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Abstract

Despite achieving impressive improvement in accuracy, most
existing monocular 3D human mesh reconstruction meth-
ods require large-scale 2D/3D ground-truths for supervi-
sion, which limits their applications on unlabeled in-the-wild
data that is ubiquitous. To alleviate the reliance on 2D/3D
ground-truths, we present a self-supervised 3D human pose
and shape reconstruction framework that relies only on self-
consistency between intermediate representations of images
and projected 2D predictions. Specifically, we extract 2D
joints and depth maps from monocular images as proxy in-
puts, which provides complementary clues to infer accu-
rate 3D human meshes. Furthermore, to reduce the impacts
from noisy and ambiguous inputs while better concentrate on
the high-quality information, we design an uncertainty-aware
module to automatically learn the reliability of the inputs at
body-joint level based on the consistency between 2D joints
and depth map. Experiments on benchmark datasets show
that our approach outperforms other state-of-the-art methods
at similar supervision levels.

Introduction

3D human mesh recovery from monocular images is a chal-
lenging task in computer vision that can be used for a va-
riety of human-centric applications such as augmented re-
ality, human-robot interaction, computer-assisted coaching,
etc. It has received increasing attention in recent years due
to the availability of parametric 3D human body model, e.g.
SCAPE (Anguelov et al. 2005) and SMPL (Loper et al.
2015), and advances in deep learning techniques (Tian et al.
2023). Although recent monocular 3D human mesh recon-
struction methods have gained considerable improvement in
accuracy, most of these works are in a fully-supervised set-
ting (Kanazawa et al. 2018; Kolotouros et al. 2019; Lin,
Wang, and Liu 2021a,b). Such approaches require large-
scale 2D/3D ground truth labels for supervision, restricting
their applications on unlabeled in-the-wild data that is abun-
dantly available.

In the absence of 3D ground-truth labels, e.g., SMPL
pose and shape parameters, several recent works leverage
more easily obtained 2D ground-truth, such as 2D keypoints
and silhouette (Pavlakos et al. 2018; Tan, Budvytis, and
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Cipolla 2017), for a weak supervision. To further alleviate
the reliance on paired 2D and 3D ground-truths, attempts
are made to regress 3D human pose and shape in a self-
supervised manner (Tung et al. 2017a; Kundu et al. 2020;
Gong et al. 2022). However, there are still restrictions ex-
isting in the previous self-supervised approaches that hin-
der the generalizability. For example, Gong et al. (2022) re-
quires SMPL data to generate synthetic training data for full
supervision, which inherently induces domain gap between
synthetic data and real data. Kundu et al. (2020) requires
video datasets to generate sequential image pairs for appear-
ance consistency-based self-supervision, which limits its ap-
plication on datasets with only single-shot images. Different
from these methods, we aim to achieve superior generaliz-
ability by designing a self-supervised framework that relies
only on self-consistency between intermediate representa-
tions of images and projected 2D predictions.

Recently, regressing 3D human mesh from intermediate
representations (e.g., 2D joints, silhouettes and IUV maps)
has achieved promising performance in the self-supervised
setting (Tung et al. 2017a; Mugaludi et al. 2021; Gong et al.
2022). These representations can be automatically extracted
from RGB images using off-the-shelf algorithms (Cao et al.
2019; Wu et al. 2019; Giiler, Neverova, and Kokkinos 2018).
Many previous works (Pavlakos et al. 2018; Sengupta, Bud-
vytis, and Cipolla 2020) have explored 2D joints and sil-
houettes as a combination to provide the pose and shape
clues. However, both of them are highly vulnerable to induce
pose ambiguity since two different 3D poses may have the
same 2D joints and silhouette projection. The depth maps
can alleviate such ambiguities and thus can be viewed as a
richer substitute to silhouettes. Therefore, we propose to uti-
lize both 2D joints and depth maps that are automatically
extracted from images as proxy inputs to infer accurate 3D
human meshes.

Although depth maps have been employed in the multi-
human reconstruction problem using depth-ordering consis-
tency constraints (Jiang et al. 2020), they are still unexplored
for self-supervised 3D human reconstruction. To effectively
use depth information, we design depth trimming and depth-
point sampling methods for better alignment between in-
put depth and predicted depth. Furthermore, we propose an
uncertainty-aware module to automatically learn the relia-
bility of the inputs at body-joint level based on the con-



sistency between 2D joints and depth map. By incorporat-
ing these reliability values in the self-consistency losses, the
proposed approach can effectively reduce the impacts from
noisy and ambiguous inputs while concentrate more on the
high-quality information. The contributions of this work can
be summarized as follows:

e We propose a simple, novel self-supervised framework
that relies only on self-consistency between intermediate
representations of images and projected 2D predictions.
Without using any 2D/3D ground-truths for supervision,
our method can be applied on ubiquitous unlabeled in-
the-wild data, achieving superior generalizability.

e We incorporate depth maps in our framework to
strengthen the self-consistency constraints, with depth
trimming and depth-point sampling designed for better
alignment between input depth and predicted depth. To
our best knowledge, this work is the first to exploit depth
maps for self-supervised 3D human mesh recovery.

* We design an uncertainty-aware module to automatically
learn the reliability of the intermediate representations at
body-joint level based on the consistency between 2D
joints and depth map. The impacts from noisy and am-
biguous inputs are effectively reduced by incorporating
the reliability values in the self-consistency losses.

* We conduct extensive experiments on benchmark
datasets and achieve state-of-the-art results against pre-
vious methods at similar supervision levels.

Related Work
3D Human Pose Estimation

The 3D human pose estimation task is commonly formu-
lated as the problem of predicting the 3D positions of body
joints from images. Recent approaches can be mainly cate-
gorized into image-based and 2D pose-based methods.

The image-based approaches employ the end-to-end
learning paradigm, estimating 3D joint locations directly
from input images (Pavlakos et al. 2017; Tome, Russell, and
Agapito 2017; Zhou et al. 2017; Mehta et al. 2017; Sun
et al. 2018; Pavlakos, Zhou, and Daniilidis 2018). For in-
stance, Pavlakos et al. (2017) utilized a volumetric represen-
tation for 3D pose and adopted a coarse-to-fine prediction
scheme to iteratively refine the 3D joint localization. Sun
et al. (2018) proposed an integral regression approach and
predicted 3D joint locations in a differentiable way. More
recently, Pavlakos, Zhou, and Daniilidis (2018) proposed to
use the ordinal depths of human joints as a weak supervision
signal to mitigate the need of 3D annotations for 3D pose es-
timation. However, it is still sub-optimal to train end-to-end
3D pose estimation systems due to the limited availability
of 3D captures in the wild and the appearance variations be-
tween train and test data.

The 2D pose-based approaches take the intermediately
predicted 2D pose as input and lift it to the 3D space (Tung
et al. 2017b; Moreno-Noguer 2017; Martinez et al. 2017;
Zhao et al. 2019; Wang et al. 2018). For example, Martinez
et al. (2017) proposed to use a simple multi-layer percep-
tron network to regress 3D poses from 2D joint locations.

Wang et al. (2018) predicted the depth rankings of body
joints by a Pairwise Ranking CNN, and used that as a cue to
estimate 3D poses from 2D human joint locations. Zhao et
al. (2019) proposed a novel Semantic Graph Convolutional
Networks (SemGCN) to capture the spatial relationships be-
tween joints for 3D pose regression. These methods gain
the advantages of existing 2D pose estimation algorithms
to obtain the intermediately estimated 2D poses. Different
from the aforementioned methods, our goal is to estimate
the whole surface geometry of the human body instead of
only 3D joint locations, which is more challenging.

Monocular 3D Human Mesh Recovery

For parametric model-based 3D human pose and shape re-
construction, the goal is to estimate the parameters of the
3D body model, such as SCAPE (Anguelov et al. 2005) and
SMPL (Loper et al. 2015). These model-based methods can
be further categorized into optimization-based (Bogo et al.
2016; Lassner et al. 2017; Song, Chen, and Hilliges 2020)
and regression-based methods (Guler and Kokkinos 2019;
Kanazawa et al. 2018; Omran et al. 2018; Choutas et al.
2020; Pavlakos et al. 2018; Tung et al. 2017a).

Optimization-based approaches aim to fit a 3D body
model to 2D observations, such as body joints (Bogo et al.
2016) and silhouettes (Lassner et al. 2017). For example,
Bogo et al. (2016) proposed a fully automatic approach, SM-
PLity, to fit the SMPL model to 2D keypoints that are de-
tected by a CNN keypoint detector (Pishchulin et al. 2016).
Lassner et al. (2017) extended SMPLIfy by fitting the SMPL
model to body surface landmarks and silhouettes. However,
their fitting process is typically very slow and sensitive to
initialization.

Regression-based approaches aim to regress the body
model parameters from image pixels (Kanazawa et al. 2018;
Omran et al. 2018) or intermediate representations such as
2D keypoints and silhouettes (Pavlakos et al. 2018; Tung
et al. 2017a). For instance, Kanazawa et al. (2018) pro-
posed HMR to regress SMPL pose and shape parameters
directly from image pixels using joint reprojection loss and
adversarial prior. Pavlakos et al. (2018) estimated 2D joint
heatmaps and the silhouette first before regressing pose pa-
rameters from 2D joints and shape parameters from the sil-
houette. Kolotouros et al. (2019) combined both optimiza-
tion and regression approaches in one framework. Within a
training loop, they used the regressed estimate to initialize
SMPLIify (Bogo et al. 2016), and used the optimized param-
eters from SMPLIify to supervise the learning of the regres-
sor. More recently, transformer models (Vaswani et al. 2017)
have been applied on 3D human mesh recovery domain (Lin,
Wang, and Liu 2021a,b), which significantly improve the re-
construction performance.

Self-supervised 3D Human Mesh Recovery

Recent model-based works have also provided self-
supervised solutions by leveraging synthetic data (Tung
et al. 2017a; Mugaludi et al. 2021; Gong et al. 2022, 2023)
or paired appearance consistency (Jiang et al. 2020).
Mugaludi et al. (2021) proposed a self-adaptive approach
that uses synthetic data as a source domain to perform full
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Figure 1: Overview of the proposed approach. The entire framework is trained end-to-end with self-supervision from 2D joints
and depth maps. Here © denotes operations to generate relational vectors from the two representations. These relational vectors
are the input of the uncertainty-ware module. ® means applying the outputs of the uncertainty-ware module as weights to refine

the self-consistency constraints.

supervision, and then leverages topological-skeleton that ex-
tracted from the raw silhouette to perform self-supervised
learning when applying the source-trained model to the
unlabeled target domain. Gong et al. (2022) proposed a
synthetic-training pipeline that utilizes SMPL data to gen-
erate synthetic training data for full supervision, and uses
2D joints and IUV maps as proxy inputs to alleviate the
synthetic-to-real gap. Different from these methods, our
proposed approach does not require any synthetic data to
provide 2D/3D supervision, which inherently bypass the
synthetic-to-real gap issue. Kundu et al. (2020) introduced a
self-supervised method that relies only on foreground (FG)
appearance consistency. This work is close to ours. How-
ever, this method requires video datasets to generate se-
quential image pairs for appearance consensus based self-
supervision, which prevents its application to datasets with
only single-shot images.

Method

The overall framework of the proposed approach is illus-
trated in Fig. 1. Given a single image, we use off-the-shelf
2D joints detection algorithms (Cao et al. 2017; Cao et al.
2019; Wu et al. 2019) and depth map estimation meth-
ods (Tang et al. 2019; Jafarian and Park 2021) to generate
2D joints and depth maps of humans, respectively. These
2D joints and depth maps serve as the actual inputs of
the network and the pseudo-labels to guide the training of
the whole network. We also introduce an uncertainty-aware
module to automatically learn the reliability of the inputs at
body-joint level based on the consistency between 2D joints
and depth map. The entire framework is trained end-to-end
with self-supervision.

SMPL Human Body Model

Instead of reconstructing 3D human mesh by the network
directly, we estimate only a small number of SMPL (Loper
et al. 2015) parameters, which are sufficient for generating
detailed 3D human mesh by the SMPL model. As a para-
metric statistical human body model, SMPL represents a 3D
human body by ©, which is composed of pose parameters
6 € R™ and shape parameters 3 € R!°. The pose param-
eters contain the relative rotation of 23 joints in axis-angle
representation and the global rotation. The shape parame-
ters contain the first 10 coefficients of a PCA shape space.
Given the parameters © = {0, /3}, a triangulated mesh
M(0,5) € R3*¥N can be generated by the SMPL model,
where N = 6890 denotes the number of vertices. The ma-
jor body joints Psp is defined as a linear combination of
mesh vertices. Specifically, Psp = WM, where W is a pre-
trained linear regressor.

Proxy Inputs Generation

In the absence of any 2D/3D ground truths, it is still quite
challenging to recover 3D human meshes directly from im-
age pixels. To alleviate this issue, we employ intermediate
representations of images (i.e., 2D joints and depth maps of
humans) as proxy inputs to the regression network, which
provides complementary clues to infer 3D human meshes.
These representations focus on human bodies, filtering out
the information from illumination, background clutter, etc.,
thus can be viewed as a distillation of RGB images.

2D Joints Generation. With the advances in 2D pose de-
tection approaches in recent years, it is convenient to acquire
rather reliable human 2D joints using off-the-shelf meth-
ods. Specifically, given an input image, we use Keypoint



R-CNN (He et al. 2017) to predict 2D joint locations. The
2D joints prediction is denoted as J € R¥*2, where K is
the number of joints. The 2D joints are further transformed
into 2D Gaussian joint heatmaps, F' € RT>XW*K where H
and W represent image height and width, respectively.

Depth Map Trimming. Compared with other intermedi-
ate representations such as 2D joints and silhouettes, much
less attention has been putted on human depth information
for 3D human shape and pose recovery. One main reason
is that the estimation of human depth is typically less accu-
rate and less robust compared to other intermediate repre-
sentations. However, in the self-supervised setting with 2D
images only, we find it is beneficial to employ estimated hu-
man depth maps for 3D human recovery, which can provide
complementary information to 2D joints and alleviate the
pose ambiguity issue. Specifically, we employ an unsuper-
vised depth estimation algorithm (Jafarian and Park 2021)
to extract depth maps of humans from RGB images. The es-
timated depth map is denoted as D € RF*W
According to our observations, the original estimated
depth maps D are likely to be contaminated by extreme
depth values, which results in unreasonable depth ranges for
such depth maps, making it hard for the alignment between
input depth and predicted depth. To eliminate the impact of
outliers (i.e., the extreme depth values), we introduce a depth
trimmer T7qg in our framework. Specifically, we apply the
interquartile range (IQR) method for calculating the lower
and upper bounds of the depth values and trimming off any
values that fall outside of the range. Given a depth map D
with H x W depth values, we first get the number of valid
(i.e., non-zero) depth values, n, then the IQR is calculated
as the difference between the third quartile ()3 and the first
quartile Q1, where @1 is the median of the [n/2] smallest
values, and 3 is the median of the |n/2] largest values.
The lower and upper bounds are defined as
Blower = Q1 — 1.5 x IQR, 4))

B"PPer — Q3 + 1.5 x IQR. 2)

Figure 2: Depth maps before and after IQR trimming. The
first row shows original depth maps, the second row shows
corresponding trimmed depth maps. All depth maps are nor-
malized for visualization.

Finally, the trimmed depth map D = Tyor(D) is formu-
lated as

) Bupper’ Dij > Bupper’
Dij — Blower’ 0< Dij < Blower’ (3)
D otherwise.

K

Fig. 2 illustrates the difference between the original and
trimmed depth maps, which are normalized for visualiza-
tion. It shows that the original depth maps in the 1st row
are dominated by dark-color areas due to the existing of out-
liers, while the trimmed depth maps in the 2nd row have
more balanced dark-to-bright color distribution, which are
more faithful to the ground truth.

Uncertainty Modeling

Due to the differences in view point, occlusion condition,
pose topology, etc., the quality of the pre-extracted 2D joints
and depth maps usually varies among different image sam-
ples as well as different human parts within a sample. In
our self-supervised framework, we take the above interme-
diate representations as pseudo ground truth labels to guide
the learning of the whole network. Therefore, it is critical to
quantify the uncertainty of each pseudo ground-truth, so that
the reliable ones can be better concentrated while the impact
of noisy and ambiguous ones can be alleviated.

We define the uncertainty at body-joint level based on the
consistency between 2D joints and depth map from the same
image. The measure of consistency between the two repre-
sentations is based on the symmetrical nature of human bod-
ies, e.g., the length of left upper-arm is equal to the length
of right upper-arm typically. Thus if the depth difference
of left upper-arm is close to that of right upper-arm, their
bone lengths should be close in the 2D skeleton that derived
from 2D joints. Specifically, we denote each bone in the left
body as B!, and the symmetrically corresponding bone in
the right body as B;, where 7 is a shared bone-index among
left and right body part. Since each bone is a connection be-
tween two joints, we define the 2D bone length Len(+) as the
Euclidean distance between the connected two joints, and
the bone depth discrepancy DD(-) as the depth difference
between the two joints. According to the bone symmetric-
ity and 3D-to-2D projection properties, we have the follow-
ing observations: (1) the smaller the DD(-), the larger the
Len(-); (2) The closer between DD(B!) and DD(BY), the
closer between Len(B!) and Len(BY). The conformity of
such relationships among bone lengths and depth discrep-
ancies reflects the consistency between 2D joints and depth
map. Therefore, we can learn the uncertainty of proxy inputs
using the bone lengths and depth discrepancies. We utilize a
multilayer perceptron (MLP) network that contains two fully
connected layers and a Sigmoid function to automatically
learn joint-level reliability:

w = Sigmoid(FC(FC(vpen ®vpp))), “4)

where ¢ means concatenation operation, vz, is a vector of
bone lengths calculated by Len(-), and vpp is a vector of
depth discrepancies calculated by DD(-).



Self-Supervised Human Reconstruction

Pose Prior. In order to prevent the network from produc-
ing physically implausible 3D bodies, we employ a pose
prior model in our framework similar to (Kundu et al. 2020;
Jafarian and Park 2021). The pose prior is the decoder of an
adversarial auto-encoder (Makhzani et al. 2015) trained on a
large amount of 3D pose samples (Mahmood et al. 2019). It
learns a latent pose feature ¢ € [—1,1]3? in the bottleneck,
and the decoder is learned to recover the realistic SMPL
pose 6 € R% of 23 joints from ¢. We only take the de-
coder from the trained auto-encoder as the pose prior model
in our framework, and keep its weights frozen during our
self-supervised training.

Network Architecture. Similar to HMR (Kanazawa et al.
2018), we use the ResNet-18 (He et al. 2016) as the CNN
backbone. The input is the concatenation of joint heatmaps
F' and trimmed depth map D along the channel dimension,
which results in a tensor of shape H x W x (K + 1). The
output of ResNet is average pooled, which produces features
f € RS2, The subsequent regression module consists of
two fully connected layers with 512 neurons each, followed
by an output layer with 48 neurons, which contains the cam-
era parameters {s, R, T'}, where s € R and T' € R? denotes
the scale and translation, respectively, R € R? is the global
rotation. The output layer also contains the SMPL shape pa-
rameter 3 € RV and a pose embedding vector ¢ € R32,
which is then sent to the pose prior to generate the SMPL
pose parameter 6 € R of 23 joints.

Self-Consistency Loss. To conduct self-consistency on
2D joints, the estimated SMPL parameters © = {6, 3}
are transformed into 2D joints .J’ through 3D joints regres-
sion from reconstructed mesh and weak-perspective projec-
tion using the estimated camera parameters. Then the self-
consistency loss for 2D joints can be expressed as

ZHJ 5 5)

For self-consistency on depth maps, the estimated SMPL
parameters are transformed into depth map D’ through dif-
ferentiable rendering (Kato, Ushiku, and Harada 2018) and
weak-perspective projection. However, we do not calculate
the L, distance between D and D’ directly. Instead, we
evenly sample depth points on bones in order to obtain better
correspondences between D and D' Specifically, we keep
the two depth points on joints and sample the remaining
ones evenly along each bone. The depth loss is calculated
between each depth point D; and its corresponding point
Dy, ie.,

!
Joznt J J

Laepen(D, D') Z HD’ D”
where m is the total number of depth points. The reliability
of each depth point is correlated with the the reliability of
the two joints on the same bone. For simplicity, we define
the reliability w,, of each depth point p; as the reliability

; (6)

of the joint with closer distance. We take the depth point
reliability as a weight to boost network training. Then the
uncertainty-aware depth consistency loss is defined as

2
Ldepfh D D Z Wp; D;/ 9 (7)

Our final loss function is defined as
L= ajLJOint(J’ J/) + adLZepth(Da D/)a (8)

where «; and «y are loss weights for the joint and depth,
respectively.

Experiments
Datasets

In our experiments, we use Human3.6M (Ionescu et al.
2013), 3DPW (Von Marcard et al. 2018) and UP-3D (Lass-
ner et al. 2017) for training. For 3DPW (Von Marcard et al.
2018) and Human3.6M (Ionescu et al. 2013), we report eval-
uation results using mean per joint position error (MPJPE)
and Procrustes-aligned mean per joint position error (PA-
MPJPE). Note that we only use image data and no 2D/3D
annotations from these datasets are involved during training.
More detailed information of these datasets is provided in
the following.

Human3.6M is a large-scale indoor dataset captured in
a controlled environment. Its training set contains 7 sub-
jects performing 4 types of actions under 4 camera views.
Following the Protocol 2 (Kanazawa et al. 2018), we train
our model on 5 subjects (S1, S5, S6, S7, S8) and test on
the front-view samples of the rest 2 subjects (S9, S11). All
videos are downsampled from 50fps to10fps.

3DPW is an in-the-wild dataset that contains both indoor
and outdoor scenes. The dataset has 60 video sequences.
Both training and testing sets contain 24 videos, and the
rest 12 video are used for validation. Following (Kocabas,
Athanasiou, and Black 2020), we use its training data when
conducting experiments on 3DPW.

UP-3D is an outdoor dataset. It contains more than 8K
images. This dataset is only used for training.

Implementation Details

The MLP network for uncertainty modeling contains two
fully connected layers with 128 and 64 neurons, respec-
tively. The output layer contains 12 neurons, which is equal
to the number of joints excluding joints on the head. We
set the joint loss weight o; = 1 and the depth loss weight
ag = 0.04. We use the Adam optimizer (Kingma and Ba
2014) with an initial learning rate of 10~°, and batch size of
64. After training for 10 epochs, we regularize (§ to remain
close to the mean shape. Our experiments run on a single
NVIDIA GeForce RTX 3090 GPU.

Ablation Study

In Table 1, we compare our proposed model with several
variants on 3DPW dataset to investigate the contribution of
each component. Specifically, we design the following base-
lines: (1) “Ours © uncertainty” denotes our model using



Figure 3: Examples of qualitative results on two datasets. Left three columns: 3DPW dataset. Right three columns: Human3.6M
dataset. The 3rd and 6th columns show another view of the 3D reconstruction results.

Methods MPJPE PA-MPIJPE
Ours 159.4 89.5
Ours © uncertainty 166.9 93.4
Ours © uncertainty © TiQr 208.2 113.5
Ours © uncertainty © sampling ~ 182.6 99.2
Ours © depth input 165.9 97.6

Table 1: Ablation study on 3DPW dataset. The MPJPE and
PA-MPIJPE (both in mm) are reported.

Lgepin for depth loss instead of using uncertainty-weighted
depth loss L;emh; (2) “Ours © uncertainty © Trgr” de-
notes “Ours © uncertainty” using the original depth maps
as pseudo ground truths instead of using IQR trimmed
depth maps; (3) “Ours & uncertainty © sampling” denotes
our method self-supervised on depth maps directly without
depth points sampling and uncertainty awareness; (4) “Ours
© depth input” denotes our model using only 2D joints as
input while keep the same loss functions. All these models
are trained on the training images from 3DPW and UP3D.

Compared with our proposed model, the reconstruction
error is increased by 7.5 (MPJPE) and 3.9 (PA-MPJPE) on
the baseline “Ours © uncertainty awareness”. This shows the
effectiveness of using uncertainty-aware depth loss, which
boosts the self-supervised learning more effectively while
alleviates the impacts from high-uncertainty depth. The per-
formance of “Ours © uncertainty awareness © Trgr” is
further degraded by a large margin, which demonstrates the
effectiveness of applying IQR trimming on the depth map.
Without depth trimming, the outliers will cause unreason-
able depth range, making it hard for the alignment between
D and D’ along depth dimension. Actually, its results are
even worse than not using depth for self-supervision. Com-
pared with our model, the MPJPE and PA-MPJPE are in-
creased by 6.5 and 8.1 on the baseline “Ours © depth in-
put”’, which shows the complementary effect of depth to the
2D joints. In fact, it is highly possible to have pose ambigu-

Sup. Methods MPJPE Ml;’?f_’E
HMR (2018) 281 813
Full SPIN (2019) 986 592
PyMAF (2021) 92.8 58.9
Weak SMPLify (2016) 1992  106.1
Mugaludi et al. (2021)  126.3 79.1
(S—R, weak)
RGB Only (2019) - 105.6
Self-sup. 10 Oy (2019) - 100.1
(Use sYn)  Nugaludietal. (2021)  159.0  95.1
Self-sup,  Kundu etal (2020) 187.1  102.7
’ Ours 159.4 89.5

Table 2: Comparison with the state-of-the-art methods on
3DPW in terms of MPJPE and PA-MPJPE (both in mm).

ity using 2D joints only since two different 3D poses may
have same 2D projection. The depth map can alleviate such
ambiguities.

Comparison with the State-of-the-Art

We compare the reconstruction performance of our method
with previous state-of-the-art methods of different supervi-
sion degrees on 3DPW and Human3.6M datasets. The re-
sults are shown in Table 2 and Table 3.

On 3DPW dataset (Table 2), our method achieves
the state-of-the-art performance among the self-supervised
methods. Specifically, our method outperforms Kundu et
al. (2020) by a large margin. The reconstruction error of
our method is decreased by 27.7 (MPJPE) and 13.2 (PA-
MPIJPE). Our method also outperforms Flow Only (Doersch
and Zisserman 2019) and Mugaludi et al. (2021) in terms of
PA-MPJPE. Note that Mugaludi et al. (2021) is fully super-
vised on the synthetic data (source domain) and adapt to a
target domain with self-adaption, while we do not need any
synthetic data for 2D/3D supervision.



Sup. Methods PA-MPJPE
Lassner et al. (2017) 93.9
Pavlakos et al. (2018) 75.9

Full HMR (2021a) 56.8
Kolotouros et al. (2019) 50.1
SPIN (2019) 41.1
HMR (unpaired) (2021a) 66.5

Weak SPIN (unpaired) (2019) 62.0
Mugaludi et al. (2021) 58.1
(S—R, weak)

Self-sup.  Tung et al. (2017a) 98.4

(use syn.) Mugaludi et al. (2021) 81.3
Rhodin et al. (2018) 98.2

Self-sup. Kundu et al. (2020) 90.5
Ours 854

Table 3: Comparison with the state-of-the-art methods on
Human3.6M dataset using Protocol 2.

On Human3.6 dataset (Table 3), our method consistently
outperforms Kundu et al. (2020), which is directly compa-
rable with our method due to the similar supervision set-
ting. The reconstruction error of our method is decreased by
5.1 (PA-MPJPE) compared with Kundu et al. (2020), even
though we do not require any paired images for training.
In addition, our result is also comparable with Mugaludi et
al. (2021), which requires synthetic data for full supervision,
while we do not have such requirements.

Qualitative Results

We have also evaluated our models qualitatively on 3DPW
and Human3.6 datasets. Some examples of our results are
presented in Fig. 3. We observe that the postures of humans
are well captured with our proposed method, although we
do not use any 2D/3D ground-truths from these dataset for
training. By incorporating the estimated depth maps in our
framework, the pose ambiguity issue is relatively alleviated.

In Fig. 4, we qualitatively compare the performance of our
method with baseline models on the 3DPW dataset. It shows
that the reconstruction results of our method are consistently
better than all the baseline models. In addition, the perfor-
mance of baseline “Ours © uncertainty” is also better than
the other two baselines qualitatively, which is in line with the
quantitative results in Table 1. These further demonstrate the
effectiveness of each proposed component.

Limitations. In the circumstance of severe occlusion, it
is quite challenging to get accurate intermediate represen-
tations from images, thus our method tends to fail in such
cases (see Fig. 5). From the qualitative results in Fig. 3, we
also observe that the reconstruction on feet and hands is still
not so desirable compared with existing supervised methods.
The main reason is that we use a sparse 2D pose representa-
tion which has no joint on feet or hands other than the ankle
or wrist joints. This issue can be alleviated by adding more
extra joints on the region of interest to enhance the accuracy
based on the task need.

Baseline 3

Ours Baseline 1 ~ Baseline 2

_
YN
§§ %

Figure 4: Qualitative comparison with baseline models on
3DPW. Our results are in the 2nd column. The following
columns show results of baseline “Ours & uncertainty”,
“Ours © uncertainty © T7gr”, and “Ours O uncertainty ©
sampling”, respectively.

Figure 5: Failure cases caused by severe occlusion.

Conclusion

In this work, we have presented a simple, novel self-
supervised framework for 3D human mesh recovery from
monocular images with uncertainty-aware learning. The
proposed method does not require any 2D/3D ground-truths
for supervision, relying only on self-consistency between in-
termediate representations, i.e., 2D joints and depth maps,
and projected ones after 3D human reconstruction. We in-
corporate depth maps in our framework to strengthen the
self-consistency constraints, with depth trimming and depth-
point sampling methods designed for better alignment be-
tween input depth and predicted depth. Furthermore, we de-
sign an uncertainty-aware module to automatically learn the
reliability of the intermediate representations at body-joint
level based on the consistency between two representations.
The impacts from noisy and ambiguous inputs are effec-
tively reduced by incorporating the reliability values in the
self-consistency losses. Experiments demonstrate the effec-
tiveness of our proposed method.
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