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Abstract

Neural implicit representations have shown remarkable abil-
ities in jointly modeling geometry, color, and camera poses
in simultaneous localization and mapping (SLAM). Current
methods use coordinates, positional encodings, or other ge-
ometry features as input to query neural implicit functions
for signed distances and color which produce rendering er-
rors to drive the optimization in overfitting image observa-
tions. However, due to the run time efficiency requirement in
SLAM systems, we are merely allowed to conduct optimiza-
tion on each frame in few iterations, which is far from enough
for neural networks to overfit these queries. The underfitting
usually results in severe drifts in camera tracking and artifacts
in reconstruction. To resolve this issue, we propose query
quantized neural SLAM which uses quantized queries to re-
duce variations of input for much easier and faster overfitting
a frame. To this end, we quantize a query into a discrete rep-
resentation with a set of codes, only allow neural networks to
observe a finite number of variations. This makes neural net-
works get more and more familiar to these codes after over-
fitting more and more previous frames. Moreover, we also
introduce novel initialization, losses, and argumentation to
stabilize the optimization with huge uncertainty in the early
optimization, constrain the optimization space, and estimate
camera poses more accurately. We justify the effectiveness
of each design and report visual and numerical comparisons
on widely used benchmarks to show our superiority over the
latest methods in both reconstruction and camera tracking.

Introduction
Neural implicit representations have made huge progress in
simultaneous localization and mapping (SLAM) (Zhu et al.
2022, 2023a; Wang, Wang, and Agapito 2023; Sucar et al.
2021; Stier et al. 2023). These methods represent geometry
and color as continuous functions to reconstruct smooth sur-
faces and render plausible novel views, which shows advan-
tages over point clouds in classic SLAM systems (Koestler
et al. 2022). Current methods learn neural implicits in a
scene through rendering them into RGBD images through
volume rendering and minimizing the rendering errors to
ground truth observations. To render a color (Wang et al.
2021), depth (Yu et al. 2022), or normal (Wang et al. 2022) at
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a pixel, we query neural implicit representations for signed
distances or occupancy labels and color at many locations
along a ray, which are integrated based on volume rendering
equations.

We usually use coordinates, positional encodings, or other
features as the input of neural implicit representations (Park
et al. 2019; Songyou Peng 2020; Müller et al. 2022; Rosu
and Behnke 2023; Li et al. 2023b), which we call a query.
Queries are continuous vectors which allows neural net-
works to generalize well on unseen queries that are similar
to the ones seen before. Continuity is good for generaliza-
tion but also brings huge variations for neural networks to
overfit. Neural networks need to see these queries or simi-
lar ones lots of times so that they can infer and remember
attributes like geometry and color at these queries, which
takes time. However, this runtime efficiency does not meet
the requirement of SLAM systems, what is more critical, we
are only allowed to conduct optimization on current frame
in merely few iterations, no beyond frames are observable.
Underfitting on these queries results in huge drifts in cam-
era tracking and artifacts in reconstruction. Therefore, how
to query neural implicit representations to make overfitting
more efficiently in SLAM is still a challenge.

To overcome this challenge, we introduce query quan-
tized neural SLAM to jointly model geometry, color, and
camera poses from RGBD images. We learn a neural singed
distance function (SDF) to represent geometry in a scene
through rendering the SDF with a color function to overfit
image observations. We propose to quantize a query into a
discrete representation with a set of codes, and use the dis-
crete query as the input of neural SDF, which significantly
reduces the variations of queries and improves the perfor-
mance of reconstruction and camera tracking. Our idea is to
make neural networks get more and more familiar to these
quantized queries after overfitting more and more previous
frames, which leads to faster and easier coveragence at each
frame. We provide a thorough solution to discretize queries
like coordinates, positional encodings, or other geometry
features for overfitting each frame more effectively. More-
over, to support our quantized queries, we also introduce
novel initialization, losses, and augmentation to stabilize the
optimization with huge uncertainty in the very beginning,
constrain the optimization space, and estimate camera poses
more accurately. We evaluate our methods on widely used



benchmarks containing synthetic data and real scans. Our
numerical and visual comparisons justify the effectiveness
of our modules, and show superiorities over the latest meth-
ods in terms of accuracy in scene reconstruction and camera
tracking. Our contributions are listed below.

1. We present query quantized neural SLAM for joint scene
reconstruction and camera tracking from RGBD images.
We justify the idea of improving SLAM performance by
reducing query variations through quantization.

2. We present novel initialization, losses, and augmentation
to stabilize the optimization. We show that the stabiliza-
tion is the key to make quantized queries work in SLAM.

3. We report state-of-the-art performance in scene recon-
struction and camera tracking in SLAM.

Related Work
Neural implicit representations achieve impressive results
across various applications (Wang et al. 2022; Guo et al.
2022; Rosu and Behnke 2023; Li et al. 2023b; Müller et al.
2022). With supervision from 3D annotations (Liu et al.
2021; Tang et al. 2021), point clouds (Atzmon and Lipman
2020; Zhao et al. 2020; Atzmon and Lipman 2021; Chen,
Liu, and Han 2022), or multi-view images (Fu et al. 2022;
Yu et al. 2022; Wang et al. 2022; Guo et al. 2022), neural
SDFs or occupancy functions can be estimated using addi-
tional constraints or volume rendering.
Multi-view Reconstruction. Classic multi-view stereo
(MVS) (Schönberger and Frahm 2016; Schönberger et al.
2016) uses photo consistency to estimate depth maps but
struggles with large viewpoint variations and complex light-
ing. Space carving (Laurentini 1994) reconstructs 3D struc-
tures as voxel grids without relying on color.

Recent methods leverage neural networks to predict depth
maps using depth supervision (Yao et al. 2018; Koestler et al.
2022) or multi-view photo consistency (Zhou et al. 2017).

Neural implicit representations have gained popularity for
learning 3D geometry from multi-view images. Early works
compared rendered outputs to masked input segments using
differentiable surface renderers (Jiang et al. 2020; Niemeyer
et al. 2020; Sun et al. 2021). DVR (Niemeyer et al. 2020)
and IDR (Yariv et al. 2020) model radiance near surfaces for
rendering.

NeRF (Mildenhall et al. 2020) and its variants (Park et al.
2021; Müller et al. 2022; Sun et al. 2021) combine ge-
ometry and color via volume rendering, excelling in novel
view synthesis without masks. UNISURF (Oechsle, Peng,
and Geiger 2021) and NeuS (Wang et al. 2021) improve on
this by rendering occupancy functions and SDFs. Further ad-
vancements integrate depth (Yu et al. 2022; Azinović et al.
2022; Zhu et al. 2022), normals (Wang et al. 2022; Guo et al.
2022), and multi-view consistency (Fu et al. 2022) to en-
hance accuracy. Depth images play a key role by guiding
ray sampling (Yu et al. 2022) or providing rendering super-
vision (Yu et al. 2022; Lee et al. 2023), enabling more pre-
cise surface estimation.
Neural SLAM. Early work employed neural networks to
learn policies for exploring 3D environments. More recent
methods (Zhang et al. 2023; Xinyang et al. 2023; Teigen

et al. 2023; Sandström et al. 2023) learn neural implicit rep-
resentations from RGBD images. iMAP (Sucar et al. 2021)
uses an MLP as the only scene representation in a realtime
SLAM system. NICE-SLAM (Zhu et al. 2022) presents a
hierarchical scene representation to reconstruct large scenes
with more details. Its following work NICER-SLAM (Zhu
et al. 2023b) uses monocular geometric cues instead of
depth images as supervision. Co-SLAM (Wang, Wang, and
Agapito 2023) jointly uses coordinate and sparse parametric
encodings to learn neural implicit functions. Segmentation
priors (Kong et al. 2023; Haghighi et al. 2023) also show
their ability to improve the performance of SLAM. Also,
vMAP (Kong et al. 2023) represents each object in the scene
as a neural implicit in a SLAM system. Depth fusion is also
integrated with neural SDF as a prior for more accurate ge-
ometry modeling in SLAM (Hu and Han 2023).
Neural Representations with Vector Quantization. Vec-
tor quantization, first introduced in VQ-VAE (Oord, Vinyals,
and Kavukcuoglu 2017) for image generation, has since
been applied to binary neural networks (Gordon et al. 2023),
data augmentation (Wu et al. 2022), compression (Dupont
et al. 2022), novel view synthesis (Yang et al. 2023b), point
cloud completion (Fei et al. 2022), image synthesis (Gu
et al. 2022), and 3D reconstruction/generation using Trans-
formers or diffusion models (Corona-Figueroa et al. 2023;
Li et al. 2023a). Unlike these approaches, we quantize in-
put queries to approximate continuous representations for
SLAM systems, addressing runtime efficiency and visibility
constraints during optimization. Unlike Gaussian splatting-
based SLAM methods (Keetha et al. 2024; Matsuki et al.
2024; Huang et al. 2024b,a; Yu, Sattler, and Geiger 2024),
our approach focuses on recovering high-fidelity SDFs.

Method
Overview. Following previous methods (Wang, Wang, and
Agapito 2023; Zhu et al. 2022; Hu and Han 2023), our neural
SLAM jointly estimates geometry, color and camera poses
from J frames of RGBD images I and D. Our SLAM esti-
mates camera poses Oj for each frame j, and infers an SDF
fs and a color function fc which predict a signed distance
s = fs(q̃) and a color c = fc(q̃) for an quantized query q̃.
q̃ is quantized from its continuous representation q, which
is not limited to a coordinate p but also includes its posi-
tional encoding h(p), geometry feature g(p), and interpola-
tion from fused depth prior t(p).

Fig. 1 illustrates our framework. Starting from a contin-
uous query q, we first quantize it into a quantized query q̃,
which is the input to our neural implicit representations in-
cluding SDF fs and color function fc, predicting a signed
distance s and a color c. We accumulate signed distances
and colors at queries sampled along a ray into a rendered
color and a depth through volume rendering. We tune fs,
fc, and {Oj} by minimizing rendering errors. After the op-
timization, we extract the zero-level set of fs as the surface
of the scene using the marching cubes algorithm (Lorensen
and Cline 1987).
Coordinate Quantization. For the coordinate p of a query
q, we directly discretize p as its nearest vertex on an ex-
tremely high resolution 3D grid, such as 128003, which be-
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Figure 1: Overview of our method.

comes a quantized coordinate p̃. We use coordinate quanti-
zation (Jiang, Hua, and Han 2023) to reduce the coordinate
variations, preserve contentiousness, and stabilize the opti-
mization with high frequency postional encodings. More-
over, we use one-blob encoding (Müller et al. 2019) along
with the quantized coordinates p̃ as the positional encoding
h(p̃). We denote h(p̃) as hp̃ for simplicity in the following.
Geometry Feature Quantization. We follow Instant-
NGP (Müller et al. 2022) to build up a multi-resolution
hash-based feature grid θg as geometry features in the scene.
We put learnable features at vertices on the multi-resolution
grid, and use the trilinear interpolation to get a geometry
feature g(p) at the location p of query q. We normalize the
length of g(p) to be 1 to balance the importance of different
features that are used to update the same discrete code.

Following VQ-VAE (Oord, Vinyals, and Kavukcuoglu
2017), we maintain a set of B learnable codes {eb}b=B

b=1 , and
quantize each geometry feature g(p) into one of the codes
by the nearest neighbor search using a L2 norm as a metric,

ep̃ ={eb} ||eb − g(p)||22, (1)

where we denote the nearest code to g(p) in the codebook
as ep̃. After each iteration, we normalize the length of each
code to be 1 to make codes comparable with each other.
Codebook Initialization. Our preliminary results show that
the initialization of B codes really matters. Different from
using relatively clean point clouds as supervision (Yang et al.
2023a), random initialization using uniform or Gaussian
distributions for each code brings more uncertainties when
there are already lots uncertainties in SDF fs, color func-
tion fc, and the estimated camera poses in the very begin-
ning. These uncertainties cause unstable optimization which
results in large drifts in camera tracking that is hard to be
corrected in the following optimization iterations. We found
that using Bernoulli distribution to initialize entries to either
0 or 1 in each code can significantly constrain changes on
these codes, and stabilize the optimization,

eb ∼ Bernoulli(0.5). (2)

Quantization of Additional Geometry Priors. It has
shown that using additional geometry priors as a part of in-

put can improve the reconstruction accuracy in SLAM Hu
and Han (2023). It uses a signed distance t(p) at location p
as a part of input. t(p) is a scalar interpolated from a TSDF
grid θt which is incrementally fused from input depth im-
ages. We simply quantize t(p) by using quantized coordi-
nates p̃ for the interpolation from θt. We denote the quan-
tized signed distance interpolation as tp̃.
Quantized Queries. In sum up, for a continuous query q
formed by coordinate p, positional encoding h(p), geometry
feature g(p), and TSDF interpolation t(p), we quantize q
into a discrete representation,

q̃ = [p̃, hp̃, ep̃, tp̃]. (3)
Volume Rendering. We follow NeRF to do volume render-
ing at current frame j, we render a RGB image Īj and a
depth image D̄j . This produces rendering errors in terms of
RGB color and depth to the input Ij and Dj , which drives
the optimization to minimize.

With the estimated camera poses Oj , we shoot a ray Rk

at a randomly sampled pixel on view Ij . Rk starts from the
camera origin o and points a direction of r. We sample N
points along the ray Rk using stratified sampling and uni-
formly sample near the depth, where each point is sampled
at pn = o + dnr and dn corresponds to the depth value
of pn on the ray, where each location pn indicates a query
qn. We quantize each query qn into q̃n using Eq. 3. Then,
the SDF fs and the color function fc predict a signed dis-
tance sn = fs(q̃) and a color cn = fc(q̃). Following Neural-
RGBD (Azinović et al. 2022), we use a simple bell-shaped
function formed by the product of two Sigmoid functions δ
to transform signed distances sn into volume density wn,

wn = δ(sn/t)δ(−sn/t), (4)
where t is the truncation distance. With wn, we render RGB
Īj and depth D̄j images through alpha blending,

Īj(k) =
1∑N

n′=1 wn′

∑N

n′=1
wn′cn′ ,

D̄j(k) =
1∑N

n′=1 wn′

∑N

n′=1
wn′dn′ .

(5)



Loss Function. With estimated camera poses, we evaluate
the rendering errors at K rays on the rendered Īj and D̄j ,

LI =
1

JK

∑J,K

j,k=1
||Ij(k)− Īj(k)||22,

LD =
1

JK

∑J,K

j,k=1
||Dj(k)− D̄j(k)||22.

(6)

With the input depth Dj , we can also impose two con-
straints on the predicted signed distances in the free space
between the camera and the surface and area near the sur-
face. We use a threshold tr of signed distances to set up a
bandwidth around a surface. For queries outside the band-
width, we truncate their signed distances into either 1 or−1.
Thus, we use an empty space loss Ls′ to supervise the pre-
dicted signed distances Ls′ =

∑
n,k,j ||sn−tr||22. Moreover,

we approximate the signed distances at queries qn within the
bandwidth as dn − d′n, where dn is the depth observation at
the pixel on Dj and d′n is the depth at query qn. Thus, we use
Ls =

∑
n,k,j ||sn − (dn − d′n)||22 to supervise the predicted

signed distances sn.
To learn the B codes {eb}, we impose two constraints.

One is that we push the code ep̃ that the geometry feature
g(p) matches in Eq. 1 to be similar to g(p). We use a MSE,

Lg = ||sg[ep̃]− g(p)||2 + λ||ep̃ − sg[g(p)]||2, (7)

where sg stands for the stop gradient (Oord, Vinyals, and
Kavukcuoglu 2017) operator. The key idea behind stop gra-
dient is to decouple the training of the SDF fs, color function
fc from the training of B codes. We use λ = 0.1 in all our
experiments.The other is that we diversify the B codes {eb}
to prevent them from going to the same point in the feature
space using a diverse loss Le =

∑B
b

∑B
b′ ||eb − eb′ ||2.

Our loss function L includes all loss terms above. We
jointly minimize all loss terms with balance weights α, β,
γ, ζ and η below,

min
fs,fc,{eb},θg

LI + αLD + βLg − γLe + ζ Ls + ηLs′ . (8)

Details in SLAM. With RGBD input, we jointly estimate
camera poses for each frame and infer the SDF fs to model
geometry. For camera tracking, we first initialize the pose
of current frame using a constant speed assumption, which
provides us a coarse pose estimation according to poses of
previous frames. We use the coarse pose estimation to shoot
rays and render RGB and depth images. We minimize the
same loss function in Eq. 8 by only refining the camera poses
and keeping other parameters fixed. We refine camera poses
and other parameters at the same time in a bundle adjustment
procedure every 5 frames, where we also add the pose of
current frame as one additional parameter in Eq. 8.

For reconstruction, we render rays from the current view
and key frames in each batch. Instead of key frame images,
we follow Co-SLAM (Wang, Wang, and Agapito 2023) to
store rays randomly sampled 5% of all pixels from each key
frame in a key frame ray list. This allows us to insert new

Co-SLAM Ours

Figure 2: Visual comparison in reconstruction on ScanNet.

key frames more frequently and maintain a larger key frame
coverage. We select a key frame very 55 frames.

With the estimated camera poses, we incrementally fuse
input depth images Dj into a TSDF grid θt in a resolution
of 256. We do trilinear interpolation on θt to obtain the prior
interpolation t(p) at a query q.
Augmentation of Geometry Priors. Although depth fusion
priors (Hu and Han 2023) show that the TSDF θt can im-
prove the reconstruction accuracy in SLAM, we found that
the interpolation tp̃ of geometry priors significantly degener-
ate the performance in our preliminary results. Our analysis
shows that the neural networks learn a shortcut from the in-
put to the output, which directly maps the geometry prior
tp̃ as the predicted signed distance at most queries, ignoring
any geometry constraints like camera poses. The reason why
it works well with depth fusion priors (Hu and Han 2023) is
that it predicts occupancy probabilities but not signed dis-
tances, which differentiates the input from the output.

To resolve this problem, we introduce a simple augmen-
tation to manipulate the geometry prior interpolation tp̃

through a linear transformation. We use tp̃ ← tanh(tp̃) to
make signed distances still comparable to each other in the
range of [−1, 1] but also shift away from the original TSDF
interpolations.
Implementation Details. We run Query Quantized Neu-
ral SLAM on an NVIDIA RTX 3090ti GPU, achieving 34
FPS on the Replica dataset with default settings. For query
sampling, we sample N = 43 points per ray, including
32 uniformly sampled and 11 near-surface queries. We use
B = 128 codes for vector quantization and a 2563 TSDF
resolution with a truncated threshold tr = 10 voxel size
near surfaces. Following DP Prior (Hu and Han 2023), we
incrementally fuse a TSDF using coarsely estimated camera
poses. Rays are sampled for volume rendering, and depth
fusing is redone with refined poses for the next frame. Loss
parameters are set as t = 0.1, α = 0.02, β = 0.06, γ =
0.0001, ζ = 200, η = 2.

Experiments and Analysis
Datasets. We evaluate the query quantized neural SLAM on
real-world indoor scenes from 4 datasets and 8 synthetic
Replica (Straub et al. 2019) scenes following Co-SLAM.
Additionally, we assess reconstruction quality on 7 noisy
SyntheticRGBD (Rajpal et al. 2023) scenes and compare our
reconstruction and camera tracking accuracy to SOTAs on 6
scenes from NICE-SLAM (Zhu et al. 2022) with BundleFu-
sion ground truth poses. Camera tracking is also reported on
3 scenes from TUM RGB-D (Sturm et al. 2012).
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Figure 3: Visual comparisons on Replica.
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Figure 4: Visual comparisons in camera tracking on ScanNet and Replica.

room0 room1 room2 office0 office1 office2 office3 office4 Avg.

iM
A

P

Depth L1[cm]↓ 5.08 3.44 5.78 3.79 3.76 3.97 5.61 5.71 4.64
Acc.[cm]↓ 4.01 3.04 3.84 3.34 2.10 4.06 4.20 4.34 3.62

Comp.[cm]↓ 5.84 4.40 5.07 3.62 3.62 4.73 5.49 6.65 4.93
Comp. Ratio↑ 78.34 85.85 79.40 83.59 88.45 79.73 73.90 74.77 80.50

N
IC

E

Depth L1[cm]↓ 1.79 1.33 2.20 1.43 1.58 2.70 2.10 2.06 1.90
Acc.[cm]↓ 2.44 2.10 2.17 1.85 1.56 3.28 3.01 2.54 2.37

Comp.[cm]↓ 2.60 2.19 2.73 1.84 1.82 3.11 3.16 3.61 2.63
Comp. Ratio ↑ 91.81 93.56 91.48 94.93 94.11 88.27 87.68 87.23 91.13

D
F

Pr
io

r Depth L1[cm]↓ 1.44 1.90 2.75 1.43 2.03 7.73 4.81 1.99 3.01
Acc.[cm]↓ 2.54 2.70 2.25 2.14 2.80 3.58 3.46 2.68 2.77

Comp.[cm]↓ 2.41 2.26 2.46 1.76 1.94 2.56 2.93 3.27 2.45
Comp. Ratio ↑ 93.22 94.75 93.02 96.04 94.77 91.89 90.17 88.46 92.79

C
o-

SL
A

M Depth L1[cm]↓ 1.05 0.85 2.37 1.24 1.48 1.86 1.66 1.54 1.51
Acc.[cm]↓ 2.11 1.68 1.99 1.57 1.31 2.84 3.06 2.23 2.10

Comp.[cm]↓ 2.02 1.81 1.96 1.56 1.59 2.43 2.72 2.52 2.08
Comp. Ratio ↑ 95.26 95.19 93.58 96.09 94.65 91.63 90.72 90.44 93.44

O
ur

s

Depth L1[cm]↓ 1.09 0.69 2.48 1.18 0.99 1.76 1.54 1.68 1.42
Acc.[cm]↓ 2.38 2.62 2.0 1.55 1.37 3.43 3.94 2.16 2.43

Comp.[cm]↓ 1.76 1.77 1.82 1.57 1.39 2.14 2.55 2.46 1.93
Comp. Ratio ↑ 96.39 95.49 94.28 96.10 95.4 94.07 91.78 91.53 94.38

Table 1: Numerical comparison in each scene on Replica.

Metrics. We adopt Co-SLAM’s culling strategy and evalu-
ate reconstruction accuracy using Depth L1 (cm), Accuracy
(cm), Completion (cm), and Completion Ratio (< 5cm%).
For camera tracking, we report ATE RMSE (Sturm et al.
2012) (cm). Our main baselines include iMAP (Sucar et al.
2021), NICE-SLAM (Zhu et al. 2022), NICER-SLAM (Zhu
et al. 2023b), DF Prior (Hu and Han 2023), Co-SLAM,
and Go-Surf (Wang, Bleja, and Agapito 2022), ensuring fair
comparison with Co-SLAM’s mesh culling.

Evaluations
Results on Replica. We evaluate our method on 8 Replica
scenes, comparing reconstruction accuracy with iMAP,

NICE-SLAM Co-SLAM Ours

Figure 5: Reconstruction comparisons on SyntheticRGBD.

Acc.[cm]↓ Comp.[cm]↓ Comp. Ratio ↑
NICE-SLAM 21.46 7.39 60.89

DF Prior 22.91 8.26 52.08
Co-SLAM 36.89 5.75 68.46

Ours 39.67 5.09 69.89

Table 2: Reconstruction comparisons on ScanNet 6 scenes.

NICE-SLAM, NICER-SLAM, Co-SLAM, and DF Prior un-
der the same conditions. Tab. 1 shows our method signifi-
cantly improves surface completion and completion ratios,
with visual comparisons in Fig. 3. Our superior reconstruc-
tion is due to more accurate camera tracking, as reported in
Tab. 6 and visually compared with Co-SLAM in Fig. 4.
Results on SyntheticRGBD. Tab. 7 shows numerical com-
parisons with iMAP, NICE-SLAM, Co-SLAM, and DF
Prior on the SyntheticRGBD (Rajpal et al. 2023) dataset.
Our method achieves higher accuracy, particularly in com-
pleteness and completion ratio metrics. Fig. 5 highlights our
superior geometric detail, such as window frames and floors



   
 O

ur
s 

   
   

 G
o-

Su
rf

Figure 6: Visual comparisons with Go-Surf on ScanNet.

fr1/desk (cm) fr2/xyz (cm) fr3/office (cm)

iMAP 4.9 2.0 5.8
NICE-SLAM 2.7 1.8 3.0

Co-SLAM 2.7 1.9 2.67
Ours 2.61 1.7 2.70

Table 3: ATE RMSE(cm) in tracking on TUMRGBD.

0000 0002 0005 0050 Avg.

Go-Surf
Acc.[cm]↓ 3.18 3.48 14.79 29.36 12.70

Comp.[cm]↓ 2.37 2.91 2.04 2.87 2.55
Comp. Ratio [<5cm %] ↑ 94.04 84.94 92.78 88.31 90.01

Ours
Acc.[cm]↓ 3.17 4.08 13.63 23.45 11.08

Comp.[cm]↓ 2.33 2.83 1.97 2.81 2.48
Comp. Ratio [<5cm %] ↑ 94.3 85.48 94.01 88.38 90.54

Table 4: Numerical comparison in each scene on Scannet.

in front of sofas. Query quantized neural SLAM reconstructs
smoother, more complete surfaces with enhanced detail.
Results on ScanNet. We evaluate our method on real Scan-
Net scans. Tab. 2 shows our method outperforms NICE-
SLAM, Co-SLAM, and DF Prior numerically, while Fig. 2
highlights sharper, more compact surfaces. Tab. 5 and Fig. 4
demonstrate improved camera tracking, particularly on com-
plex real scans, thanks to our quantized queries.
Results on TUMRGBD. We follow Co-SLAM to report our
tracking performance on TUMRGBD. The numerical com-
parisons in Tab. 3 show that our quantized queries also make
networks estimate camera poses more accurately.
Application in Multi-View Reconstruction. We evalu-
ate our quantized queries for multi-view reconstruction us-
ing Go-Surf’s neural implicit function. Tab. 4 shows our
approach consistently outperforms Go-Surf on 4 ScanNet
scenes in Accuracy (cm), Completion (cm), and Completion
ratio (<5cm%). Fig. 6 demonstrates more compact surfaces
and enhanced geometric details achieved through better con-
vergence with our quantized queries.

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

iMAP 55.95 32.06 17.50 70.51 32.10 11.91 36.67
NICE-SLAM 8.64 12.25 8.09 10.28 12.93 5.59 9.63

Co-SLAM 7.18 12.29 9.57 6.62 13.43 7.13 9.37
Ours 6.99 9.47 8.82 6.48 13.30 5.86 8.49

Table 5: ATE RMSE(cm) comparisons on ScanNet.

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

NICE 1.69 2.04 1.55 0.99 0.90 1.39 3.97 3.08 1.95
NICER 1.36 1.60 1.14 2.12 3.23 2.12 1.42 2.01 1.88

DF Prior 1.39 1.55 2.60 1.09 1.23 1.61 3.61 1.42 1.81
Co-SLAM 0.72 1.32 1.27 0.62 0.52 2.07 1.47 0.84 1.10

Ours 0.58 1.16 0.87 0.52 0.48 1.74 1.22 0.73 0.91

Table 6: ATE RMSE(cm) comparisons on Replica.

BR CK GR GWR MA TG WR Avg.

iM
A

P

Depth L1[cm]↓ 24.03 63.59 26.22 21.32 61.29 29.16 81.71 47.22
Acc.[cm]↓ 10.56 25.16 13.01 11.90 29.62 12.98 24.82 18.29

Comp.[cm]↓ 11.27 31.09 19.17 20.39 49.22 21.07 32.63 26.41
Comp. Ratio ↑ 46.91 12.96 21.78 20.48 10.72 19.17 13.07 20.73

N
IC

E

Depth L1[cm]↓ 3.66 12.08 10.88 2.57 1.72 7.74 5.59 6.32
Acc.[cm]↓ 3.44 10.92 5.34 2.63 6.55 3.57 9.22 5.95

Comp.[cm]↓ 3.69 12.00 4.94 3.15 3.13 5.28 4.89 5.30
Comp. Ratio↑ 87.69 55.41 82.78 87.72 85.04 72.05 71.56 77.46

C
o-

SL
A

M Depth L1[cm]↓ 3.51 5.62 1.95 1.25 1.41 4.66 2.74 3.02
Acc.[cm]↓ 1.97 4.68 2.10 1.89 1.60 3.38 5.03 2.95

Comp.[cm]↓ 1.93 4.94 2.96 2.16 2.67 2.74 3.34 2.96
Comp. Ratio ↑ 94.75 68.91 90.80 95.04 86.98 86.74 84.94 86.88

O
ur

s

Depth L1[cm]↓ 3.45 5.63 1.09 1.46 1.28 4.18 2.16 2.75
Acc.[cm]↓ 2.04 7.16 1.83 2.07 1.56 1.63 5.25 3.07

Comp.[cm]↓ 1.84 5.17 2.53 2.01 2.66 2.61 3.01 2.83
Comp. Ratio ↑ 95.88 69.10 92.44 95.77 88.01 87.75 88.14 88.16

Table 7: Numerical comparison in each scene on Synthetic.

Analysis
Why Quantized Queries Work. For time-sensitive task
SLAM, the network can merely get updated in few itera-
tions like 10 in our method at each frame. Thus, the conver-
gence efficiency is vital to inference accuracy. Our quantized
queries significantly reduce the variations of input, which
makes neural network always see queries that have been ob-
served at previous frames, leading to fast overfitting on the
current frame. We record the iteration when our neural net-
work converges at each frame, and visualize the integral of
converge iteration at each frame in Fig. 10. The compari-
son with Co-SLAM which needs continuous queries show
that quantized queries need much fewer iterations than Co-
SLAM to converge at a frame. We determine if the optimiza-
tion converges according to the RGB rendering loss LI with
a threshold of 0.0002.

Fig. 8 (b) shows the merits of quantized codes in camera
tracking. We compare ours with Co-SLAM in terms of ac-
curacy in different iterations. We see that tracking accuracy
is relatively stable and does not get larger as Co-SLAM once
quantized codes converge after seeing about 500 frames.
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Figure 7: Visual comparisons in ablation studies.
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Figure 8: (a) Codebook visualization with TSNE (Color
indicates segmentation labels. Sofa:Red, Wall:Blue.). (b)
Comparisons of tracking accuracy (the lower the better) with
Co-SLAM during optimization.

Code Distribution. For each vertex on the reconstructed
meshes, we query its ID of codes and visualize the ID of
codes as color on mesh in Fig. 9. We can see that different
codes can be used to generate different geometry, and one
code can be used to generate similar structures. We also vi-
sualize the nearest codes at all vertices with TSNE in Fig. 8
(a) and colorize these codes using the GT segmentation la-
bels of vertices. We can see that codes show some patterns,
and several codes which group together may generate the
same semantic object like sofa (red) and wall (blue).

Ablation Studies
Merits of Quantization. We report merits of quantization
on queries in Tab. 8.

The degenerated results with either continuous coordinate
“w/o Gridcor”, or continuous geometry features “w/o Code-
book”, or no geometry prior “w/o TSDF”, or continuous ge-
ometry prior “w/o TSDF1” show the advantages of quan-

0050 0059 0106 0207 Avg.

w/o Gridcor 11.34 9.96 9.01 6.29 9.15
w/o Codebook 14.76 11.24 9.37 6.58 10.49

w/o TSDF 13.16 10.53 9.34 6.46 9.87
w/o TSDF1 11.19 9.87 9.14 6.17 9.09

w/o tanh 14.23 11.39 9.41 6.89 10.48
w/o Bernoulli 12.78 10.46 9.17 6.80 9.80

64 codes 15.15 11.50 9.18 6.30 10.53
256 codes 14.98 10.48 9.37 6.21 10.26

LI 139.00 117.31 201.85 137.53 148.9
LI + LD 101.76 102.71 221.87 107.22 133.39

LI + LD + Lg − Le 83.97 99.83 84.66 74.71 85.79
LI + LD + Lg − Le + Ls′ 13.76 11.01 8.78 6.13 9.92

Full Model 10.02 9.47 8.82 5.86 8.54

Table 8: Abalation study on 4 scenes on ScanNet. ATE
RMSE(cm) comparisons in tracking.

Figure 9: Code ID at vertices on the reconstructed mesh.

Figure 10: Merits of quantized queries in convergence on
scene 0059, 0106, and 0207 from ScanNet.

tized queries. Fig. 7 shows the visual comparisons. We can
see that the reconstruction gets decreased without the geom-
etry prior TSDF, and we can not estimate accurate zero level
set if no codebook is used.
Code Initialization. We conduct experiments to highlight
the importance of codebook initialization. We try to use
other distribution like uniform distribution to replace the
Bernoulli distribution in the code initialization. The result
“w/o Bernoulli” in Tab. 8 and Fig. 7 (a) shows that Bernoulli
distribution can significantly stabilize the optimization by
constraining the optimization space with uncertainties since
very beginning. This initialization is a key to our success.
Effectiveness of Loss Terms. We justify the effectiveness of
each loss term in Tab. 8. We incrementally add one loss term
each time. Each loss can improve the tracking performance.
Effect of Code Number. We also explore the effect of
code number in Tab. 8. We try different numbers including
B = {64, 256}. We see that either fewer or more codes de-
generate the performance. This is because too few codes are
not enough to represent diverse geometries while too many
codes make it hard to learn patterns well as codes in the
overfitting on a scene.
Effect of TSDF Augmentation. Using singed distances in-
terpolated from TSDF fusion as a geometry prior also im-
proves reconstruction accuracy. We report results “w/o tanh”
without signed distance interpolations in Tab. 8. The degen-
erated results justify its effectiveness and the importance of
making the input different to the output.

Conclusion
We present query quantized neural SLAM for joint cam-
era pose estimation and scene reconstruction. By quantizing
queries—coordinates, positional encodings, geometry fea-
tures, or priors—we reduce query variations, enabling faster
neural network convergence per frame. Our novel initializa-
tion, losses, and augmentations stabilize optimization, mak-
ing quantized coordinates effective for neural SLAM. Exten-
sive evaluations on standard benchmarks show our method
outperforms existing approaches in both camera tracking
and reconstruction quality.



References
Atzmon, M.; and Lipman, Y. 2020. SAL: Sign Agnostic Learn-
ing of Shapes From Raw Data. In IEEE Conference on Computer
Vision and Pattern Recognition.
Atzmon, M.; and Lipman, y. 2021. SALD: Sign Agnostic Learning
with Derivatives. In International Conference on Learning Repre-
sentations.
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