ) appears in S , then the new model can be encoded as 

a new set of K + 1 hyperplanes, which is described in matrix form 

as W = { w 1 , . . . , w K , w K+1 } . Therefore, the label of a given sample 
image X is predicted as f W 

(X ) := argmax w i 
T X + b i 

i =1 , ... ,K,K+1 
. It can be ex- 

tended to nonlinear domain based on kernels. 

A general method to find the set of hyperplanes W is to solve 

the minimum of a regularized least-squares loss function [36,37] 

min 
W,ε,b 

1 

2 
‖ W ‖ 

2 + 

β

2 

M ∑ 

m =1 
ε 2 m 

s.t. Y m 

= wX m 

+ b + ε m 

, m = 1 , ..., M. 

. (16) 

Define Y mi = 

{
1 , Y m 

= i 

0 , otherwise 
, then the K + 1 multicategory SVM 

objective function is obtained 

L = 

1 

2 

K ∑ 

i =1 
‖ w i ‖ 

2 + 

1 

2 
‖ w K+1 ‖ 

2 + 

β

2 

M ∑ 

m =1 

K+1 ∑ 

i =1 
( w 

T 
i X m 

+ b i − Y mi ) 
2 
, 

(17) 

where ‖ w i ‖ is a regularization term that inversely relates to mar- 

gin between training images of two categories. In SVM-based mul- 

ticategory classifier, the margin between two category i and j can 

be denoted as 2 
‖ w i −w j ‖ [38] . Therefore, to find a new set of hy- 

perplanes and achieve the goal of recognizing new objects, we 

will implement the transfer learning problem [39] by augment- 

ing regularization terms to minimize the sum of the square of 

‖ w i − β j w j ‖ , i, j = 1 , ..., K + 1 , i 	 = j. By experiments, we found 

that if the parameters β j are set to 1, the computation is much 
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faster while the performance of our system is not adversely af- 

fected. Therefore, we obtain 

L = 

1 

2 

K ∑ 

i =1 
‖ w i ‖ 

2 + 

1 

2 
‖ w K+1 ‖ 

2 + 

1 

2 

K ∑ 

i =1 

K ∑ 

j= i +1 
‖ w i − w j ‖ 

2 

+ 

1 

2 

K ∑ 

i =1 
‖ w K+1 − w i | 2 + 

β

2 

M ∑ 

m =1 

K+1 ∑ 

i =1 
( w i 

T X m 

+ b i − Y mi ) 
2 , (18) 

where w K+1 denotes the hyperplane separating the new object 

from the others. Furthermore, we extend Eq. (18) by aggregating 

the knowledge of the primary data ˆ S with the new data S . By treat- 

ing the ˆ W as the prior classifier, we add two modified regulariza- 

tion terms to penalize the discrepancy between the new hyper- 

planes W and the primary hyperplanes ˆ W and enforce W to remain 

close to ˆ W . Thus, we get 

L = 

1 

2 

K ∑ 

i =1 
‖ w i ‖ 

2 + 

1 

2 
‖ w K+1 ‖ 

2 + 

1 

2 

K ∑ 

i =1 

K ∑ 

j= i +1 
‖ w i − w j ‖ 

2 

+ 

1 

2 

K ∑ 

i =1 
‖ w K+1 − w i ‖ 

2 + 

β

2 

M ∑ 

m =1 

K+1 ∑ 

i =1 
( w i 

T X m 

+ b i − Y mi ) 
2 

+ 

1 

2 

K ∑ 

i =1 
‖ w i − ˆ w i ‖ 

2 + 

1 

2 
‖ w K+1 −

K ∑ 

i =1 
ˆ w i ‖ 

2 . (19) 

Note that, the above optimization is subject to the constrains Y m 

= 

wX m 

+ b + ε m 

. Therefore we can define the objective function in Eq. 

(19) using Lagrangian 

L = 

1 

2 

K ∑ 

i =1 
‖ w i ‖ 

2 + 

1 

2 
‖ w K+1 ‖ 

2 + 

1 

2 

K ∑ 

i =1 

K ∑ 

j= i +1 
‖ w i − w j ‖ 

2 

+ 

1 

2 

K ∑ 

i =1 
‖ w i − ˆ w i ‖ 

2 + 

β

2 

M ∑ 

m =1 

K+1 ∑ 

i =1 
ε 2 mi + 

1 

2 
‖ w K+1 −

K ∑ 

i =1 
ˆ w i ‖ 

2 

+ 

1 

2 

K ∑ 

i =1 
‖ w K+1 − w i ‖ 

2 −
M ∑ 

m =1 
αmi { w i 

T X m 

+ b i + ε mi − Y mi } , 

(20) 

where α = { αmi } ∈ R 

M×( K+1 ) , i = 1 , . . . , K + 1 , m = 1 , . . . , M are La- 

grange multipliers. To compute the model parameters ( α, b ), the 

optimality conditions for this Eq. (20) can be written as follows 

∂L 

∂w i 

= (K + 3) w i − ˆ w i −
M ∑ 

m =1 
αmi X m 

− w K+1 = 0 (21) 

∂L 

∂b i 
= −

M ∑ 

m =1 
αmi = 0 (22) 

∂L 

∂w K+1 
= (K + 2) w K+1 −

K ∑ 

i =1 
ˆ w i −

M ∑ 

m =1 
αm ( K+1 ) X m 

−
K ∑ 

i =1 
w i = 0 

(23) 

∂L 

∂ε mi 

= βε mi − αmi = 0 , i = 1 , . . . , K + 1 (24) 

∂L 

∂αmi 

= w 

T 
i X m 

+ b i + ε mi − Y mi = 0 (25) 

From Eq. (21) , we get 

(K + 3) w i − w K+1 = 

ˆ w i + 

M ∑ 

m =1 
αmi X m 

, i = 1 , . . . , K. (26) 

From Eq. (23) , we get 

−
K ∑ 

i =1 
w i + (K + 2) w K+1 = 

K ∑ 

i =1 
ˆ w i + 

M ∑ 

m =1 
αm ( K+1 ) X m 

. (27) 

Expressed in the matrix form, we have shown that 

P W = 

ˆ W + αX, (28) 

where P = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

K + 3 0 . . . 0 −1 

0 K + 3 
. . . 

. 

. 

. −1 
. 
. . 

. . . 
. . . 0 

. 

. . 

0 . . . 0 K + 3 −1 
−1 −1 . . . −1 K + 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, W = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

w 1 

w 2 

. 

. 

. 

w K 

w K+1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

ˆ W = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ w 1 

ˆ w 2 

. 

. 

. 

ˆ w K ∑ K 
i =1 ˆ w i 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, α = 

⎡ 

⎢ ⎣ 

α11 α12 . . . α1(K+1) 
α21 α22 . . . α2(K+1) 
. . . . . . . . . . . . 

αM1 αM2 . . . αM(K+1) 

⎤ 

⎥ ⎦ 

, and 

X = 

⎡ 

⎢ ⎢ ⎣ 

X 1 
X 2 
. 
. 
. 

X M 

⎤ 

⎥ ⎥ ⎦ 

. 

Based on the constrain equations ( Eqs. (24) and (25) ), we refor- 

mulate the solution of ( α, b ) in matrix form [
X T X P −1 + 

1 
β
I 1 K, 1 

1 1 ,K 0 

][
α
b 

]
= 

[
Y − X T P −1 ˆ W 

0 

]
, (29) 

where, according to the block matrix inversion lemma, the inverse 

of P can be expressed as 

P −1 = 

1 

ρ

[
ρI + 

1 
δ
1 K 1 K, 1 

1 1 ,K δ

]
, (30) 

where 1 K , 1 K , 1 and 1 1, K are all-ones matrix, the coefficients ρ = 

(K 2 + 4 K + 6) , δ = K + 3 . 

The ORMIM based incremental learning is outlined in 

Algorithm 1 . 

Algorithm 1 ORMIM based incremental learning. 

Require: the new training dataset S = { (X i , Y i ) } , the feature set X i , 
the class label Y i , Y i ∈ { 1 , . . . , K + 1 } , i = 1 , 2 , . . . , M, the primary 

multiclass classifier ˆ W = { ̂  w 1 , . . . , ˆ w K } 
Ensure: W = { w 1 , . . . , w K , w K+1 } 

1. Initialize 1 K , 1 K, 1 and 1 1 ,K are all-ones matrix, ρ = (K 2 + 4 K + 

6) , δ = K + 3 , compute P −1 according to Eq. (30); 
2. Compute (α, b) according to Eq. (29); 

3. Use Eqs. (26) and (27) to update the primary K hyperplanes 
ˆ W and obtain W . 

5. Experiment results and analysis 

Experiments were implemented with four objectives: 

1. To assess the performance of the new appearance model in ef- 

fectively representing the objects and having a high discrimina- 

tive power in the pedestrian recognition. 

2. To assess the performance of the new incremental modeling 

algorithm in discerning targets including the new objects that 

were not learned in the primary model. 

3. To assess the performance of the new algorithm in recognition 

accuracy and computation efficiency. 
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Fig. 2. The architecture of our method, where the solid arrows represent the training process while the hollow arrows represent the offline processing. 

Fig. 3. One object captured from two surveillance cameras having different field of view. In (a), the images are captured by two overlapping cameras. In (b), the images are 

captured by two non-overlapping cameras, the left one is captured in one meeting room and the right one is captured in one corridor. 

4. To evaluate the performance of the proposed method in dis- 

criminating the target objects when few samples are available. 

The main steps of our method are summarized in Fig. 2 . A 

block-based foreground detection (BFD) method [40] was em- 

ployed to segment and extract the objects in the first step. 

5.1. Dataset and experimental environment 

To validate the efficiency of the proposed methodology, we 

use two standard datasets and our own datasets. We adopt the 

CAVIAR (Context Aware Vision using Image-based Active Recog- 

nition) dataset [41] that is widely applied in evaluating the per- 

formance of video tracking methods. The dataset was gathered 

from two cameras having different field of views, as shown in 

Fig. 3 (a). It gives XML-based benchmark information including the 

segmented object and the bounding box. We extract 15 visual ob- 

jects based on the XML-based information, and used 5472 object 

images to train and test our method. Thus, each object has an 

average of 364 frame images as samples. The ISCAPS (Integrated 

Surveillance of Crowded Areas for Public Security) [42] is also used 

to testify our algorithm, in which 2093 object images and 15 visual 

objects are used. 

In addition, to further evaluate the performance of our method 

in different non-overlapping camera views that undergo significant 

appearance changes, we built our own datasets, one is an indoor 

dataset and the other is an outdoor dataset. The indoor dataset 

is captured in one meeting room and one corridor. As shown in 

Fig. 3 (b), objects were partially occluded by other persons, table 

and chairs in the meeting room. The lighting condition in the 

meeting room is relatively uniformly distributed, while the illumi- 

nation in the corridor is very complicated due to dim light and 

the light reflection and refraction from window glass and floor. The 

outdoor dataset includes 10 objects. It is captured in the university 

campus by four non-overlapping surveillance cameras. The four 

cameras are far away from another. The outdoor scenes are more 

complex than indoor scenes, including some walking passersby, 

riding passersby and cars. 

We use 10-fold cross validation to evaluate the models. All al- 

gorithm results were achieved by MATLAB using an Intel Xeon E3- 

1230 V2 processor with a 3.3 GHz frequency and a 4 GB memory. 

5.2. Evaluation of the proposed appearance model 

In this section, we evaluate the efficiency of the proposed ap- 

pearance model by comparing it with the salient features, impor- 

tant features and their aggregations. We also compare it with pre- 

vious appearance models. The experiments were conducted on the 

CAVIAR dataset, and the 15 persons are the target objects. The re- 

sults are shown in Fig. 4 . In Fig. 4 , FI denotes the aggregated im- 

portant feature vector defined in Eq. (7) , FS is the salient feature 

vector defined in Eq. (9) , MSI and ASI are the aggregated important 

salient feature vectors modeled in Eqs. (11) and (12) , respectively, 

and CH is the color histogram feature vector represented by Eq. 

(14) . The symbol ’ + ’ denotes the concatenation of two feature vec- 

tors. The recognition results of objects are illustrated in Fig. 4 (a). 

The abscissa is the quantity of sample images, the ordinate is the 

accuracy rate (AR). We randomly selected 75–750 samples (5–50 

for each object) to train the models and used the remaining sam- 

ples for testing. The quantity of sample images for each object is 

denoted as NE in the experiments. When only 75 samples (NE = 

5) were used for building the model, FI and FS achieve accuracy 

rates (ARs) of 90.43% and 91%, respectively, MSI and ASI achieve 

ARs of 93.84% and 91.23%, respectively, the concatenation of MSI 

and ASI achieves an AR of 94.88%, and MImSF achieves an AR of 

97.25%. Our appearance model achieves the highest AR based on 

a small quantity of sample images. When the quantity of sample 

images increases to 375 (NE = 25), the performance improves for 

all models. The AR of MImSF increases to 99.47%, FI and FS achieve 

accuracy rates (ARs) of 94.5% and 93.99%, respectively, MSI and ASI 

achieve ARs of 95.57% and 94.85%, respectively, and the concatena- 

tion of MSI and ASI achieves an AR of 97.33%. Generally, from the 

results of object recognition, important features are slightly better 

than salient features, the aggregation of important salient features 

offers a more robust and effective appearance model than either 

important or salient features alone. The proposed model achieves 

significantly better results. The confusion matrices of 15 target ob- 

jects are sketched in Fig. 5 . 

To show the efficiency of our model, we also compare runtime 

(RT) for appearance modeling using different methods, as shown 

in Fig. 4 (b). The RTs of all of the models increase slowly with the 

augmentation of the amount of sample images. The RTs of MImSF 

and MSI + ASI are roughly the same, and the RTs of MSI, ASI, FI, 

FS are almost the same. When NE = 5, 25, 50, the RTs of MImSF 

are 1.98 s, 4.01 s and 7.32 s, respectively, while the RTs of FS are 

1 s, 2.45 s and 4.56 s, respectively. Our model consumes slightly 

more time (approximately 1-2 s) than other models, however, it 

significantly improves the recognition performance. 

The results illustrated in Fig. 4 indicate that the performance 

of our methodology is not significantly affected by the quantity of 

sample images. As shown in Fig. 4 (a), when NE = 20, MImSF has 
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Fig. 4. Comparison of accuracy rate and runtime by using different appearance models. 
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Fig. 5. Confusion matrix for recognition of 15 target objects by using different appearance models, 25 sample images for each object: (a) MSI, mean ARs of primary and new 

objects are 95.57% and 80%, respectively; (b)MImSF, mean ARs of primary and new objects are 99.47% and 99.46%, respectively. 

achieved an AR of over 99%. It validates that an accurate and effi- 

cient recognition model can be built based on a small set of sam- 

ple images using our method. 

The SIFT features and color features are the most commonly 

used and useful features. To show the performance of the our 

method, we compare it with the SIFT-based vocabulary vector 

model (SIFT-V) [8] , and the fusion model of SIFT-V and color his- 

togram feature vector (SIFT-CH) [9] . As illustrated in Fig. 4 (a), 

MImSF achieves significantly better results than SIFT-CH and SIFT- 

V, especially when the quantity of samples is small. 

5.3. Performance analysis of the ORMIM 

In long distance tracking, when the appearance of objects 

changes, the recognition performance decreases. To maintain a sat- 

isfactory performance, the models need to be updated continu- 

ously. When new data are available, the traditional methods ac- 

commodate changes using both the new data and previous data to 

retain and recreate a new model. The previous models are com- 

pletely discarded. Although the retaining based methods are sim- 

ple, their time and memory consumption are huge; sometimes, 

their performances are not very satisfactory. 

To validate the performance of the ORMIM and assess the sec- 

ond and third objectives, the following experiments were con- 

ducted. First, we validated the proposed model on the two stan- 

dard datasets. We randomly selected 75-750 samples (NE = 5, 10, 

���, 50) to train the models. Second, our model was validated using 
our own datasets. We randomly selected 20-200 samples (NE = 5, 

10, ���, 50) to train the models. To illustrate the effectiveness of 
our model, we compare our method with the standard SVM based 

retraining. 

The comparisons of ARs and RTs between ORMIM and standard 

SVM using standard datasets are shown in Figs. 6 and 8 (a). In the 

CAVIAR dataset, when 450 new frames are available and added to 

update the model,the AR and RT of ORMIM are 99.01% and 4.98 s, 

respectively. For standard SVM, the AR and RT are 83.79% and 51.12 

s, respectively. In the ISCAPS dataset, when 450 new frames are 

available and added to update the model,the AR and RT of ORMIM 

are 99.61% and 5.03 s, respectively. For standard SVM the AR and 

RT are 86.02% and 53.97 s, respectively. We record the standard 

deviation (SDs) of our method. In the CAVIAR dataset, when NE 

= 5, 15, 25, 35 and 50, the SDs are 0.0078, 0.0017, 0.003, 0.0043 

and 0.0027, respectively. In our own indoor dataset, when NE = 5, 

15, 25, 35 and 50, the SDs are 0.0 096, 0.0 062, 0.0 039, 0.0 036 and 

0.0029, respectively. 

For the recognition of new objects based on ORMIM is shown 

in Fig. 6 (b). Note that the standard SVM cannot recognize the new 

objects. In the CAVIAR dataset, when only 5 new frames for each 
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Fig. 6. Comparison of ARs by using different updation models in standard datasets. It demonstrates that the proposed ORMIM is significantly better than the standard SVM 

in standard datasets. 
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Fig. 7. Comparison of ARs by using different updation models in our own indoor dataset. It demonstrates that the proposed ORMIM is significantly better than the standard 

SVM in our own dataset. 

object are used to update the model, the ORMIM of new object 

(ORMIM-N) achieves an AR of 99.84%. When NE increases to 15, 

ORMIM-N achieves an AR of 99.51%. On the whole, the AR of 

ORMIM-N is slightly changed approximately 99%. In the ISCAPS 

dataset, when only 5 new frames for each object are used to up- 

date the model, ORMIM-N achieves an AR of 99.74%. When NE = 

15, ORMIM-N achieves an AR of 99.9958%, which is round up to 

100%. To further verify the model performance, we also conduct 

another experiment on PRID (Person Re-ID) dataset [43] . We se- 

lected 20 objects whose NEs are larger than 35. When NE = 5, 

15, 25 and 35, the ARs of ORMIN are 97.84%, 98.45%, 98.23% and 

98.39%, respectively. When NE = 5, 15, 25 and 35, the ARs of 

ORMIN-N are 98.13%, 97.85%, 98.23% and 96.70%, respectively. 

To further validate the efficiency and robustness of the pro- 

posed algorithm, we also tested it using our own dataset. The com- 

parisons of ARs and RTs between ORMIM and standard SVM in our 

indoor dataset are shown in Figs. 7 and 8 (b). In the meeting room 

dataset, when 120 new frames are available and added to update 

the model, the AR and RT of ORMIM are 98.71% and 0.88 s, re- 

spectively. The AR and RT for standard SVM are 83.90% and 2.62 

s, respectively. When the number of new frames increases to 200, 

ORMIM achieves an AR of 99.65%. In the corridor dataset, when 

120 new frames are available and added to update the model,the 

AR and RT of ORMIM are 97.96% and 0.88 s, respectively. The AR 

and RT for standard SVM are 79.91% and 2.81 s, respectively. When 

the number of new frames increases to 200, ORMIM achieves an 

AR of 98.53%. The AR obtained using our own dataset is slightly 

lower than the standard dataset. Although there are serious occlu- 

sion and complicated illumination in our own dataset, our algo- 

rithm still achieves a very high AR. Therefore, we also conclude 

that the proposed method achieves much higher AR and consumes 

less RT than the standard SVM. In all of the datasets we used, our 

method achieves significantly high accuracy. 

For the recognition of new objects, in the meeting room 

dataset, when only 5 new frames for each object are used, ORMIM- 

N achieves an AR of 94.97%, and when NE = 50, ORMIM-N achieves 

an AR of 99.12%. On the whole, the AR of ORMIM-N is changed ap- 

proximately 98%. In the ISCAPS dataset, when only 5 new frames 
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Fig. 8. Comparison of RTs by using different updation models in different dataset. 

20 40 60 80 100 120 140 160 180 200

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of sample images

A
R

 

 

Train : MC−D, Test : MC−D (P)

Train : MC−D, Test : MC−D (N)

Train : M−D,   Test : MC−D (P)

Train : M−D,   Test : MC−D (N)

(a) AR

0.98

0.02

0.00

0.00

0.02

0.95

0.04

0.00

0.01

0.02

0.93

0.02

0.00

0.00

0.03

0.98

cl
as

s1

cl
as

s2

cl
as

s3

ne
w

 o
bj

ec
t

class1

class2

class3

new object

(b) Confusion matrix, NE=40

Fig. 9. The performance comparison before and after incremental learning when new data is available by using our own indoor dataset. 

for each object are used, ORMIM-N achieves an AR of 99.98% and 

all of the ARs are over 99%. 

As illustrated in Figs. 6 (b) and 7 (b), we also found that the 

AR of ORMIM-N does not increase with the augmentation of new 

frames and fluctuates more than that of primary objects. It seems 

that the recognition results of new objects are more often affected 

by the sample selection. It also validates that the new target ob- 

jects can be effectively recognized based on few samples and col- 

lecting a large quantity of samples is not necessary for our model. 

To show the necessity of incremental learning and further val- 

idate the performance of our method, we design and perform an- 

other experiments using our own indoor dataset. First, we build 

a primary model using the meeting room dataset, and then, the 

new frames including both meeting room data (M-D) and corri- 

dor data (C-D) are added. We denote the aggregation of M-D and 

C-D as MC-D in the following experiments. As a comparison, we 

also perform the experiments by adding only M-D. The remaining 

MC-D is used for testing. As shown in Fig. 9 , when only M-D is 

added to update the model, ORMIM achieves an average AR of ap- 

proximately 75%. When NE = 5, the AR of ORMIM and ORMIM-N 

are 70.34% and 62.34%, respectively. When NE = 50, ORMIM and 

ORMIM-N achieve ARs of 78% and 62.93%, respectively. However, 

when corridor data are also added, i.e., MC-D is added to update 

the model, the performance of the model significantly improves. 

When NE = 20, the AR of ORMIM and ORMIM-N are 91.84% and 

93.97%, respectively, while NE = 50, ORMIM and ORMIM-N achieve 

ARs of 96.64% and 97.29%, respectively. It can be seen that the AR 

of our model becomes significantly higher after new frames (C-D) 

are used to update the model by using incremental learning. The 

confusion matrix of three primary objects and one new object is 

shown in Fig. 9 (b). 

In addition, to further validate the fourth experimental objec- 

tive, we also conduct the following experiments using only 1-10 

sample images for each object to update the model. The two stan- 

dard datasets are used. The results are illustrated in Fig. 10 . We 

compare our method with the standard SVM in the experiment. 

In the CAVIAR dataset, when NE = 1, the AR of ORMIM is 64.12%, 

and the AR for standard SVM is only 39.98%. When NE = 3, 6, 10, 

the ARs of ORMIM are 85.33%, 90.12% and 94.81%, respectively, and 

the ARs for standard SVM are 54.13%, 67.87% and 73.17%. In the IS- 
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Table 1 

Comparison of AR by using different recognition models (the CAVIAR dataset). 

Recognition model AR (%) 

NE = 5 NE = 15 NE = 25 NE = 35 NE = 50 

KCF 64 .08 82 .47 87 .75 90 .7 93 .02 

RF-ML 59 .93 46 .99 31 .51 49 .25 82 .76 

NZ-ML-1(Top-1) 58 .1 72 .99 77 .84 81 .19 84 .87 

NZ-ML-2 (Top-1) 59 .81 79 .38 85 .22 87 .19 89 .15 

NZ-ML-1 (Top-5) 83 .20 95 .10 97 .07 97 .39 98 .07 

NZ-ML-2 (Top-5) 87 .48 96 .22 97 .06 97 .71 98 .38 

LC-KSVD 79 .2 83 .73 84 .73 84 .85 98 .38 

Our model 97 .26 98 .87 99 .37 99 .56 99 .82 

CAPS dataset, when NE = 1, the AR of ORMIM is 67.68%, and the 

AR for standard SVM is only 52.13%. When NE = 3, 6, 10, the ARs 

of ORMIM are 87.71%, 93.04% and 97.41%, respectively, and the ARs 

for standard SVM are 65.88%, 74.31% and 78.02%. The results in- 

dicate that our method can build an accurate and robust model 

using only a very small quantity of sample images, and achieves a 

significantly higher AR than the standard SVM. 

We also compare several different recognition models in our 

indoor dataset and outdoor dataset. To compare the proposed 

method with the RF-ML algorithm [29] and KCF classifier [27] , we 

used MImSF as the input for all these three methods. To com- 

pare the proposed method with NZ-ML algorithm [25] , we build 

two models by using SIFT-CH and MImSF as the inputs and de- 

note them as NZ-ML-1 and NZ-ML-2, respectively. We report both 

the top-1 and top-5 flat error. The flat error is zero if the ground- 

truth label corresponds to the top-1 label with the highest score 

(or any of the top-5 labels). The comparison results in our indoor 

dataset are shown in Table 1 , from which it illustrates that the 

proposed method obtained significantly better results than other 

methods, especially when NE is small. When only 5 samples for 

each object is used (NE = 5), our method achieves over 18% higher 

AR than other top-1 methods and over 10% higher AR than the 

top-5 NZ-ML. When NE is 25, our method still achieves over 10% 

higher AR than other top-1 methods. The NZ-ML-2 achieves better 

results than NZ-ML-1, which demonstrates the effectiveness of our 

proposed appearance model. We found an interesting phenomenon 

that the performance of our method is slightly better than NZ- 

ML-2 when NE is larger than 15. However, our method obtain an 

unique label while NZ-ML-2 gives 5 alternative labels. We also 

compare the proposed method with LC-KSVD algorithm [35] . For 

Table 2 

Comparison of AR and SD by using different recognition models (our own outdoor 

dataset). 

Recognition model LC-KSVD NZ-ML KCF Our model 

AR(%) NE = 10 81 .85 71 .78 38 .14 92 .04 

NE = 15 87 .45 76 .08 61 .93 95 .19 

NE = 20 89 .61 79 .53 81 .67 96 .2 

NE = 30 93 .19 83 .03 93 .05 98 .03 

SD(%) NE = 10 2 .15 1 .7 3 .45 1 .37 

NE = 15 1 .01 1 .02 11 .52 0 .49 

NE = 20 1 .3 1 .1 3 .48 0 .82 

NE = 30 0 .88 0 .77 1 .47 0 .55 

LC-KSVD, we perform 25 iterations and select the highest ARs as 

the final results. From Table 1 , we found that our method is su- 

perior to LC-KSVD. The comparison results in our outdoor dataset 

are shown in Table 2 . We record the ARs and SDs when NE = 10, 

15, 20, 30 in each scene. It shows that our method obtained much 

higher ARs and smaller SDs than other methods, which demon- 

strates the effectiveness and robustness of our method. The results 

further validate the first and third experimental objectives. 

6. Conclusion 

In this paper, we have presented a new framework based on 

novel multilevel important salient feature and multicategory in- 

cremental learning for object recognition across non-overlapping 

multicamera views. Our method is built using only appearance in- 

formation without spatio-temporal reasoning. We have proposed 

a novel algorithm for appearance modeling called MImSF. Our 

method uses data-adapting convolution filters to obtain the im- 

portant feature maps. To improve the robustness of the appear- 

ance model, the important feature maps are aggregated with the 

salient feature maps to produce the multi-level important salient 

features, and then the important salient features are fused with 

color feature vector to obtain the final appearance model. To ac- 

commodate the appearance change of objects, we have proposed 

a novel multicategory incremental learning algorithm, ORMIM. The 

experiments have been conducted on two standard datasets and 

our own datasets. The experimental results have demonstrated 

that our method significantly improves the accuracy rate of object 

recognition, and reduces the time and memory consumption at 

the same time. In summary, compared with other state-of-the-art 

classification-based recognition algorithms, the proposed method- 

ology achieves higher ARs and lower RTs when using both standard 

datasets and our own datasets. Note that, our model can identify 

new target objects that were never learned in the primary model. 

In addition, the proposed model can be built and updated using 

only a small number of sample images. Therefore, our method 

is very suitable for object recognition across cameras with dis- 

joint views, especially for real-time long distance object tracking. 

The proposed feature extraction method and incremental learning 

method can also be directly used in dealing with other related im- 

age/video processing and recognition problems. 
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