
Detail Preserving 3D Motion Compression Based on Local Transformation

Chang Liu, Zhaoqiang Lai, Jiaxi Hu, Jing Hua
Department of Computer Science

Wayne State University
Detroit, MI, U.S.A.

changliu@wayne.edu

Abstract—With the advance of 3D acquisition techniques,
more and more 3D motion data with fine details become avail-
able. In order to efficiently represent the data, we explored dif-
ferent motion compensation algorithms through conventional
techniques and analyzed their performance both in theory
and by experiments. A novel motion compression framework
based on local transformation is proposed to solve the existing
problems. Experiments show that our algorithm can achieve
very high compression rate while preserving the fine details.
The algorithm is easy to implement and is versatile to different
applications including non-skeleton driven motion compression.

Keywords-3D motion; compression; local transformation;
details

I. INTRODUCTION

With the advance of 3D acquisition techniques [1][2],
more and more 3D models are available. On one hand,
high resolution range scanners make 3D large terrain and
cityscape data available; on the other hand, fast depth camera
arrays enable us to capture 3D motion or facial expressions
at a comparable speed with traditional video recorders [3].
Skeleton based animation and skinning animation are preva-
lent since they are easy to carry out and intuitive for manual
editing in motion synthesis. However, compared to scanned
mesh animation [4], they are less realistic since it is difficult
to model the change of surface details during the motion
and it is laborious to design sophisticated motions. Motion
acquisition based on agents attached to humans provides an
alternative, but it is still hard to capture the surface details
especially when the motion is non-skeleton driven. The latest
technology gives us a better stand. In [5], the subject in
motion can be captured completely without using agents.
The surface details are preserved at the same time. With
this extra detail information acquired, 3D scanning motion
data can be too large to store and process; thus, it prevents
the data from being fast distributed to ordinary end users for
entertainment or educational use. However, like 2D videos,
the 3D scanned motion data usually contain large amounts
of redundancies which can be reduced from the continuous
sequence using proper algorithms. The core part of the
algorithm is to use a limited number of shapes sampled
at certain time stamps to predict the rest shapes in the
series. In MPEG, this process is called motion compression.

This term will be used in this paper to address the same
problem but on 3D scanned data. In MPEG, motion is in
the same structured domain as other properties such as
color and shading; thus they can be compensated at the
same time. However, it is not straightforward to use the
same technique to compensate motion and surface details in
general since the canonical domain of the surface is changing
during the motion. Furthermore, most conventional methods
working on a single 3D object are not suitable for motion
data analysis or need to be verified. This paper mainly
discusses how to implement efficient motion compression
algorithms based on the new type of 3D motion data. The
main contributions are:

1) Several algorithms derived from the state-of-the-art are
implemented and compared.

2) A novel motion compression framework based on
clustering and local transformation is presented.

3) The proposed algorithm is very easy to implement and
high compression rates can be achieved without loss
of surface details.

4) The algorithm is suitable for general motion including
both skeleton driven and non-skeleton driven motion.
The quality control is also easy to carry out.

The remaining paper is organized as follows: Sec. II
surveys some work related to our proposed algorithms; Sec.
III compared the results of some durable algorithms for
motion compensation; Sec. IV discussed our motion com-
pression framework in detail; Sec. V lists some experimental
results based on our framework. Finally, Sec. VI presents a
discussion and makes a conclusion.

II. RELATED WORK

To date, relatively less compression research work is
carried out on real-world captured motion data than on image
data. One reason is that using traditional techniques it is
hard to retrieve the correlation between 3D data frames
without proper post-registration; fortunately, more recent
techniques have overcome the difficulty by incorporating
tracking techniques and a deformable template into the
scanning process. In [4], Vlasic et al. tried to match the
deformable template to image silhouettes captured by a high
definition camera array. Not a coincidence, Li et al. [5] used
a template to match the partial scans from a depth camera.



Their methods are efficient and easy to apply. It is expected
that more and more this kind of 3D motion data will be
available in the near future. The registration-on-the-fly gives
us a consistently meshed sequence to directly analyze the
motion on the surface, which provides us with better details
than skeleton based methods.

For the purpose of 3D motion data storage, some tech-
niques can be considered. Mesh streaming [6] stressed the
compression of connectivity information of triangle meshes
were proposed. Compared to other methods, it is out-of-core
and is aimed at processing a very large single mesh. Geo-
metric compression can be considered in either the spatial
or the frequency domain. Traditional methods use position
prediction [7] and ad hoc data structure to remove visual
redundancies. An MPEG style codec framework based on
linear prediction was proposed in [8]. More recently, spectral
analysis has introduced new ways to geometry representation
[9]. The challenge of spectral analysis on the manifold is the
lack of a common domain. Thus it is usually nontrivial to
find a set of analytical basis for an arbitrary shape [10]. The
latest research on Laplacian-Beltrami eigen analysis [11]
has provided us with tools to decompose the geometry into
details at different scales. However, all these methods has
little concern on motion data and direct extension to motion
compression needs validation. The most relevant work was
from Yasmine et al. [12] who modeled the motion using
local transformations. However, their method is preliminary
with no surface detail preserving and smoothness control
presented. Another similar work based on clustering was
proposed in [13]; however, the motion is still modeled as
the displacement of vertex coordinates which is lack of
the power to describe local shapes. A thorough survey of
dynamic mesh compression can be found in [14]. According
to [14], our proposed work can be classified as multi-
resolution geometry compression while existing topology
compression methods can be overlaid with no extra effort.
Compared to existing motion compression methods based on
clustering, an analog in MPEG, our method does not rely
on a predefined motion model but considers general local
shape changes instead. The vertex prediction is replaced
by transformation prediction as well. The low frequency
information is well preserved by the decoding process.

Our work is motivated by the advancement of motion
transfer and mesh editing. We can get one shape from an-
other by applying the transformation between the two. Oscar
et al. [15] have found that the face-based method has less
distortion than vertex-based method since the neighborhood
of each face form a simplex on which the local geometry can
be easily defined. Fu et al. [16] further developed a method
based on local vertex transformations, which preserves local
shapes. However, this method needs certain perturbation
on flat surfaces since the local transformation for a vertex
cannot be estimated using its neighborhood in this case.
Sumner et al. [17] solved this problem by adding a vertex

in the normal direction of each face. Besides, Guo et al.
[18] used a spectrum based method to deform the shape in
a coarse scale and the details were added back afterwards.
This makes the editing more efficient; However, to model
the details as the hight function along the vertex normal will
not be sufficient for complex patterns such as garment folds.
The proposed work is also very related to [19] and [20] by
chance where the techniques were used to build the skeletal
structure of shapes. In contrast, our work focuses on motion
data compression and is not restricted to articulated motions.
Our framework is more rigorous and has more control over
local geometry. In the following section we will compare
some techniques which can be directly surveyed and used
in 3D motion compression.

III. COMPARISON OF SPATIAL AND SPECTRAL METHODS

A. Notations and terms

We’ll use the following terms to refer to certain objects
or operations:

1) Frame: a shape captured at one time stamp.
2) Key frame(s): the shapes captured at certain time

stamps used to predict the rest shapes for compression
purposes.

3) Intermediate frames: the shapes captured excluding
key frames.

4) Predicted frame(s): the shapes that are predicted from
the key frames to approximate intermediate frames.

5) Source mesh: the mesh before the current motion
occurs. The terms, source mesh and target mesh, are
used when we describe a general algorithm. When the
algorithm is applied to motion compression, the source
mesh is referred to as the key frame, and the target
mesh becomes the intermediate frame.

6) Target mesh: the mesh as the result of the current
motion.

In order to demonstrate our framework unique and essen-
tial, two types of techniques are implemented and compared
in this section.

B. Motion compensation based on spectral decomposition

It is well known that the eigen functions of Laplacian-
Beltrami operator form a complete basis on a manifold [11].
Furthermore, these bases are isometric invariant and can be
used as a signature for similar shapes [11]. It is a widely
used global representation of shapes. When the geometry
is treated as a function defined on the manifold, the vertex
positions can be mapped onto these basis; thus, compression
can be achieved by quantizing the coefficients or discarding
some of them in the same way as traditional discrete cosine
transformation (DCT) encoding. Since articulated motions
are near isometric, we can map vertex positions onto the
basis of the key frames. For compression purposes, only the
first 1000 coefficients are stored and used to recover the
shapes. Two adjacent frames of a human body motion are



used to test this algorithm. In Figure 1, the key frame is
on the upper left and the intermediate frame is on the upper
right. Using the first 1000 coefficients we can recover the key
frame as shown on the lower left. Based on the same basis
and the first 1000 coefficients of the intermediate frame, the
corresponding predicted frame is shown on the lower right.
Although the two original frames are similar to each other,
the recovered shapes are quite different. While the recovered
key frame is a smoothed version of the original shape, the
difference is visually significant between the intermediate
frame and the predicted frame.

It is obvious that when the metric of the surface changes
slightly, the original basis are not suitable for decomposing
the geometry into different levels of detail anymore. As an
alternative, we also tried to use the same basis to decompose
the differences between the intermediate frames and the key
frames. This approach works when the two shapes are very
similar. However, it fails when they differ from each other.
We keep the key frame unchanged as in Figure 1a and
use another intermediate frame shown in Figure 2a. The
predicted frame is shown in Figure 2b. As can be seen,
the distortion is dramatic. The above experiments show that
an arbitrary motion can not be predicted precisely when the
shape is considered using only global functions.

C. Motion compensation based on spatial transformation

As an alternative to the global spectral representation,
the motion of a shape can be modeled as a set of trans-
formations, i.e., use a spatial decomposition instead of a
spectral decomposition. For example, each vertex bears a
transformation during the motion, when the vertices with a
similar motion are clustered, a concise representation can
be achieved. This idea was explored in [12]. A matrix
in its homogenous representation is used to depict the
motion of each cluster of vertices. However, representing the
transformation in a global coordinate system will introduce
unnecessary translation terms and a single transformation of
such does not contain any information of the original shape;
Thus, the algorithm in [12] is not ideal for shape preserving
motion compression. This is extremely clear when only a
few number of clusters are used. In Figure 3, the algorithm is
implemented and tested on two adjacent frames. The model
contains 10000 vertices, and 256 matrices are used to recover
the motion of the same number of clusters. The discontinuity
on the predicted frame can be easily perceived. For this
kind of real world scanned data, the garment motion is
very complex. Each vertex will undergo a very unpredictable
different motion from others.

In order to solve this problem, local transformations can
be used instead. In [16], a vertex and its neighboring vertices
are used to estimate the transformation. This algorithm not
only successfully preserves local details to a certain extend
but also faithfully picks up the global motion. The underline
assumption is that when the neighboring vertices bear the

(a) (b)

(c) (d)

Figure 1: Recovered shape from spectrum decomposition:
(a) - key frame; (b) - intermediate frame; (c) - recovered key
frame; (d) - recovered intermediate frame (predicted frame).

same one transformation as the current vertex, the estimation
error will be minimized. However, the correlation between
a vertex and its neighborhood is not consistent among all
the vertices. When they are highly correlated, eg, co-planar,
the transformation is not unique. In such cases, some local
disturbance is introduce to regularize the local motion [16],
which limits the application of the algorithm. One solution
to this would be considering the transformation for each
triangular face instead of each vertex as suggested in [15].
We will explore this idea in detail.



(a) (b)

Figure 2: Another intermediate frame and the predicted
frame based on the key frame in Figure 1a.

Figure 3: Right: an intermediate frame; left: the predicted
frame based on [12] with 256 clusters, the details are
distorted. The models are colored according to the mean
curvature.

IV. A NOVEL MOTION COMPRESSION FRAMEWORK
BASED ON LOCAL TRANSFORMATION

Earlier research shows that a set of local transformations
can be used to recover the global motion. However, as shown
in the previous section, the local transformations based on
vertices are not informative enough to describe local shape

changes. The fundamental cause can be found in geometry
saying that the shape of a primitive is determined by its
angles and edge lengths. Thus, when trying to preserve the
local geometry of a triangular mesh, we are particularly
looking at the transformation for each triangular facet. The
algorithm is briefly introduced as below.

In order to estimate the local transformation of a triangular
facet, an additional vertex is required. Let v𝑖 and ṽ𝑖, 𝑖 ∈
1, . . . , 3, be the vertices of the triangle before the motion
and after the motion, respectively. For a triangle in the mesh
which has the configuration of v𝑖, 𝑖 ∈ 1, . . . , 3, we compute
the fourth vertex as,

v4 = v1 + (v2 − v1)× (v3 − v1)/
√
∣(v2 − v1)× (v3 − v1)∣

(1)
and the same computation for ṽ4. An affine transformation
defined by the 3 × 3 matrix Q and displacement vector d
transform these four vertices as follows:

Qv𝑖 + d = ṽ𝑖, 𝑖 ∈ 1, . . . , 4. (2)

If we subtract the first equation from the others to eliminate
d and rewrite them in matrix by treating the vectors as
columns, we obtain QV = Ṽ where

V = [v2 − v1 v3 − v1 v4 − v1]
Ṽ = [ṽ2 − ṽ1 ṽ3 − ṽ1 ṽ4 − ṽ1].

(3)

So V can be calculated by

Q = ṼV−1. (4)

Compared to other work, this local transformation 𝑄 con-
tains solely the shape change of a triangular facet during the
global motion. By clustering of 𝑄 for all the facet between
intermediate and key frames, it is possible to group similar
surface changes and remove redundancies accordingly.

The following algorithm carries out the motion com-
pensation and recovers the shape based on all the known
local transformations. We use the terms source mesh and
target mesh as defined in Sec. III-A. Since the one-to-
one correspondence is known between two arbitrary frames.
Therefore, there are pairs of transformation {S𝑖,T𝑖} for the
source mesh and the target mesh. In order to maintain consis-
tency, additional constraints are added to the transformation:

T𝑗v𝑖 + d𝑗 = T𝑘v𝑖 + d𝑘,∀𝑖,∀𝑗, 𝑘 ∈ 𝑝(𝑣𝑖), (5)

where 𝑝(v𝑖) is set of all triangles that share vertex v𝑖. In
order to solve the transformation, the difference between
the source and target transformation under the consistency
constraint has to be minimized:

min
T1+d1,...,T∣𝑇 ∣+d∣𝑇 ∣

∣𝑇 ∣∑
𝑗=1

∥S𝑗 − T𝑗∥2𝐹
subject to

T𝑗v𝑖 + d𝑗 = T𝑘v𝑖 + d𝑘,∀𝑖,∀𝑗, 𝑘 ∈ 𝑝(𝑣𝑖), (6)



where ∥ ⋅ ∥𝐹 is the Frobeniu norm.
For the target mesh, the V depends on the known, the

elements of of Ṽ are the coordinates of the unknown
deformed vertices. Thus, the elements of T are linear combi-
nations of the coordinates of the unknown, deformed vertices
T = ṼV−1. Based on this fact, the minimization problem
can be rewritten as

min
ṽ1,...,ṽ𝑛

∣𝑇 ∣∑
𝑗=1

∥S𝑗 − T𝑗∥2𝐹 . (7)

The solution to this problem is the solution to a system
of linear equations. Rewriting the problem in matrix form
yields

min
ṽ1,...,ṽ𝑛

∣𝑇 ∣∑
𝑗=1

∥c − Ax̃∥22, (8)

where x̃ is a vector of the unknown deformed vertex lo-
cations, c is a vector containing entries from the source
transformations, and A is a matrix that relates x̃ to c. The
final solution is the following form:

x̃ = (A𝑇 A)
−1

ATc. (9)

Before the above algorithm is applied to motion com-
pression, we need to notice that a global translation may
occur during the motion besides the shape change between
frames. It is effortless to store the position of an arbitrary
chosen vertex (called anchor vertex) for each intermediate
frame and translate the predicted frame to meet this criteria.
As an alternative, we can feed the information into Eq. 8
by moving the corresponding column from Ax̃ to c to
form another linear system as suggested by Sumner [17].
Furthermore, if the model has open boundaries such as the
facial model we used, more than one anchor vertex is needed
to regularize the motion along the boundary.

By utilizing the above techniques, our motion compres-
sion framework is described as follows:

Algorithm 1: Encoding:
1) Determine the key frames and intermediate frames

from a motion series. All the intermediate frames prior
to the next key frame will be predicted by the current
key frame. The intermediate frames and predicted
frames are paired with the current key frame.

2) For each key frame and intermediate frame pair, the lo-
cal transformations between the couple are calculated
according to Eq. 4.

3) Group the transformations for each pair using k-
means clustering. Generate one transformation for
each cluster and store them together with the cluster
labels for each intermediate frame. Store an additional
translation vector or a known vertex position for the
intermediate frame as well.

Algorithm 2: Decoding:

1) Each predicted frame is obtained by assigning a
transformation to each facet of the paired key frame
accordingly to the stored information using Eq. 9.

2) Apply the global translation to each predicted frame
if needed.

The transformation 𝑄𝑘 for each cluster C𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,
can be generated by minimizing the prediction error.

min
Q𝑘

∥C∥∑
𝑛=1

∥Q𝑘v𝑘𝑛 − ṽ𝑘𝑛∥2, v𝑘𝑛 ∈ 𝐶𝑘. (10)

The vectors v𝑘𝑛 and ṽ𝑘𝑛 are defined as in Eq. 3.
In fact, since the consistent constrain will regularize the

transformations, in practice, we can use the transformation
of an arbitrary triangular facet in the cluster as Q𝑘. Our
experiments show that this algorithm works well for all the
data we tested.

V. EXPERIMENTS

We have examined our framework based on MIT’s articu-
lated mesh animation data sets [4]. It includes simple human
motions such as marching (Figure 4) and jumping as well
as complicated ones like handstand (Figure 6) and dancing
(Figure 5). Each data set contains 148 to 250 frames. The
characters for scanning all wear loose clothes which deform
very randomly and create a lot of garment movements. The
scanned models are triangulated with 10002 vertices and
20000 faces. We also tested our framework on a facial
sequence with expression change (Figure 7), which is consist
of triangular meshes with 1500 vertices and 3000 faces.
For most of the body motion data, 256 clusters are created
using 𝔨-means clustering on the 20000 faces, where the
errors are bounded within 0.5% for all the data we have
tested. For the facial data , 64 clusters are used. Thus, 5/8
byte is used to store the cluster label for each face and 1
transformation matrix of 3 by 3 is stored for each cluster. For
each intermediate frame predicted, the bit rate is calculated
according to the following formula:

𝐵𝑀 ∗𝑁𝐶 + log𝑁𝐶 ∗𝑁𝐹

𝑁𝑉
(𝑏𝑖𝑡𝑠/𝑣𝑒𝑟𝑡𝑒𝑥/𝑓𝑟𝑎𝑚𝑒), (11)

where 𝐵𝑀 is the number of bits used to represent a matrix,
𝑁𝐶 is the number of face clusters, 𝑁𝐹 is the number
of faces and 𝑁𝑉 is the number of vertices. If 8 bytes
are used for a floating point number, the bit rate will be
30.74𝑏𝑖𝑡𝑠/𝑣𝑒𝑟𝑡𝑒𝑥/𝑓𝑟𝑎𝑚𝑒 and 20.29𝑏𝑖𝑡𝑠/𝑣𝑒𝑟𝑡𝑒𝑥/𝑓𝑟𝑎𝑚𝑒
for the body motion data and facial data, respectively, with-
out further compression. Compared to uncompressed data of
192𝑏𝑖𝑡𝑠/𝑣𝑒𝑟𝑡𝑒𝑥/𝑓𝑟𝑎𝑚𝑒, very high compression rates can be
achieved. This result is comparable to that reported in [13]
with the same error bounds. However, our work outperforms
in terms of the visual errors. In most data sets we have tested,
only one key frame (the first frame is used as the key frame)
is needed to obtain visually acceptable predictions, i.e., all



the rest frames in a sequence are intermediate frames and
are compressed by using Algorithm 1. Thus, the average
bit rate of a sequence will be approximately the same as the
numbers reported above.

Figure 4: Two frames from a marching sequence. Left: key
frame; middle: intermediate frame; right: predicted frame.
The models are colored according to the mean curvature.

Figure 5: Two frames from a dancing sequence which
contains fine garment motion. Left: key frame; middle:
intermediate frame; right: the predicted frame based on 256
clusters. The models are colored according to the mean
curvature.

Since the compression is lossy, the following formula is
used to calculate the prediction error for a predicted frame:

𝐸𝑟𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = (

√∑
𝑖

∥v𝑖 − ṽ𝑖∥22/𝑁𝑣)/𝐿𝑒, (12)

where v𝑖 and ṽ𝑖 are vertices of the intermediate frame and
the predicted frame, respectively, for 𝑖 = 1, 2, ..., 𝑁𝑣 , and 𝐿𝑒

is the average edge length of the model over all the frames.
This measurement mainly captures the variance of surface

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6: Two frames from a handstand motion where the
surface changes more significantly than others. (a): key
frame (b): intermediate frame; (c): the predicted frame based
on 512 clusters, The models are colored according to the
mean curvature; (d) another view of the key frame in (a);
(e) another view of the key frame in (b); (f) another view
of the key frame in (c); (g) zoom in view of the rectangular
area in (b); (h) zoom in view of the rectangular area in (c).

details. Table I shows the expectation of 𝐸𝑟𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 for all
the predicted frames. The prediction error is proportional to



the number of clusters used for encoding.
We have also calculated the prediction errors when differ-

ent numbers of clusters are used. The 𝐸𝑟𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡-𝑁𝐶 curve
is show in Figures 8. Figure 9 shows the clusters calculated
between the paired key frames and the intermediate frames
in Figures 4,6,5, and 7, respectively.

Figure 7: Two frames from a facial motion which is non-
skeleton driven. Left: key frame; middle: intermediate frame;
right: predicted frame.

Figure 8: The prediction error 𝐸𝑟𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 change against the
number of clusters used.

Table II shows performance of the algorithms in terms of
speed. All the computations are conducted on a Core2 Quad
CPU with 6G DDR2 memory.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel 3D motion compression frame-
work is presented. It works on registered triangular mesh
sequences. The core algorithms are based on clustering of
the local transformations of the triangular faces. Besides,
we implemented and tested several state-of-the-art tech-
niques on motion compression. Compared to other work,
our approach can preserve the surface details during very
complicated motions while achieving very high compression
rates. The framework can also be used on non-skeleton
driven motions directly. Our experiments show that our
motion compensation algorithm successfully captures human
motion with garment movements and facial motion with
expression changes. In the future work, we will design

Figure 9: The clusters of local motion (calculated for each
face) between the key frames and intermediate frames for
the data shown in Figures 4,6,5,7. Different colors represent
different clusters for each data set. The bottom row shows
different views of the top row.

algorithms to compute the optimal number of clusters and
key frames.

REFERENCES

[1] Y. Furukawa and J. Ponce, “Dense 3D motion capture for
human faces.” in IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 1674–1681.

[2] A. Golovinskiy, V. G. Kim, and T. Funkhouser, “Shape-based
recognition of 3D point clouds in urban environments,” in
IEEE International Conference on Computer Vision (ICCV),
2009, pp. 2154–2161.

[3] M. Liao, Q. Zhang, H. Wang, R. Yang, and M. Gong,
“Modeling deformable objects from a single depth camera,” in
IEEE International Conference on Computer Vision (ICCV),
2009, pp. 167–174.

[4] D. Vlasic, I. Baran, W. Matusik, and J. Popovic, “Articulated
mesh animation from multi-view silhouettes,” ACM Transac-
tions on Graphics, vol. 27, no. 3, pp. 1–9, 2008.

[5] H. Li, B. Adams, L. J. Guibas, and M. Pauly, “Robust single-
view geometry and motion reconstruction,” ACM Transac-
tions on Graphics (Proceedings SIGGRAPH Asia 2009),
vol. 28, no. 5, December 2009.

[6] M. Isenburg, Y. Liu, J. R. Shewchuk, and J. Snoeyink,
“Streaming computation of delaunay triangulations,” ACM
Transactions on Graphics, vol. 25, no. 3, pp. 1049–1056,
2006.

[7] J. Peng, C. Kim, and C. Kuo, “Technologies for 3D mesh
compression: A survey,” Journal of Visual Communication
and Image Representation (JVCIR), vol. 16, no. 6, pp. 688–
733, December 2005.



Table I: Prediction error

Data set bouncing crane jumping March samba squad swing handstand face
Error 5.1E-05 1.7E-05 0.000145 2.2E-05 1.1E-5 2.1E-05 1.4E-05 0.000215 0.01

Table II: Time taken for computing one frame (in seconds)

Data set bouncing crane jumping March samba squad swing handstand face
Encoding 109 130 156 145 134 128 189 178 12
Decoding 22 23 21 22 25 21 22 20 0.3

[8] J. Ahn, C. Kim, and Y. Ho, “Predictive compression of
geometry, color and normal data of 3D mesh models,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 16, no. 2, pp. 291–299, February 2006.

[9] Z. Karni and C. Gotsman, “Spectral compression of mesh
geometry,” in ACM SIGGRAPH, New York, NY, USA, 2000,
pp. 279–286.

[10] ——, “3D mesh compression using fixed spectral bases,”
Graphics Interface, pp. 1–8, 2001.

[11] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace-beltrami
spectra as ”Shape-DNA” of surfaces and solids,” Computer-
Aided Design, vol. 38, no. 4, pp. 342–366, 2006.

[12] Y. Boulfani-Cuisinaud and M. Antonini, “Motion-based ge-
ometry compensation for dwt compression of 3D mesh se-
quence,,” in IEEE International Conference on Image Pro-
cessing (ICIP), vol. 1, 2007, pp. 217–220.

[13] R. Amjoun and W. Straber, “Efficient compression of 2d
dynamic mesh sequences,” Journal of WSCG, pp. 99–106,
2007.

[14] A. Smolic, R. Sondershaus, N. Stefanoski, L. Vasa, K. Muller,
J. Ostermann, and T. Wiegand, “A survey on coding of static
and dynamic 3d meshes,” Three Dimensional Television-
Capture, Transmission, Display, pp. 239–312, 2008.

[15] O. K.-C. Au, C.-L. Tai, L. Liu, and H. Fu., “Dual laplacian
editing for meshes,” IEEE Transaction on Visualization and
Computer Graphics, vol. 12, no. 3, pp. 386–395, May-June
2006.

[16] H. Fu and C.-L. Tai, “Mesh editing with affine-invariant
laplacian coordinates,” Hong Kong University of Science and
Technology, Tech. Rep. HKUST-CS05-01, 2005.

[17] R. W. Sumner and J. Popovic, “Deformation transfer for
triangle meshes,” in ACM SIGGRAPH, 2004, pp. 399–405.

[18] G. Rong, Y. Cao, and X. Guo, “Spectral mesh deformation,”
The Visual Computer, vol. 24, no. 7-9, pp. 787–796, 2008.

[19] D. L. James and C. D. Twigg, “Skinning mesh animations,”
ACM Transactions on Graphics, vol. 24, no. 3, pp. 399–407,
2005.

[20] K. G. Der, R. W. Sumner, and J. Popovi, “Inverse kinematics
for reduced deformable models,” in ACM SIGGRAPH, 2006,
pp. 1174–1179.


