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Abstract

This paper presents a novel computational framework based on dy-
namic spherical volumetric simplex splines for simulation of genus-
zero real-world objects. In this framework, we first develop an ac-
curate and efficient algorithm to reconstruct the high-fidelity digi-
tal model of a real-world object with spherical volumetric simplex
splines which can represent with accuracy geometric, material, and
other properties of the object simultaneously. With the tight cou-
pling of Lagrangian mechanics, the dynamic volumetric simplex
splines representing the object can accurately simulate its physical
behavior because it can unify the geometric and material properties
in the simulation. The visualization can be directly computed from
the object’s geometric or physical representation based on the dy-
namic spherical volumetric simplex splines during simulation with-
out interpolation or resampling. We have applied the framework for
biomechanic simulation of brain deformations, such as brain shift-
ing during the surgery and brain injury under blunt impact. We
have compared our simulation results with the ground truth ob-
tained through intra-operative magnetic resonance imaging and the
real biomechanic experiments. The evaluations demonstrate the ex-
cellent performance of our new technique presented in this paper.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling

1 Introduction

Physically-based modeling and simulation of digitized real-world
models are still extremely challenging tasks. Among many impor-
tant aspects of simulation, the accuracy is of utmost importance
since only physically realistic simulation can be used to represent
the true reality and provide valuable information for the simulation-
based assessment and analysis. In existing approaches, several dif-
ferent representations are typically required throughout the simu-
lation of real-world models in computerized environments. That
is to say, each stage within the entire physical simulation pipeline,
including modeling (e.g., meshing, material modeling), simulation,
analysis, visualization, typically takes as input a different represen-
tation of the modeled object, which requires costly and error-prone
data conversions throughout the entire simulation process. It will
certainly introduce error into the pipeline. For instance, in order
to simulate the brain deformation, a linear solid mesh needs to be
generated for finite element methods (FEMs) from the voxel-based
representation of the brain representing the geometry of the brain
(which has a highly convoluted cortical surface and many subtle
sub-cortical structures). Then, manual material editing needs to be
conducted to assign material properties to solid meshes. The FEM
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properties are linearly interpolated during simulation and resampled
once again to voxels’ intensities for visualization. Certainly, con-
versions among volumetric datasets, solid meshes, finite elements,
and voxels based on linear interpolation or resampling will intro-
duce error. In addition, more errors will be brought into the pipeline
as the constructed linear solid mesh may not well represent both
geometry and material distribution simultaneously. The geometric,
physical, and mechanical properties are not tightly integrated into
the simulation. As a result, the current practice impedes the accu-
rate modeling and simulation of digital models of real-world ob-
jects. With ever-improving computing power comes the strong de-
mand for more accurate, robust, and powerful solid modeling and
simulation paradigms that are efficacious for the modeling, simu-
lation, analysis, and visualization of digital models of real-world
objects.

To overcome the aforementioned deficiencies, we develop an inte-
grated computational framework based on dynamic spherical volu-
metric simplex splines (DSVSS) that can greatly improve the accu-
racy and efficacy of modeling and simulation of heterogenous ob-
jects since the framework can not only reconstruct with high accu-
racy geometric, material, and other quantities associated with het-
erogeneous real-world models, but also simulate the complicated
dynamics precisely by tightly coupling these physical properties
into simulation. The integration of geometric modeling, material
modeling, and simulation is the key to the success of simulation of
real-world objects. In contrast to existing techniques, our frame-
work uses a single representation that requires no data conversion.
The advantages of our framework result from many attractive prop-
erties of multivariate splines. In comparison with tensor-product
NURBS, multivariate simplex splines are non-tensor-product in na-
ture. They are essentially piecewise polynomials of the lowest pos-
sible degree and the highest possible continuity everywhere across
their entire tetrahedral domain. For example, given an object of
simplex splines with degreen, it can achieveCn−1 continuity.
Furthermore,C0, other varying continuities, and even discontinu-
ity can be accommodated through different knot and control point
placements and/or different arrangements of domain tetrahedra in
3D. Furthermore, simplex splines are ideal to represent heteroge-
neous material distributions through the tight coupling of control
points and their attributes. From dynamic simulation’s point of
view, they are finite elements which can be directly brought into
finite element formulations and physics-based analysis without los-
ing any information. Finite elements can be derived directly from
the simplex spline representation, which can also be visualized
via volumetric ray-casting without discretization [Hua et al. 2004].
Trivariate simplex splines are obtained through the projection of
n-dimensional simplices onto 3D. Projecting them one step fur-
ther onto 2D for visualization results in bivariate simplex splines of
one degree higher than the original solid model, therefore, simplex
splines facilitate the visualization task with an analytical, closed-
form formulation. It is not necessary to perform any resampling
and/or interpolation operations. Local adaptivity and local/global
subdivision via knot insertion can be readily achieved.

On the application front, in recent years, tremendous efforts from
biomedical research communities have been devoted into the brain
simulation since accurate simulation of brain deformations can have
many potential applications, e.g., computer-aided surgical plan-



ning/surgery, computer-assisted disease/injury positioning, accu-
rate radiation therapy, and many other medical benefits [Maguire
et al. 1991]. Various methods are emerging for simulation of the
brains in different physical environments. However, most brain vol-
ume simulation techniques still depend on linear geometric repre-
sentation and FEMs as we have already described above. No ad-
vanced computational models are available for better simulation.
As we all know, the brain is a highly convoluted organ rich of geo-
metric, anatomical, and material variations. In order to obtain re-
alistic deformation simulation of the brain, it is very important to
construct a digital model which can simultaneously represent its
geometry, imaging intensities, and material properties, and then in-
tegrate the properties into the biomechanic simulation. Consider
that the human brain is topologically equivalent to a solid sphere,
our proposed dynamic spherical volumetric simplex splines are per-
fect for modeling, simulation, and analysis of such an object. The
spherical volumetric simplex splines are defined over a solid spher-
ical tetrahedralization. In this paper, we apply and evaluate our
simulation framework on various human brain deformations.

Our contributions in this paper can be summarized as follows:

• We develop a physical simulation framework which seam-
lessly integrates geometric properties, physical properties,
and dynamic behaviors together. The consistent, uniform rep-
resentation throughout each stage of modeling and simulation
is a single degreen spherical volumetric simplex spline. It
is ideal for simulating complex, heterogenous real-world ob-
jects.

• The heterogenous model reconstructed from the digitalization
of a real-world object is faithful and of high-fidelity in terms
of its geometry and material distribution. The model recon-
struction procedure is automatic, and the maximal fitting error
to the original data can be controlled by user’s specification
interactively.

• During the simulation, the geometry and physical proper-
ties of the volumetric model can be computed using the
analytic representation without any need for numerical ap-
proximations such as cubic interpolation or quadratic resam-
pling. Hence, physical simulation, including all downstream
processes, such as analysis and evaluation, can be achieved
more accurately and robustly.

• We apply the dynamic spherical simplex splines scheme in
the simulation and analysis of brain models. The unified
scheme can achieve very accurate simulation compared with
the ground-truth results because it can tightly integrate the
geometric and material properties in the simulation. Our
framework has great potential to provide simulation-based as-
sessment for innovative computer-aided diagnosis of brain in-
jury cases.

2 Previous Work

Our paper is related to the theory and application of multivariate
simplex splines and physically based simulation. This section re-
views the related, previous work in these fields.

2.1 Multivariate Simplex Splines

From projection’s point of view, univariate B-splines can be in-
tuitively formulated as volumetric shadows of higher dimensional
simplices, i.e., we can obtain B-splines of arbitrary degreen by
taking a simplex in the(n + 1)-dimensional space and volumetri-
cally projecting it ontoR1. Motivated by this idea of Curry and

Schoenberg, C. de Boor [de Boor 1976] presented a brief descrip-
tion of multivariate simplex splines. In essence, multivariate sim-
plex splines are the volumetric projection of higher dimensional
simplices onto a lower dimensional spaceRm. Simplex splines
have many attractive properties such as piecewise polynomials over
general tetrahedral domains, local support, higher-order smooth-
ness, and positivity, making them potentially ideal in engineering
design applications [Greiner and Seidel 1994]. From the point of
view of blossoming, Dahmenet al. [Dahmen et al. 1992] proposed
triangular B-splines. Later, Greiner and Seidel [Greiner and Seidel
1994] demonstrated their practical feasibility in graphics and shape
design.

In contrast to theoretical advances, the application of simplex
splines has been rather under-explored. Pfeifle and Seidel devel-
oped a faster evaluation technique for quadratic bivariate DMS-
spline surfaces [Pfeifle and Seidel 1994] and applied it to the scat-
tered data fitting of triangular B-spline [Pfeifle and Seidel 1996].
Recently, R̈osslet al. [Pauly et al. 2002] presented a novel approach
to reconstruct volume from structure-gridded samples using trivari-
ate quadric super splines defined on a uniform tetrahedral partition.
They used Bernstein-B́ezier techniques to compute and evaluate the
trivariate spline and its gradient. Hua and Qin presented a volumet-
ric sculpting framework that employs trivariate scalar nonuniform
B-splines as underlying representation [Hua and Qin 2001; Hua and
Qin 2003]. More recently, they applied trivariate simplex splines to
the representation of solid geometry, the modeling of heterogeneous
material attributes, and the reconstruction of continuous volumetric
splines from discretized volumetric inputs via data fitting [Hua et al.
2005]. Tanet al. applied the hierarchical simplex splines to volume
reconstruction from planar images [Tan et al. 2007].

2.2 Physically Based Modeling and Simulation

Free-form deformable models were first introduced to the model-
ing community by Terzopouloset al. [Terzopoulos and Fleischer
1988], and they have been improved by a number of researchers
over the past 20 years. Celniker and Gossard developed an inter-
esting prototype system [Celniker and Gossard 1991] for interac-
tive free-form design based on the finite-element optimization of
energy functionals proposed in [Terzopoulos and Fleischer 1988].
Bloor and Wilson developed related models using similar energies
and numerical optimization [Bloor and Wilson 1990]. Welch and
Witkin extended the approach to trimmed hierarchical B-splines for
interactive modeling of free-form surfaces with constrained varia-
tional optimization [Welch and Witkin 1992]. Terzopoulos and Qin
[Terzopoulos and Qin 1994; Qin and Terzopoulos 1995b] devised
dynamic physical-based generalization of NURBS (D-NURBS).
Later, they further developed dynamic triangular B-splines [Qin and
Terzopoulos 1995a] paradigm for high topology surface modeling.
The new paradigm on simplex spline finite elements is substantially
more sophisticated and is expected to produce even more true-to-
life simulation results.

As for simulation of digital models of real-world objects, re-
searchers mainly focused on FEM meshing, which can represent the
shape of the objects, and physical laws, which govern the model’s
behavior. Zhanget al. presented a method for 3D mesh genera-
tion from imaging data [Zhang et al. 2005]. They further designed
an algorithm for automatic 3D mesh generation for a domain with
multiple materials. In general, the main objective of FEM mesh-
ing is to construct a nicely-shaped elements which can represent
both geometry and material of the real-world models for accurate
and robust simulation. However, due to the linear representations,
it cannot accurately represent the geometric and physical properties
in simulation. For simulation-based assessment of real-world ob-
jects, e.g., the brain, the main goal is to obtain an objective analysis



result from the realistic simulation of the objects. In brain defor-
mation simulation, researchers have been using it for many clinical
applications [Maguire et al. 1991].

3 Dynamic Spherical Volumetric Simplex
Splines

In this section, we first briefly review the theoretical background of
volumetric simplex splines. Then, we formalize them to the spher-
ical volumetric simplex splines with details on spherical domain
construction. We further generalize the splines with physical dy-
namics and develop dynamic spherical simplex splines which can
be used for modeling and simulation of real-world models.

3.1 Volumetric Simplex Splines

A degreen volumetric simplex spline,M(x|x0, · · · ,xn+3), can
be defined as a function ofx ∈ R3 over the half open convex hull
of a point setV = [x0, · · · ,xn+3), depending on then + 4 knots
xi ∈ R3, i = 0, · · · , n + 3. The volumetric simplex splines may
be formulated recursively, which facilitates point evaluation and its
derivative and gradient computation. Whenn = 0,

M(x|x0, · · · ,x3) =

� 1
|VolR3 (x0,··· ,x3)| , x ∈ [x0, · · · ,x3),

0, otherwise,

and whenn > 0, select four pointsW = {xk0 ,xk1 ,xk2 ,xk3}
from V, such thatW is affinely independent, then

M(x|x0, · · · ,xn+3) =

3X
j=0

λj(x|W)M(x|V \ {xkj}), (1)

where
P3

j=0 λj(x|W) = 1 and
P3

j=0 λj(x|W)xkj = x.

The directional derivative ofM(x|V) with respect to a vectord is
defined as follows:

DdM(x|V) = n

3X
j=0

µj(d|W)M(x|V \ {xkj}), (2)

whered =
P3

j=0 µj(d|W)xkj and
P3

j=0 µj(d|W) = 0.

3.2 Spherical Simplex Spline Volume

Generally, volumetric simplex spline can take as input any domain
with arbitrary geometry and topology due to its non-tensor-product
nature. Namely, spherical simplex spline volume is defined by vol-
umetric simplex splines over a spherical volumetric domain. Here
we choose the sphere domain since mapping most organic objects
in the biomedical research field to a sphere results in less distortion
and more uniform distribution of sampling points, which reduces
the difficulty in the fitting procedure. Note that, our volumetric
simplex spline volumes represent not only boundary geometry, but
also interior geometry. They can represent physical or material at-
tributes over the entire solid as well.

3.2.1 Spherical Volumetric Simplex Splines

Now denoteS3 = {x ∈ R3, ‖x‖ ≤ c} a solid sphere inR3. With-
out loss of generality, letS3 be a unit solid sphere, i.e.,c = 1.
Let T be an arbitrary “proper” tetrahedralization ofS3. Here,
“proper” means that every pair of domain tetrahedra are disjoint,
or share exactly one vertex, one edge, or one face. To each ver-
tex t of the tetrahedralizationT, we assign a knot cloud, which

is a sequence of points[t0, t1, · · · , tn], wheret0 ≡ t. We call
t primary-knot and[t1, · · · , tn] sub-knots. For every tetrahedron
I = (p,q, r, s) ∈ T, we require

• all the tetrahedra[pi,qj , rk, sl] with i + j + k + l ≤ n are
non-degenerate.

• the set

Ω = interior(∩i+j+k+l≤n[pi,qj , rk, sl]) (3)

is not empty.

• if I is a boundary tetrahedron, the sub-knots assigned to the
boundary vertices must lie outside ofS3.

We then define, for each tetrahedronI ∈ T andi + j + k + l = n
(in the following, we useβ to denote 4-tuple(i, j, k, l)), the knot
sets

V I
β = [p0, · · · ,pi,q0, · · · ,qj , r0, · · · , rk, s0, · · · , sl]. (4)

The basis functions of normalized simplex splines are then defined
as

NI
β(u) = |det(pi,qj , rk, sl)|M(u|V I

β ). (5)

These basis functions can be shown to be all non-negative and to
form a partition of unity. The volumetric spherical simplex spline
volume is the combination of a set of basis functions with control
pointscI

β :

s(u) =
X
I∈T

X
|β|=n

cI
βNI

β(u). (6)

The “generalized” control pointscI
β are now(k + 3)-dimensional

vectors, including control points(px, py, pz) for the solid geome-
try, and control coefficients(g1, · · · , gk) for the attributes, where
k denotes the number of attributes associated with the geometry.
The spherical simplex splines are ideal to model genus-zero, het-
erogeneous solid objects. The number of physical properties is
application-oriented. For a concise expression of the formulation,
without loss of generality, we will deal with only one physical at-
tribute in the following formulas.

3.2.2 Initial Construction of Spherical Volumetric Domain

Theoretically, domain tetrahedralization,T, can be an arbitrary
tetrahedralization of a unit solid sphere,S3, as aforementioned in
Section 3.2.1. However, in practice, two important aspects of the
domain tetrahedralization should be carefully considered:

• T should be as uniform as possible, i.e., minimize
max(V olI∈T)

min(V olI′∈T)
. Uniform tetrahedralization at the same hierar-

chical level will decrease the recursion time while hierarchical
structure is needed.

• T should avoid bad-shaped tetrahedra in Delaunay tetrahe-
dralization. Bad-shaped tetrahedra, for instance, slivers, will
increase numerical error during the evaluation.

Constrained Delaunay tetrahedralization [Edelsbrunner 2001] can
observe the second requirement, but it will introduce very large and
very small tetrahedra thus can not comply with the first require-
ment. Instead, we tetrahedralize a regular icosahedron and then
make use of harmonic volumetric mapping to map the tetrahedral-
ization to a solid sphere. As a result, the solid sphere tetrahedral-
ization is uniform and its quality is better than what constrained
Delaunay tetrahedralization can offer.

Figure 1 shows the flow of domain establishment and the knots dis-
tribution. Note that, in Figure 1(d), the sub-knots associated with



boundary vertices are placed outside of the sphere. The uniform
tetrahedralization may be subdivided and refined when necessary,
e.g., modeling discontinuity as described later.

(a) (b)

(c) (d)

(e)

Figure 1: (a) A regular icosahedron, which is the best approxima-
tion of a solid sphere among all regular polyhedra; (b) Tetrahedral-
ization of (a) is uniform and it is easy to implement; (c) Harmonic
mapping from (b) to a unit solid sphere yields the domain tetrahe-
dralization, consisting of uniform and well-shaped tetrahedra; (d)
A domain with quadratic knot clouds assigned to (c); (e) A close
view of the domain picked from (d).

3.3 Model Reconstruction by Data Fitting

Besides constructing the initial unit sphere tetrahedralization as the
parametric domain, another preliminary step prior to the recon-
struction of the continuous volumetric model using spherical sim-
plex splines is to find a volumetric parameterization between the
physical model and domain space.

3.3.1 Volumetric Parameterization

To find a volumetric parameterization of a genus-zero solid, har-
monic volumetric mapping facilitates a viable solution. Harmonic
volumetric mapping was first implemented for applications by
Wanget al. [Wang et al. 2004b; Wang et al. 2004c]. They suc-
cessfully exposed its merits by applying the approach to brain map-
ping which can be considered as a genus-zero volume. Recently Li
et al. [Li et al. 2007] further extended the scheme to high-genus
harmonic volumetric mapping and employed it in solid modeling
applications. Harmonic volumetric mapping can be formulated as

follows:

Given two solid objectsM1 andM2, and their boundary surfaces
∂M1 and ∂M2. Suppose that~f ′ is the conformal mapping [Gu
et al. 2003; Wang et al. 2004a] between∂M1 and∂M2, which is
pre-computed. The harmonic volumetric mapping~f : M1 7−→ M2

satisfies: �
∇2 ~f(v) = 0, v ∈ M1 \ ∂M1,
~f(v) = ~f ′(v), v ∈ ∂M1,

where the∇2 is the Laplacian operator defined continuously in 3D
as

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and∇2 ~f = 0 for ~f = (f0, f1, f2) is equivalent to∇2fi = 0 for
all i = 0, 1, 2.

The algorithmic flow of harmonic volumetric mapping is concisely
summarized as follows [Wang et al. 2004c]:

1. For each boundary vertex,v, v ∈ ∂M1, let ~f(v) = ~f ′(v); for
each interior vertex,v, v ∈ M1\∂M1, let ~f(v) = ~0, compute
the harmonic energyE0.

2. For each interior vertex,v, v ∈ M1 \∂M1, compute its deriv-
ativeD ~f , then update~f(v) by δ ~f(v) = −D ~f(t)δt, δt is the
step length.

3. Compute the harmonic energyE; if E − E0 is less than user
specified thresholdδE, the algorithm stops; Otherwise assign
E to E0 and repeat 2 through 3.

Figure 2 shows the harmonic volumetric mapping from one brain
to a solid unit sphere. After the mapping has been established,
the point parameterization and correspondence between the domain
and the object can now be stored as the input of our spherical sim-
plex spline model reconstruction algorithm.

(a) (b)

(c) (d)

Figure 2: (a) The discretized point set in the spherical domain
space; (b) The discretized data point set in the physical space, from
the same angle of view as (a); (c-d) The shapes are cut into halves
in order to show the interior mapping between the physical object
and the parametric domain.



3.3.2 Fitting with Spherical Volumetric Simplex Splines

After harmonic volumetric mapping, a finite number of discretized
sampling points of the physical object,(xi, yi, zi, ρi)

m
i=1, and their

parametric coordinates in the domain,(ui, vi, wi)
m
i=1, can be re-

trieved. ρi denote a physical attribute. Note that, there could be
multimodality physical attributes with more dimensions. In this
case, all we need to do is to increase the dimensions and add the
additional variables into the sampling. All the computation remains
the same. Without loss of generality, we only consider one type of
attribute here in order to simplify the mathematical notation. The
sampling point pairs indicates the parameterization from the solid
sphere domain to the to-be-modeled object. Volumetric simplex
spline is an ideal tool for fitting the geometry as well as the phys-
ical properties of the volumetric object. In this section, we will
describe how to fit spherical volumetric simplex splines to the real-
world model.

The problem of model reconstruction in our system can be stated as
follows: given a setP = {pi}m

i=1 of points,pi = (xi, yi, zi, ρi) ∈
R4, find a volumetric simplex splines volumes : R3 → R4 that
approximatesP .

Since we are interested in reconstructing the model with respect not
only to solid geometry but also to physical attributes, our spherical
simplex spline volumes are vector functions, i.e., the control points
cI
β ∈ R4 are vectors. Unlike the existing fitting algorithms with

simplex splines which usually find the parametric domain which is
close to the original geometry of the to-be-fitted dataset [Hua et al.
2004; Hua et al. 2005], we use the position(ui, vi, wi) within the
solid sphere as the data pointpi’s parametric value. Therefore, we
need to minimize the following objective function:

min Edist(s) =

mX
i=1

(pi − s(ui, vi, wi))
2. (7)

Equation (7) is a typical least squares problem. If the control points
are treated as free variables, it falls into a very special category of
nonlinear programming, i.e., unconstrained convex quadratic pro-
gramming, which has the following form:

Edist =
1

2
xT Qx + cT x + f,

wherex = (. . . , cI
β , . . . )T ,

Q =

0
BBB@

...

. . . 2
Pm

i=1 NI
β(ui, vi, wi)N

I
′

β
′ (ui, vi, wi) . . .

...

1
CCCA ,

c = (. . . ,−2

mX
i=1

piN
I
β(ui, vi, wi), . . . )

T ,

andf =
Pm

i=1 p2
i . Note that,Q is a positive definite, symmetric

and sparse matrix. Interior-point method can solve this problem
very efficiently.

After reconstruction procedure, we achieve an integrated represen-
tation incorporating the object’s solid geometry,s, and its material
attribute,d, at the same time. The scheme can be expressed as

�
s
d

�
(u) =

X
I∈T

X
|β|=n

�
c
α

�
N(u|V I

β ), (8)

wherec andα are the control points and control coefficients for
solid geometry and material attributes, respectively.

To model discontinuity in attribute field, we first detect where the
discontinuity occurs, then decompose the original domain into two
separated new domains with shared vertices and edges as the 2D il-
lustration in Figure 3. This simple mechanism maintains the consis-
tent structure of the domains. The evaluation, hierarchy structure,
and data structure all remain the same. Therefore, we can perform
the same evaluation on these two domains simultaneously as if the
evaluation is performed on a single domain. With the association of
different control coefficients, the functional evaluation can output
a discontinuity in material field corresponding to the shared edges.
This change will not affect the geometry of the DSVSS volume as
long as the associated control points remain the same.

Figure 3: Modeling discontinuities with separated domain trian-
gles. Even though A and A’ are co-located, and B and B’ are co-
located, the domain triangles in red and green are belonged to two
different domains.

3.4 Dynamic Spherical Simplex Splines

In this section, we formulate our dynamic spherical volumetric sim-
plex splines. We integrate mass, dissipation, and deformation en-
ergy into static simplex spline models, and employ Lagrangian dy-
namics to derive their equations of motion. Consequently, the static
control points of the geometric model become generalized time-
varying physical coordinates in the dynamic model.

3.4.1 Geometry and Kinematics of Simplex Spline Volumes

The dynamic simplex splines further extend the geometric simplex
splines by incorporating time into the volume representation. Now
the function of representation bears both parametric variableu and
time t as follows:

s(u, t) =
X
I∈T

X
|β|=n

cI
β(t)NI

β(u). (9)

For simplicity of formulation expression, we define the vector of
generalized coordinates of control pointscI

β as:

c = [· · · , cI
β

>
, · · · ]

>
, (10)

where> denotes transposition. We then express Equation (9) as
s(u, c) in order to emphasize its dependence onc whose compo-
nents are functions of time. Hence, the velocity of the dynamic
simplex splines is:



ṡ(u, t) = Jċ, (11)

where the overstruck dot denotes a time derivative and Jacobian
matrix J(u) is the concatenation of the vectors∂s/∂cI

β . As-
sumingm tetrahedral in the parametric domain,β traversesk =
(n + 1)(n + 2)(n + 3)/6 possible tetrads whose components sum
to n. Becauses is a 4-vector andc is anM = 4mk dimensional
vector,J is a4×M matrix, which is expressed as

J =

2
664· · · ,

2
664

NI
β 0 0 0

0 NI
β 0 0

0 0 NI
β 0

0 0 0 NI
β

3
775 , · · ·

3
775 , (12)

whereNI
β(u) = ∂sx

∂cI
βx

=
∂sy

∂cI
βy

= ∂sz

∂cI
βz

= ∂sd

∂cI
βd

.

The subscriptsx, y, z andd denote derivatives of the components
of the 4-vector: Cartesian coordinates and physical property, re-
spectively. Apparently, the solid volume can be presented as the
production of the product of the Jacobian matrix and the general-
ized coordinate vector,

s(u, c) = Jc. (13)

3.4.2 Lagrange Equations of Motion

Lagrange dynamics are widely used in physics-based shape de-
sign. In this section, we derive the equations of motion of dy-
namic simplex splines by applying Lagrangian dynamics [Gossick
1967]. We express the kinetic energy due to the prescribed mass
distribution functionµ(u, v, w), and a Raleigh dissipation energy
due to a damping density functionγ(u, v, w). Both energy func-
tions are defined over the parametric domain of the volume. The
mass distribution function and damping density function are recon-
structed with spherical volumetric simplex splines as well, as de-
scribed in Section 3.3.2. 3D thin-plate-like energy under tension
energy model [Celniker and Gossard 1991; Halstead et al. 1993;
Welch and Witkin 1992; Terzopoulos 1986] is employed here in
order to define an elastic potential energy,

U =
1

2

ZZZ
(α1,1s

2
u + α2,2s

2
v + α3,3s

2
w+

β1,1s
2
uu + β1,2s

2
uv + β1,3s

2
uw + β2,2s

2
vv+

β2,3s
2
vw + β3,3s

2
ww)dudvdw. (14)

The subscripts ons denote the parametric partial derivatives. The
αi,j(u, v, w) andβi,j(u, v, w) are elasticity functions which con-
trol tension and rigidity, respectively. Other energies, requir-
ing greater computational cost, are also applicable, for instance,
the non-quadratic, curvature-based energies in [Terzopoulos et al.
1987; Moreton and Sequin 1992]. Applying the Lagrangian formu-
lation, we obtain the second-order equations of motion

Mc̈ + Dċ + Kc = fc, (15)

where the mass matrix is

M =

ZZZ
µJ>Jdudvdw, (16)

the damping matrix is

D =

ZZZ
γJ>Jdudvdw, (17)

and the stiffness matrix is

K =

ZZZ
(α1,1J

>
u Ju + α2,2J

>
v Jv + α3,3J

>
wJw+

β1,1J
>
uuJuu + β1,2J

>
uvJuv + β1,3J

>
uwJuw+

β2,2J
>
vvJvv + β2,3J

>
vwJvw + β3,3J

>
wwJww)dudvdw. (18)

M, D and K are all M × M matrices. The generalized force
obtained through the principle of virtual work [Gossick 1967] done
by the applied force distributionf(u, v, w, t) is

fc =

ZZZ
J>f(u, v, w, t)dudvdw. (19)

4 Finite Element Framework

The evolution of the vector of generalized coordinates,c(t), is de-
termined by the second-order nonlinear differential equation. Equa-
tion (15) with physical parameter dependent matrices, does not have
an analytical solution. Instead, we obtain an efficient numerical im-
plementation using finite-element techniques.

Standard finite element methods explicitly integrate the individual
element matrices into the global matrices that appear in the discrete
equations of motion [Kardestuncer 1987]. Although applicable in
some environments, it is infeasible in our infrastructure because of
its unacceptably high computational cost. Instead, we pursue an it-
erative matrix solver to avoid the cost of assembling the global ma-
tricesM, D, andK, working instead with the individual dynamic
simplex spline element matrices. We construct finite element data
structures, similar to [Qin and Terzopoulos 1995a], which facili-
tates the parallel computation of element matrices.

4.1 Data Structures for Dynamic Simplex Spline Finite
Elements

We define an element data structure which contains the geometric
specification of the tetrahedron patch element along with its phys-
ical properties. In each element, we allocate an elemental mass,
damping, and stiffness matrix, and include the quantities such as the
massµ(u, v, w), dampingγ(u, v, w), and elasticityαi,j(u, v, w)
andβi,j(u, v, w) functions. A complete dynamic simplex spline
consists of an ordered array of elements with additional informa-
tion. The element structure includes pointers to appropriate com-
ponents of the global vectorc. Neighboring tetrahedra will share
some generalized coordinates.

The physical parameters, such as massµ(u, v, w), damping
γ(u, v, w), and elasticity,αi,j(u, v, w) andβi,j(u, v, w), need to
be measured and computed before the calculation of element ma-
trices. In this paper, as the goal of the applications is to simulate
the biomechanical behavior of the brain, we directly adoptµ andγ
from the brain study conducted by Zhanget al. [Zhang et al. 2002].
According to the relationship of elastic moduli of elastic isotropic
materials [Ting 1996],α andβ can be computed from Bulk modu-
lus and Poisson’s ratio as follows

α = 3B(1− 2υ), (20)

β =
3B(1− 2υ)

(2 + 2υ)
, (21)

whereB is the Bulk modulus andυ is the Poisson’s ratio of brain
tissues.



4.2 Calculation of Element Matrices

We employ Gaussian quadrature [Press et al. 1986] to numerically
evaluate the integral expressions for the mass, damping, and stiff-
ness matrices associated with each element. In this section, we ex-
plain the expression of the element damping matrix in detail; the
expressions of mass and stiffness matrix will follow suit. Assum-
ing the parametric domain of the element isI(v0, v1, v2, v3) where
vi denotes the vertex, the expression for entrydij of the damping
matrix takes the integral form

dij =

Z
I∈T

Z
I(v0,v1,v2,v3)

γ(u, v, w)fij(u, v, w)dudvdw, (22)

wherefij is evaluated using the recursive expression in Equation
(1). Given integersNg, we can find the corresponding Gauss
weightsag, and parametric abscissasug, vg, andwg such thatdij

can be approximated by

dij ≈
NgX
g=1

agγ(ug, vg, wg)fij(ug, vg, wg). (23)

In our system, we chooseNg to be 10 for cubic dynamic simplex
splines. Because of the irregularity of the knot distribution, many
of the fij vanish over the sub-space ofI(v0, v1, v2, v3). We can
further subdivide theI(v0, v1, v2, v3) to minimize the numerical
error.

4.3 Discrete Dynamics Equations

In this section, we will derive the discrete dynamics equations based
on Equation (15). In order to integrate it in a simulation system,
e.g., tissue simulation during surgery, it is important to provide
users with visual feedback about the evolution state of the DSVSS
model. Rather than using computation-intensive time integration
methods which may traverse the largest possible time steps, it is
more crucial to provide a smoothly simulated display by maintain-
ing the continuity of the dynamics form one step to the next. There-
fore, it is much desirable to employ less costly yet stable time inte-
gration methods that take reasonable time steps.

The state of the dynamic simplex splines at timet + ∆t is inte-
grated using prior states att andt−∆t. To maintain the stability of
the integration scheme, especially for high stiffness configurations
with large elasticity functions, we use an implicit time integration
method, which employs discrete derivatives ofc using backward
differences. The velocity expression is

ċt+∆t ≈ (c(t+∆t) − c(t−∆t))/2∆t (24)

and the acceleration expression is

c̈t+∆t ≈ (c(t+∆t) − 2c(t) + c(t−∆t))/∆t2 (25)

Then the time integration formula can be expressed as

(2M + ∆tD + 2∆t2K)c(t+∆t)) =

2∆t2fc + 4Mc(t) − (2M−∆tD)c(t−∆t) (26)

where the superscripts denote evaluation of the quantities at the in-
dicated times. The matrices and forces are evaluated at timet. Our
extensive experiments have shown that this discretization scheme
produces satisfactory results. Instability due to large transient ap-
plied forces can be reduced by shortening the time integration step
adaptively.

The equations of motion allow physically realistic simulation of
real-world models with complex dynamics. However, it is possible
to make simplifications to the equations of motion to further reduce
the computational cost of solving Equation (26) when we simu-
late some more complicated volumes which bears more tetrahedra
in its domain. In certain solid modeling and simulation applica-
tions where the inertial terms are not taken into count, the Equation
(15) can be simplified by setting the mass density function to zero.
Without computation of the acceleration terms or storage of mass
matrices, the algorithm is more efficient. With zero mass density,
Equation (15) simplifies to

Dċ + Kc = fc (27)

Discretizing the corresponding derivatives ofc in Equation (27)
with backward differences, the integration formula becomes

(D + ∆tK)c(t+∆t) = ∆tfc + Dc(t) (28)

5 Brain Simulation Using DSVSS Volume

With the reconstruction of brain model from both MRI data and ma-
terial map using our spherical volumetric simplex splines, we can
obtain an analytic representation simultaneously describing both
geometric and physical properties of the brain. Thus, brain sim-
ulations, such as brain shifting, deformation, and brain injury pred-
ication, can be achieved via the simulation-based analysis. In this
section, we present the accurate brain reconstruction and simula-
tion using our unified scheme, DSVSS volume. The reconstruction
process is fully automated, and for brain simulation, the user only
needs to initialize a few environmental parameters, e.g., the gravity
and the resected skull in brain shifting simulation.

5.1 Fitting Spherical Volumetric Simplex Splines to
Brain Data

Taking a set of high-resolution brain SPGR MR scans, we first strip
away the skull and only retain the brain volume as shown in Fig-
ure 4(a). With the initial tetrahedralization of the brain model and
harmonic volumetric mapping, we can obtain the parameterization
of the data points of the brain tetrahedralization as described in Sec-
tion 3.3, i.e., the parameterization describes the correspondence be-
tween the brain data points and parametric coordinates in the sphere
domain. Fitting spherical volumetric simplex splines to the geo-
metric representation, we can reconstruct the geometry of the brain
nicely as shown in Figure 2. To model the intensities (for visual-
ization purpose) and material distribution (for simulation purpose),
we can start with the same spherical tetrahedral domain, and then
subdivide and refine the domain [Tan et al. 2007], when necessary,
to model more sophisticated material variations or discontinuities
as described in Section 3.3.2. Note that, the intensities and material
of brain structures are related since the imaging procedure can be
considered as a function mapping of the material maps to scanned
images. So the required domain for intensities and material distri-
butions are very similar. Figure 4 shows the reconstruction result
with different rendering techniques and Equation (29) shows the
reconstructed representation,



(a) (b) (c)

Figure 4: (a) An axial view of a slice high-resolution brain SPGR
MRI dataset; (b) Volume visualization of the reconstructed DSVSS
volume; (c) The volume is split to show its reconstructed interior
intensities.
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wheres denotes the solid geometry of the brain,d denotes the re-
constructed physical attributes of the brain, andI denotes the re-
constructed image intensities from the high-resolution SPGR MRI
sequence. c, αd and αI are the control points and control co-
efficients. The accuracy of the data fitting is documented in the
experimental result section. After obtaining high-quality DSVSS
volume representation of the brain model, we can use it to sim-
ulate brain deformation during surgery for computer-assisted sur-
gical planning/surgery, or even for an innovative simulation-based
diagnosis for brain injury under blunt impact.

5.2 Brain Shifting during Surgery

As known by brain surgery professionals, after a patient’s skull is
open, the brain will behave increasing deformation, known as brain
shifting, during ongoing surgical procedures, predominantly due
to the gravity and the drainage of cerebrospinal fluid. This will
inevitably lead to the repositioning of the surgical targets embed-
ded in brain. As a compensation to increase the spatial accuracy
of modern neuronavigation systems, intraoperative magnetic reso-
nance imaging (IMRI) is widely used for quantitative analysis and
visualization of this phenomenon [Nimsky et al. 2000]. Neverthe-
less, despite its virtually real-time aspects, IMRI only provides very
low-resolution intraoperative MR image which can never substitute
the high-resolution pre-operative SPGR MR image used to deter-
mine with high accuracy key dimensions of the brain and the loca-
tions of the surgical targets embedded in the brain. We employ our
dynamic spherical volumetric simplex splines model into the brain
simulation to compute the brain shifting.

In our framework, brain shifting can be simulated by applying con-
stant gravity force~G to the brain. The material properties that
we used in our experiments were obtained fromthe biomechan-
ics groupat Wayne State University (WSU). After setting up the
physical parameters of an individual brain, we also need to take the
nature boundary of the brain, the skull, into consideration. The fact
is that no matter what manner the brain behaves deformation, it lies
inside the skull, i.e., its nature boundary will not exceed the skull.
Therefore, spatial geometric constraints need to be enforced. We
add the soft constraints with forces. When there is shifting outside
the boundary, we insert corresponding forces along the opposite di-
rection of the movement to the simulation procedure.

Figure 5 illustrates the brain shifting simulation using our frame-
work when taking out the resected skull over the right temporal

(a) (b) (c)

Figure 5: (a) One slice view of IMRI image; (b) The reconstructed
DSVSS volume, where the cross-sectional view displays the DSVSS-
captured image intensities reconstructed from the pre-operative
high-resolution SPGR images; (c) The brain deformation simulated
using our system, where the cross-sectional view is captured, from
the same view angle as (b), to show the displacement from (b), and
the green contour indicates the extent of displacement at the bound-
ary. In (b) and (c) the red arrow denotes the orientation of gravity,
and its position denotes the resected skull.

lobe. The green contour shows the deformation clearly. Our shift-
ing simulation results highly agree with the fact captured by IMRI.
The experiments show that it is effective to use our model to recover
motion and deformation from image data. Based on 20 simulation
experiments, quantitative comparison between the IMRI volumes
and our simulated brain volumes by co-registration shows that our
system can achieve an excellent accuracy of92.2%. The accuracy
of a single simulation, denoted byA, is calculated as the normalized
sum of squared differences between the two volumes,

A = 1−
P

a ‖S −R‖2P
a ‖R‖2

, (30)

whereS is the volume obtained from our shifting simulation re-
sults andR is the registered IMRI volume. To make the compari-
son substantial and intra-sequence, we first register MRI volume to
IMRI volume. Figure 6 depicts another brain shifting simulation.
The skull is resected over the left temporal lobe. The color map
is blended into the figure to better visualize the deformation scale.
Note that, when surgical tools are operating in the brain, there will
be larger shifting and deformation.

As demonstrated from the available comparison and evaluation,
our framework can accurately simulate the deformation of the
brain (e.g.s(t)) and simultaneously present high-quality and high-
resolution visualization using the transformed SPGR image inten-
sities,I , modeled in the reconstructed simplex spline volume (see
Equation (29)). It is very promising to use the framework in both
surgical planning (e.g., predicting the shifting of the targets) and
computer-assisted surgery (e.g., repositioning the targets with high-
resolution display,I , automatically computed based on the realistic
deformation of the reconstructed brain,s(t)).

5.3 Brain Injury Prediction

Here, we refer the brain injury prediction as a procedure of find-
ing out the extent and location of the injury in the brain during a
blunt impact. The injury frequently occurs to automobiles drivers
during the collision and sports players during the acute sports activ-
ities such as football. Current brain surgeons and professionals rely
indispensably on those modern neuroimaging and neuronavigation
systems to pinpoint the injury. Clinically, the identification of the
site and extend of injury within the brain without subjecting the
patient to an imaging scanning, has its advantages. For instance,
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Figure 6: (a) The color map used to describe the deformation scale. The red arrow on the ISO-surface indicates the position where skull is
resected; (b-h) Brain shifting simulation with a time interval of 75ms; (i-j) To better visualize the deformation, cross-section views of the first
key frame (b) and last one (h) are retrieved. Deformed junction between the two hemispheres indicates the global brain shifting.

head injured patients are difficult to control and may not remain
still long enough for the completion of the scanning. In some se-
vere cases, time is so limited that patients even can not afford such
a pre-operative scanning. Thus the demand of simulation-based
Computer Aided Diagnosis (CAD) solution goes up to high gear.
Oftentimes, the solution is referred as “brain injury modeling”.

One critical issue about BIM technique is to derive a patient-
specific brain model based on a template model, thus skipping neu-
roimaging and neuronavigation, and saving computational time as
well as pre-operation time. One widely employed way is to mod-
ify the exterior surface of each substructure from a general brain
model followed by re-generation of the mesh. Ferrantet al. [Fer-
rant et al. 2000] and Migaet al. [Miga et al. 2003] developed their
approaches respectively using this approach by meshing the entire
brain without considering anatomical structures and material differ-
ence. Obviously, this approach is not accurate since the brain geom-
etry, structures, and heterogeneous material variations are not con-
sidered. We employ our dynamic spherical simplex splines-based
simulation framework to handle the situation. As for developing a
patient-specific model, our method can quickly modify the control
points/coefficients according to the data fitting of the available data
or information of the patient.

In our framework, we compute the stress field of the human brain
under blunt impact using our DSVSS volume. Because the human
brain has highly heterogenous physical properties in different ar-
eas of the brain, such as the white matters, the gray matters, the
cerebellum, the brainstem, the lateral ventricles, the third ventri-
cles, the bridge veins, and so on. From this perspective, brain
structures under direct impact are not necessary the parts where
brain injuries occur. With our unified solid representation through
dynamic spherical volumetric simplex splines, blunt-impact injury
can be simulated using our framework by applying an instantaneous
impact to the brain model under given approximate impact condi-
tions. The model incorporated in our framework can not only assist
the physician in identifying the location and extend of damaged
area without pre-operative scanning but also enable the designer of
automobiles and helmets to improve the human-centered design of
head-protective facilities.

Figure 7 demonstrates a brain injury prediction with a blunt im-
pact on the frontal lobe. Time interval here is 3ms. Note that,
we assume that the brain always lies inside the skull during the
simulation. As in brain shifting simulation, we add corresponding

contacting forces into the simulation when the brain is shifting out-
side the boundary. The corresponding contacting forces is along the
opposite direction and linear to the extent of the brain movement.
Figure 7(b-j) shows the stress fields of the brain in each time step.
Redder area indicates higher stress, which is a sign for a higher pos-
sibility of injury and bleeding. In the figure, the thalamus is under
bigger stress as well beside the place under direct blunt impact. The
result complies with the ground truth captured from the real biome-
chanic experiments on a human corpus model. Quantitative eval-
uation of our simulation result is obtained through the comparison
with the ground truth. Figure 8 shows two stress evolution curves
of one landmark inside right thalamus under the specified blunt im-
pact in Figure 7. The green one is the ground truth obtained from
the real biomechanic experiments and the red one is the result simu-
lated using our framework. The result curves demonstrated that our
simulation can obtain an accurate and satisfactory result, which has
great potential for computer-aided diagnosis of brain injury under
blunt impact.

6 Experimental Results

We have implemented a prototype system on a 3.4GHz Pentium
IV PC with 2GB RAM. The system is written in VC++ and VTK
4.2. We perform experiments on several brain datasets. In order to
compare the reconstruction qualities for patient-specific cases, we
uniformly scale the brain geometric and physical fields into a unit
cube.

Table 1 shows the configuration of DSVSS volumes reconstructed
from different datasets. The performance statistics of our fitting
algorithm is also included. From the table, one can observe that,
compared with discrete mesh representation, our spherical volu-
metric simplex spline based representations have low storage re-
quirements and can achieve high accuracy, e.g., fitting r.m.s. error
≤ ×10−4. High computational cost is the challenging aspect of our
algorithm. However, by applying grid structure and multiresolution
implementation of the geometric elements in practice, the time cost
can be greatly reduced.

The simulation results on brain shifting and brain injury prediction
have been already illustrated in Section 5. Our brain simulation re-
sults exhibit a reliable approximation of how brain behaves shifting
and how brain could be injured in the real world. More experiments
on brain injury modeling will be conducted when more ground truth
experimental datasets become available.
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Figure 7: (a) The color map used to describe the stress field. The red arrow on the ISO-surface indicates the position where a blunt impact
occurs. (b-j) Brain injury simulation with a time interval of 3ms. The blunt impact occurs at the front lobe. Simulation results indicate that in
addition to the spot directly under the impact, there are some other positions where bleeding may happen.

Figure 8: Comparison of stress evolutions of the right thalamus under a blunt impact. The green one is the simulation curve obtained from
the real biomechanic experiments and the red one is the result simulated using our framework.

Subject Degree Data Points Tetrahedra Control Points Knots Fitting r.m.s. Error

A 2 60298 2500 3871 1683 3.0375×10−4

B 3 72357 2500 12431 2244 2.1483×10−4

C 2 79593 4320 6525 2769 1.9743×10−4

D 3 86226 4320 21117 3682 1.5290×10−4

Table 1: Statistics of 3D reconstruction.



7 Conclusion

In this paper, we have developed a novel simulation framework
based on dynamic spherical volumetric simplex splines. We have
introduced an automatic and accurate algorithm to fit the digital
models of real-world objects with a single spherical volumetric sim-
plex spline which can represent with accuracy geometric and ma-
terial properties of objects simultaneously. With the integration of
the Lagrangian mechanics, the dynamic volumetric simplex spline
representing the real-world object can accurately simulate its phys-
ical behavior. We have applied the framework in the biomechanics
simulation of the brain, such as brain shifting during the surgery and
brain injury under sudden impact. We have compared the simulated
results with the ground truth obtained through interactive magnetic
resonance imaging and the ground truth from real biomechanic ex-
periments. The experimental results have demonstrated the excel-
lent performance of our technique, which can be effectively used in
deformation-based brain simulation and simulation-based diagno-
sis/assessment. The robustness and accuracy result from the tight
integration of the geometric and material properties into the simu-
lation. In the near future, we will investigate more powerful simu-
lation schemes based on our novel digital representations. Hierar-
chical simulation will also be explored to speed up the simulation
for real-time applications. On the application side, we will develop
a DSVSS model of an entire head, which allow us to simulate more
behaviors of the brain.
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