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Abstract—This paper presents a novel surface registration technique using the spectrum of the shapes, which can facilitate accurate

localization and visualization of non-isometric deformations of the surfaces. In order to register two surfaces, we map both eigenvalues

and eigenvectors of the Laplace-Beltrami of the shapes through optimizing an energy function. The function is defined by the

integration of a smoothness term to align the eigenvalues and a distance term between the eigenvectors at feature points to align the

eigenvectors. The feature points are generated using the static points of certain eigenvectors of the surfaces. By using both the

eigenvalues and the eigenvectors on these feature points, the computational efficiency is improved considerably without losing the

accuracy in comparison to the approaches that use the eigenvectors for all vertices. In our technique, the variation of the shape is

expressed using a scale function defined at each vertex. Consequently, the total energy function to align the two given surfaces can be

defined using the linear interpolation of the scale function derivatives. Through the optimization of the energy function, the scale

function can be solved and the alignment is achieved. After the alignment, the eigenvectors can be employed to calculate the

point-to-point correspondence of the surfaces. Therefore, the proposed method can accurately define the displacement of the vertices.

We evaluate our method by conducting experiments on synthetic and real data using hippocampus, heart, and hand models. We also

compare our method with non-rigid Iterative Closest Point (ICP) and a similar spectrum-based methods. These experiments

demonstrate the advantages and accuracy of our method.

Index Terms—Geometry-based technique, visual analysis model, 3D point-to-point alignment

Ç

1 INTRODUCTION

SHAPE registration is one of the important research topics
for scientific visualization, computer vision, and shape

analysis. In biomedical area, its application ranges from
analyses of cardiac deformations [1] to brain structures
deformations caused by diseases such as epilepsy [2] or
Alzheimer [3]. Considering that the deformations of most
organs such as heart or brain structures are non-isometric, it
is very difficult to find the correspondence between the
shapes before and after deformation, and therefore, very
challenging for diagnosis purposes.

Traditional landmark-based methods usually detect rele-
vant corresponding points or curves in two shapes, i.e.,
landmarking is essential in many shape registration and
mapping applications [4], [5], [6], [7], [8], [9]. There are two
drawbacks in this type of methods. First, due to the shape
complexity of organs, these methods require labor-intensive
human intervention when done manually, or error-prone
if conducted automatically through spatial detection [10].
Second, in many situations, there exists no salient spatial
landmarks in the non-isometric deformations, e.g., in left
ventricle of heart or brain hippocampus.

Shape spectrum is another method to represent the
shape. There is a powerful tool called Laplace-Beltrami (LB)
operator that can analyze the intrinsic property of the shape.
Employing this operator, Reuter [11] and L�evy [12] defined
a shape spectrum approach with the Laplace-Beltrami oper-
ator on a manifold and employed the eigenvalues and
eigenvectors as a global shape descriptor [13], [14]. The
eigenvectors are orthogonal basis functions; therefore, the
shape can be projected to the orthogonal bases and then
analyzed and reconstructed using these bases [15]. As the
geometry changes, the spectrum of the shape changes as
well. Some studies employed the spectrum of this operator
to classify, register, and differentiate shapes [16], [17], [18],
[19]. However, the spectrum through these methods can
only show the global difference between shapes and cannot
map and quantify the non-isometric shape differences due
to the lack of non-isometric registration with spectrum.
Hamidian et al. [20], [21] proposed an alignment method
through the eigenvalues, however, the point-to-point corre-
spondence cannot be determined. Shi et al. [22] used the dif-
ference between the eigenvectors of two surfaces to generate
a conformal mapping, but the method is computationally
expensive. While many promising techniques were devel-
oped, there is still a lack of a method that can generate the
correspondence between points for non-isometric shape
structure change in a timely efficient fashion.

In this paper, we focus on a method based on spectrum
alignment of the non-isometrically deformed surfaces using
both eigenvalue and eigenvector variations in order to find
the correspondence and map the non-isometric deforma-
tions. To search for the alignment, we utilize a scale function
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on the surface that deforms one surface to a targeted one.
Compared to the traditional approaches through the experi-
ments, our method can accurately and automatically map
and localize the point-to-point non-isometric deformations
in addition to global difference of the shapes. Because the
spectrum of shape only depends on the intrinsic geometry,
our method is invariant to spatial translation, rotation, scal-
ing, and isometric deformation. Furthermore, our method is
computationally efficient and takes considerably less time
to execute compared with existing methods [22].

1.1 Related Work

By definition, shape spectrum represents the information of
intrinsic local geometry. It is invariant to isometric deforma-
tions and different triangulations. Reuter et al. [11] defined
the spectrum of the Laplace-Beltrami operator of a shape as
the signature or fingerprint of the shape. Rustamov in [23]
employed the spectrum of this operator for shape clustering
and classification purposes. L�evy in [12] employed the the-
ory of stationary waves to study the behavior of eigenvectors
and the static points of the eigenvectors. These points corre-
spond to the locations that do not move in the theory of sta-
tionary waves. This study shows that the static points are
strongly linked to the geometry of a shape and these points’
locations change when the geometry varies. As these points
are extracted from eigenvectors, they are invariant to isomet-
ric deformations of the shape. Thus, these points can be
employed as the feature points to describe the geometry of
the shape. Reuter et al. [24], [25] employed these points,
together with the domains generated by these static points,
as topological features to segment and register different parts
of the shapes. But the deformation of the shapes is restricted
to be isometric in these studies. In reality, many deforma-
tions, such as heart motion, brain development, and so on,
are not isometric. Hence, applying geometric spectrum
methods for analyzing non-isometric deformation and regis-
tration is very challenging. Some recent work [22], [26]
showed that the shape spectrum can be controlled with a
scale function on the Riemannian metric. Shi et al. [26] dis-
cussed that the eigenvalues and eigenvectors change accord-
ing to the Riemannian metric of a manifold. Later in [22], Shi
et al. employed thismetric tomeasure the difference between
the eigenvectors of two surfaces in order to generate a con-
formal mapping between them. To this end, they minimized
the difference between surfaces in the Laplace-Beltrami
embedding space using an optimization approach. This
work focused on eigenvector variation, but the eigenvalue
variation was not investigated, and the method is very com-
putationally expensive. For instance, to map two hippocam-
pal surfaces with 1000 faces, the procedure took around
20 minutes on a computer with a 2.6-GHz Intel Xeon CPU
and approximately 60 MB memory consumption. Instead,
Hamidian et al. presented a method to align two surfaces by
mapping their eigenvalues [20], [21]. This method provided
a deformation matrix showing the deformation of the initial
surface to the target one but did not generate a point-to-point
correspondencemapping of the vertices.

There exists other work that employs shape spectrum to
match shapes. Rodol�a et al. [27] proposed a method based on
the LaplaceBeltrami eigenvectors for computing partial func-
tional correspondence between non-rigid shapes that have

isometric deformation. Litany et al. [28] extended this study
to match partial shapes that undergo topological noise and
non-isometric deformation within the same framework.
There are some limitations for this method. The main limita-
tion lies in its reliance on good local features to drive the
matching process. There are recent advances in the field of
spectral shape analysis closely related to the proposed
approach. For instance, Kovnatsky et al. [29] showed how to
modify (align) the eigenvectors of the Laplace-Beltrami oper-
ator in order to match non-isometric shapes. Ovsjanikov
et al. [30] proposed a spectral method for shape matching
which is to find an alignment between eigenvectors based on
a set of linear constraints. Later, they [31] presented amethod
for finding functional correspondence between manifolds
based on the geometric matrix completion framework [32]. In
[31], [33], [34], visualizing shape deformations based on a
spectral representation of the correspondence was shown.
However, the key difference between the methods men-
tioned above and our proposed approach lies in the fact that
our method is using both eigenvalues and eigenvectors to
align two manifolds versus these methods employed only
the eigenvectors. Also, our method extracts feature points
from eigenvectors, instead of using all the points, and
employs them to align two surfaceswithout loosing accuracy.

In this paper, we present a novelmethod that can align two
surfaces and visualize the corresponding points through the
variation of geometric spectrum. This is achieved bymapping
eigenvalues and certain feature points extracted from the
eigenvectors of two surfaces. Given two triangle meshes, the
spectra can be varied fromone to anotherwith a scale function
defined on each vertex. In order to compute the alignment, we
aim to minimize an energy function which is the integration
of a smoothness term for aligning the eigenvalues and a dis-
tance term describing the distance between the corresponding
feature points. Optimizing this energy function is a quadratic
programming problemwhich can be solved using an iterative
method. Furthermore, we assume that the variation of eigen-
value is expressed as a linear interpolation of eigenvalues of
the two surfaces. The derivative of the scale function is the
solution of such a problem. Therefore, the final scale function
can be computed by an integral of the derivatives from each
step. Subsequently, the scale function can describe the
mapped surface eigenvectors that can be employed to find the
point-to-point correspondence. Our major contributions in
thiswork can be summarized as follows:

� We present a spectrum alignment algorithm using
eigenvalue and eigenvector variations for 3D surfa-
ces, supporting non-isometric global and local
deformation analysis. In the discrete domain, the
variation of eigenvalues and eigenvectors in terms of
the scale function can be presented as matrices.
Employing these matrices, together with the smooth-
ness function to align the eigenvalues and a distance
function to align the feature points extracted from
eigenvectors, a linear system can be defined. By solv-
ing this system, the eigenvalues and eigenvectors are
aligned and the corresponding points of the surfaces
can be determined.

� Feature points automatically extracted from eigenvec-
tors of the surfaces, along with the defined distance
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between the corresponding feature points, can lead to
an improved correspondence with considerably
reduced computational cost. Because our method
aligns both eigenvalues and eigenvectors at the same
time, a limited number of feature points for the eigen-
vectors are sufficient to warrant the alignment. This
helps to improve the accuracy and reduce the compu-
tational time considerably. These feature points are
proven to be highly related to the geometry of the
shape and they changewhen deforming the shape.

� Our developed system demonstrates the accuracy
and efficiency of the spectral variation and registra-
tion algorithm on visualization of non-isometrically
deformed shapes. The applications to biomedical
imaging problems show that it is a viable solution for
morphometric analysis and visualization in biomedi-
cal applications and clinical diagnoses.

2 SURFACE REGISTRATION USING SPECTRAL

OPTIMIZATION

In this paper, we employ Laplace-Beltrami operator to com-
pute the geometric spectrum of a manifold. Let f1 2 C2 be a
real function defined on a Riemannian manifold M. The
Laplace-Beltrami operator ~ is defined as ~f1 ¼ Ï � ðÏf1Þ;
where Ïf1 is the gradient of f1 and Ï� is the divergence on
the Manifold M. The eigen-system for this equation is
defined as ~f ¼ ��f; where the family solution f�ig is a
real nonnegative scalar and will result in the corresponding
real family functions of ffig for i ¼ 0; 1; 2; :::. To solve
these differential equations, discrete differential operator
is employed [35]. In this framework, Voronoi region for
the vertices of a triangle mesh is used to construct the
Laplacian-Beltrami matrix as:

Lij ¼
� cotaijþcotbij

2Ai
if i; j are adjacent,P

k
cotaikþcotbik

2Ai
if i ¼ j,

0 otherwise,

8><
>: (1)

where aij and bij are the two angles opposite to the edge in
the two triangles sharing the edges i, j and Ai is the area of
Voronoi region at vertex i. k is the indices of triangles within
1-ring neighborhood of the vertex i. Therefore, the eigen
equation turns to Lf ¼ �f; where f is n dimensional vector
for each l in which n is the number of vertices of manifold.
To solve this equation we use a sparse matrixW and a diag-
onal matrix S such that:

Wij ¼
� cotaijþcotbij

2 if i; j are adjacent,P
k
cotaikþcotbik

2 if i ¼ j,
0 otherwise,

8<
:

and Sii ¼ Ai. Thus, the Laplace Matrix L can be written as
L ¼ S�1W and eigen equation can be presented as:

Wfn ¼ �nSfn; (2)

where fn and �n are the nth eigenvector and eigenvalue,
respectively. The eigenvectors for different eigenvalues are
orthogonal in term of S dot product. Using this concept, an
embedding IM : M ! R1 is proposed as follows [36]:

IFM ¼
f1ðxÞffiffiffiffiffi

�1

p ;
f2ðxÞffiffiffiffiffi

�2

p ; :::;
fnðxÞffiffiffiffiffi

�n

p
� �

8x 2M; (3)

where F ¼ ff0; f1; f2; :::g. By finding the proper mapping
between the eigenvector embeddings after solving the sign
ambiguity, two shapes can be aligned. Considering that for
each eigenvalue, there is an eigenvector of size n, mapping
eigenvectors of two surfaces for all the vertices is time-
consuming. Therefore, we propose to use the eigenvector
values for certain feature points to map the shapes.

2.1 Calculating the Feature Points

Using the spectrum of Laplace-Beltrami operator, L�evy [12]
employed the theory of the stationary waves to model the
shape. The spectrum contains a lot of information about the
shape which can therefore be used for matching and map-
ping among different shapes. Looking closely to the eigen-
vectors, it shows that the nth eigenvector can have at most n
nodal domains. The nodal domains are the partitions of the
surface that have the same sign. In this work, we are inter-
ested in the points, called nodal sets, which are the static
points between two nodal domains. In other words, the
nodal sets separate the nodal domains. These nodes are the
still zones in the theory of stationary waves. L�evy in [12]
showed that these points are strongly linked to the geome-
try of the shapes. In our method, we use the nodal sets of
certain eigenvectors as the feature points to map the eigen-
vectors of two shapes. As mentioned before, the nth eigen-
vector has at most n� 1 nodal sets which partition the n
nodal domains. We use this concept and employ the nodal
sets of the eigenvectors corresponding to the first non-zero
eigenvalue as the first set of feature points. Fig. 1a shows
the first non-zero eigenvector for a sample left ventricle of
heart and the red set of points in Fig. 1b show this first fea-
ture set. The second feature sets are the nodal sets for the
eigenvector corresponding to the second or third non-zero
eigenvalue that are parallel to the first set of feature points.
We use the parallel points in order to get exclusive sets of
points for mapping the eigenvector of two shapes. Fig. 1c
shows the eigenvector corresponding to the second non-
zero eigenvector and the blue sets of points on Fig. 1b
present the second sets of feature points. This approach can
provide us three sets of points that are used for matching
the eigenvectors of different shapes. When needed, more
nodal sets can be used. Using these feature points for

Fig. 1. (a) The eigenvector corresponds to the first non-zero eigenvalue.
(b) The three nodal sets. The red set shows the static points for
eigenvector corresponding to the first non-zero eigenvalue. The blue
sets show the static points for eigenvectors corresponding to the second
non-zero eigenvalue. (c) The eigenvector corresponds to the second
non-zero eigenvalue.
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mapping the eigenvectors, instead of using all of the points,
reduces the computational time considerably.

2.2 Spectral Registration Using Eigenvector and
Eigenvalue

To register two surfaces, the challenge is how to minimize
the difference between the two shapes in the spectral space.
In order to align two surfaces using the LB spectral space,
we aim to maximize the similarity between both eigenval-
ues and eigenvectors of the LB operator of the surfaces.

As a result of non-isometric deformation, the eigenvalues
and eigenvectors of the shape dramatically change. On a
compact closed manifold M with Riemannian metric g, we
define shape deformation as a time variant positive scale
function vðtÞ : M ! Rþ such that gvij ¼ vgij and dsv ¼ vds,
where vðtÞ is non-negative and continuously differentiable.

To increase the similarity between eigenvectors, we try to
minimize the distance of the eigenvectors on the feature
points. Therefore, we need a distance function in the
embedding space. We employ the distance measurment
that was proposed in [22]. In order to find the optimal scale
function v for two surfaces ðN;vg1Þ and ðM; g2Þ, the energy
function is defined as follows:

Eðv;F1;F2Þ ¼
Z
N

�
d
F2
F1
ðx;MÞ�2dNðxÞ

þ
Z
M

�
d
F2
F1
ðN; yÞ�2dMðyÞ;

(4)

where dF2
F1
ðx;MÞ and d

F2
F1
ðN; yÞ are defined as follows:

d
F2
F1
ðx;MÞ ¼ infy2M k IF1

N ðxÞ � I
F2
M ðyÞ k2; 8x 2 N;

d
F2
F1
ðN; yÞ ¼ infx2N k IF1

N ðxÞ � I
F2
M ðyÞ k2; 8y 2M;

(5)

and v is the scale function that applies on N . F1 and F2 are
the eigenvector basis for LB embedding of ðN;vg1Þ and
ðM; g2Þ. In this work, we focus on mapping one manifold to
another and aim to find such a metric optimization. There-
fore, we assume that the manifoldM is fixed andN changes
using the scale function v to minimize the distance between
M and vN on those feature points.

To increase the similarity of eigenvalues between two
manifolds N and M, we employ the theorem proved in
[21], i.e., �nðtÞ is piecewise analytic and, at any regular
point, the t-derivative of �nðtÞ is given by:

_�n ¼ ��n

Z
M

_vfn
2ds: (6)

This theorem shows that the spectrum is smooth and analyt-
ical to non-isometric local scale deformation.

3 NUMERICAL OPTIMIZATION USING SPECTRAL

VARIATION

In this section, we will detail a discrete algorithm for the
alignment of non-isometrically deformed shapes through
the variation of eigenvalues and eigenvectors. Consider two
closed manifolds, N and M with the eigenvalues of �1 and
�2, and eigenvector basis of F1 and F2. These two manifolds
are represented with discrete triangle meshes. We use their
first k1 non-zero eigenvalues and eigenvectors to align two

surfaces. Aswementioned before, the deformation is not iso-
metric; thus the first k1 eigenvalues and eigenvectors of these
two surfaces are not the same. In order to align the first k1
eigenvalues of N to those of M, a continuous scale diagonal
matrixVðtÞ is applied onN .V is anm bymmatrix, wherem
is number of vertices onN . The elementVii at the diagonal is
a scale factor defined on each vertex onN and will introduce
a variation and alignment from N to M. It is a non-negative,
continuously differentiable matrix.

To solve the numerical problem, we use the time interval
of t and we divide the time interval of t 2 ½0; 1� into K steps
which we will index them as q. For each step of q, we solve
an optimization equation to increase the similarity of eigen-
values and eigenvectors of VN toward those of manifold
M. At the beginning, t ¼ 0, the eigenvectors and eigenval-
ues are F1 and �1 and Vð0Þ ¼ I. When t reaches 1, the
eigenvalues and eigenvectors will be �2 and F2. In order to
do that, we assume that the eigenvalues of N vary linearly
toward those ofM. This can be represented as:

�nðtÞ ¼ ð1� tÞ�1;n þ t�2;n; t 2 ½0; 1�; (7)

where n is the index of eigenvalues. Therefore, at any regu-
lar time of t, the derivative of � is constant and can be calcu-
lated as:

_�nðtÞ ¼ �2;n � �1;n; t 2 ½0; 1�: (8)

For mapping of eigenvectors, in each step we minimize
the distance function described in the Equation (4) between
VN and M. The following will explain the details how to
calculate the optimization function to minimize the distance
between eigenvalues and eigenvectors in each step.

3.1 Eigenvector Optimization Equation

To minimize the energy function in Equation (4), we need
to calculate the distance between two manifolds using
Equation (5). In order to do that, we compute the k1 eigenval-
ues and eigenvectors for both manifolds using Equation (2).
One of the concerns about the calculating the eigenvectors is
the sign ambiguity. This means that either fn or �fn can be
the eigenvector of a specific eigenvalue. For a target surface
M, we fix the eigenvectors by picking random signs for F2.
Then, we calculate the feature points as described before.

For the surfaceN , we start withV ¼ 1 and in each stepwe
update the surface using the optimized V to minimize the
energy function E. At each step, we first calculate the k1
eigenvalues and eigenvectors of the updated surfaceN using
Equation (2). Then we calculate the three sets of feature
points using the eigenvectors as explained before. We need
to find the corresponding feature sets on two surfaces for
solving the sign ambiguity of eigenvectors. As shown in
Fig. 1a, there is one nodal set for the eigenvector correspond-
ing to the first non-zero eigenvalue. Therefore, these sets are
matched on two surfaces. For the other two nodal sets,
we calculate the corresponding sets using their signs on the
eigenvector corresponding to the first non-zero eigenvalue.
We first calculate and determine the sign of this eigenvector
using the histogram of the positive and negative eigenvector
values for both surfaces. As wementioned before, the second
sets of the nodal nodes are parallel to the first set. Also, the
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sets of nodes are at the opposite sides of the first nodal set.
Therefore, each set of nodes has a different sign value on the
first eigenvector. By knowing the sign of the first eigenvector,
we can categorize and determine the corresponding sets of
nodes for the second feature sets.

By detecting the corresponding feature sets in each step,
we find the nearest feature points of surface N to the feature
points of M that minimize the distance Equation (5). To
achieve this, we consider all combinations of signs for k1
eigenvectors for surface N to minimize the distance equa-
tion. After finding the corresponding points and the signs,
the points are employed to generate matrix C as the nearest
feature points mapping from I

F1
N to I

F2
M . This mapping can

be presented as IdðBV1Þ ¼ CV2 where V1 and V2 are the vec-
tors that present the vertices of surfaces N and M, respec-
tively. Matrix B is a diagonal matrix of the size of V1 in
which the diagonal elements for the feature points are 1,
and 0 otherwise. Matrix C has value of 1 only for the feature
points; therefore, the projection relation Id can present a lin-
ear interpolation mapping from feature points of surface N
toM. Using this mapping, we can write the energy function,
Equation (4), in a discrete numerical form as:

E ¼
Xk1
n¼1

�
1

SðNÞ
�

Bf1;nffiffiffiffiffiffiffiffi
�1;n

p � Cf2;nffiffiffiffiffiffiffiffi
�2;n

p
�T

V

�
Bf1;nffiffiffiffiffiffiffiffi
�1;n

p � Cf2;nffiffiffiffiffiffiffiffi
�2;n

p
��

;

(9)

where SðNÞ is the surface area of N and V is the scale func-
tion. In this work, because we change the surface N toward
surface M and surface M does not change in each step, the
second part of the Equation (4) is zero and only the first part
is used to calculate the numerical equation. Considering
that in each iteration the corresponding feature points are
calculated and the eigenvalues do not change, the derivative
of E with respect to time can be defined as follows:

Ef ¼ @E

@t
¼

Xk1
n¼1

�
1

SðNÞDsTn
_V Dsn

�
; (10)

where Dsn ¼ ð Bf1;nffiffiffiffiffiffiffi
�1;n
p � Cf2;nffiffiffiffiffiffiffi

�2;n
p Þ and _V ¼ @V

@t . Because V is a

diagonal matrix, we extract the diagonal elements as a vec-
tor vV and Equation (10) can be rewritten as:

Ef ¼
Xk1
n¼1

�
1

SðNÞ ððDsnÞ2ÞTv _V

�
: (11)

Using this equation, we update the eigenvectors through
the numerical optimization of the gradient of the energy
function in each step.

3.2 Eigenvalue Optimization Equation

In order to increase the similarity of two eigenvalues of �1

and �2, we employ the method in [21]. Considering the scale
function applies on the surface N , the weighted generalized
spectral problem in Equation (2) can be presented as fol-
lows:

Wfn ¼ �nVSfn; (12)

where �n and fn are nth corresponding solution. Using this
equation, Equation (6) can be transformed in the discrete
form:

_�n ¼ ��nf
T
n
_VSfn: (13)

�n is piecewise analytic. Considering that we only apply V
on the surface N by combining Equations (8) and (13), the
derivative of each �iðtÞ leads to the following equation:

��1;nðtÞf1;nðtÞT _VSNf1;nðtÞ ¼ �2;n � �1;n; t 2 ½0; 1�; (14)

where SN is a diagonal matrix that each element shows the
Voronoi region for the corresponding vertex. Although the
time derivative ofV can be calculated in Equation (14), solv-
ing this equation is not straightforward. We need to trans-
form the individual integration equation into a linear
system. We achieve this by extracting the diagonals as vec-
tors vV and vSN , and then applying Hadamard product to
Equation (14). Thus, this equation can be rewritten in a lin-
ear form as follows:

ðvSN � f1;n � f1;nÞT � v _V ¼
�1;n � �2;n

�1;nðtÞ ; t 2 ½0; 1�: (15)

Note that, as the first k1 eigenvalues are going to be aligned,
we can get k1 independent equations, which lead to a linear
system as follows:

a � v _V ¼ b; (16)

where a is a row stack of ðvSN � f1;n � f1;nÞT with k1 rows and
b is the right side of Equation (15). Considering that we use
the first k1 eigenvalues for this work and that practically k1
is much less than the number of nodes in the mesh, the sys-
tem is underdetermined and has no unique solution.

We solve this by assuming that the scale factors distrib-
uted on N are smooth. On the discrete triangle mesh N ,
with the scale function vector vV, the smoothness energy of
E is define as:

E� ¼< vV þ v _V;LN � ðvV þ v _VÞ > S; (17)

where LN can be calculated using Equation (1) for manifold
N . Because the scale vector applies to surface N only, this
equation only applies to surface N . Assuming that vV is
known at each time t, v _V is going to minimize the quadratic
smooth energy. Then it leads to the following equation:

E� ¼ vT_V �WN � v _V þ 2zT � v _V; (18)

where z ¼WNv�V. Through the combination of this energy
function and the energy function calculated for eigenvec-
tors, the distance between the eigenvalues and eigenvectors
of two surfaces can be minimized.

3.3 Energy Equation Integration

In order to increase the similarity of eigenvalues and eigen-
vectors of two surfaces, we integrate the energy function
calculated for both eigenvalues and eigenvectors in order to
find a scale matrix that minimizes the total energy function
as follows:
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ET ¼ E� þ Ef

¼ vT_V �WN � v _V þ 2zT � v _V þ
Xk1
n¼1

�
1

SðNÞ ððDsnÞ2ÞTv _V

�
:

(19)

In order to preserve the physical availability, vV must be
bounded, i.e., the scale factor cannot be zero or negative;
and it cannot be infinite either. We denote a lower bound
and an upper bound with hl;hu > 0, where hl and hu are n
dimensional constant vectors. v _V must satisfy:

hl � vV þ v _V � hu: (20)

This inequality bound can be written into a matrix form:

G � v _V � h; (21)

whereG is a stack of identity matrices as:

G2n�n ¼ �In�n
In�n

� �
; (22)

and h is a 2n dimensional vector as:

h2n�1 ¼ vV � hl

hu � vV

� �
: (23)

The linear system (Equation (16)), energy function (Equation
(19)), and constant bound (Equation (21)) form a quadratic
programming problem at each time t. Assume the eigenval-
ues and eigenvectors are known at each time t, the derivative
of the scale matrix _V is the solution of this problem. The
result _VðqÞ for each iteration can be used to calculate
Vðq þ 1Þ as follows:

Vðq þ 1Þ ¼ VðqÞ þ 1

K � q
_VðqÞ: (24)

After K steps, the desired VðKÞ will be achieved and two
manifolds are aligned. The summary of the algorithm can
be found in Algorithm 1. As shown, after K steps surface N
will be aligned to surface M and the correspondence can be
computed using the aligned eigenvectors.

4 EXPERIMENTS AND APPLICATIONS

The proposed algorithm and system are implemented using
Python and C++ on a 64-bit Linux platform. For visualiza-
tion purposes, we employ MATLAB and VTK library in
Python. The experiments are conducted on a computer with
an Intel Core i7-3770 3.4 GHz CPU and 8 GB RAM. We
apply our algorithm to 2D manifolds, represented with tri-
angle meshes. We employ the approach in [37], [38] to gen-
erate the uniform meshes. The number of vertices in those
meshes is about 3000 for most of the experiment data.
Besides the vertex number, there are two constants, i.e., K
iteration and the first k1 nonzero eigenvalues and eigenvec-
tors to be aligned. For our experiments we choose K ¼ 10.
This number is sufficient to generate accurate results. We
use different k1 for different experiments. Depending on the
resolution that we need in our experiments, the number k1

may vary. The average computational time for 3000 nodes,
with k1 ¼ 8 andK ¼ 10, is around 12 seconds.

Algorithm 1. Spectrum Alignment

Require: Closed 2D manifolds N and M, represented by trian-
gle meshes, and constant k1;

Ensure: Diagonal weight matrix VðqÞ on N , aligning first k1
non-zero eigenvalues and corresponding eigenvectors of
feature points from N toM;

1: InitializeVð0Þ  I, calculate matricesWN and SN , and
�2;n; f2;n; �1;n; and f1;n; for n ¼ 1; 2; . . . ; k1;

2: Compute the feature points for surfacesM.
3: while q < K do
a: Calculate �1;nðqÞ; f1;nðqÞ; for n ¼ 1; 2; . . . ; k1 using

Equation (2) withVðqÞ;
b: Calculate the feature points for surfaceVðqÞN using f1;nðqÞ;

solve the eigenvector sign ambiguity; and find the corre-
sponding feature points between surfacesVðqÞN andM ;

c: Construct the quadratic programming problem using
Equations (16), (19), and (21);

d: Solve the quadratic programming problem to get _VðqÞ and
calculateVðq þ 1Þ;

e: q q þ 1;
4: end while
5: The correspondence of surface N andM can be computed

using the aligned eigenvectors.

4.1 Experiments on Synthetic Data

4.1.1 Our Results

In order to evaluate our method, we manually make some
non-isometric deformations on the surface of the shape and
then we register the initial shape to the deformed one. In
these experiments, we use a Stanford bunny model and
make a non-isometric deformation on the surface and then
generate uniform triangle meshes on both surfaces. We
employ the first 10 non-zero eigenvalues and the corre-
sponding eigenvectors to do the alignments. The processing
time for k1 ¼ 10, K ¼ 10, and 3000 mesh vertices is about 43
seconds. Note that, no correspondence information is used
in the experiments.

In the first experiment, we manually generate a bump on
the back of a bunny and align the original surface to the
deformed one. Fig. 2 shows the original surface in cyan and
target surface in yellow. The location of the bump is marked
by a red circle. Figs. 2c and 2d present the results of point-
to-point mapping of the surfaces from different angles. The
original and targeted shapes are overlaid and the arrows in
the bump area show the deformation of each vertex from
the original to the targeted surface.

In the second experiment, wemanually create an indenta-
tion on the surface of a bunny and align the original surface
to the dent one. Figs. 3a and 3b show the original and the sur-
face results of creating the non-isometric dent on the surface,
respectively. Figs. 3c and 3d present the result of point-
to-point mapping of surfaces using our method. The original
and targeted shapes are overlaid and the arrows in the bump
area show the deformation of each vertex from the original
to the targeted surface. These results confirm that our
method can accurately detect and localize the non-isometric
deformation and find the corresponding points.
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For more complex and challenging deformations, we use
a hammer model and create 2000 uniform meshes on the
surface. Then we create different non-isometric deforma-
tions on the surface and align the original surface to the
deformed one. Fig. 4 show the original hammer in yellow
color and target deformed hammers in the cyan color.
Figs. 4c, 4f, 4i, and 4l show the results of aligning the
original surface to the deformed ones using our method.
The point-to-point alignments are demonstrated using the
arrows that connect the corresponding points on the origi-
nal and deformed surfaces. The original and target surfaces
are overlaid in these figures. These results conclude that our
method can detect the simple and complex non-isometric
deformations on the surface accurately.

4.1.2 Comparison to a Spatial-Based Method

In order to further demonstrate the capabilities of our
method, we compare the results of our algorithm with the
ones from non-rigid Iterative Closest Point (ICP) algorithm.
ICP is introduced by Besl and Mckay in [39] and is one of
the popular approaches in spatial registration-based meth-
ods. In this approach, the initial transformation for global

matching is first estimated and then the closest points are
found by minimizing the distance between two shapes.
Therefore, using this method we first register the original
surface to the target one rigidly and then the corresponding
points between the rigidly registered original shape and the
target shape are calculated. For our method, we employ the
first 12 non-zero eigenvalues and the corresponding eigen-
vectors for alignment purposes. The processing time for
3000 vertices, k1 ¼ 12 and 10 iterations is 118 seconds.

In order to compare two methods, we use a template hip-
pocampus and synthetically deformed the shape by bend-
ing and stretching the shape from upper and lower sides.
The original and deformed surfaces are shown in Figs. 5a
and 5b, respectively, which exhibit global variation. Fig. 5c
presents the overlay of the original and deformed shapes.
As can be seen, the top and the bottom parts of the surface
are stretched and the shape is bent in the middle part.
Fig. 5d shows the result of performing ICP rigid registration
on the original shape to map it to the deformed shape.
Comparing Figs. 5c and 5d, one can notice that the rigid
ICP does not match the shapes correctly, especially in the

Fig. 3. The result of mapping the original 3D object to the synthetic one.
(a) shows the original object. (b) is obtained by generating an indentation
on the original surface. (c) and (d) show the results of point-to-point
mapping the original surface (cyan) to the target one (yellow) from
different angles.

Fig. 2. The result of mapping the original 3D object to the synthetic one.
(a) shows the original object. (b) is obtained by generating a bump
on the original surface. (c) and (d) show the results of point-to-point
mapping the original surface (cyan) to the target one (yellow) from
different angles.

Fig. 4. The result of mapping the original 3D hammers to the synthetic deformed ones. (a), (d), (g), and (j) show the original hammers. (b), (e), (h),
and (k) are obtained by generating non-isometric deformation on the original surface. (c), (f), (i), and (l) show the results of point-to-point mapping
the original surface (yellow) to the target one (cyan).
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top and bottom regions of the shapes. Figs. 5e and 5f pres-
ent the results of our method and non-rigid ICP, and the
arrows show the displacement of each vertex on the surface.
Because the ICP method fails in the rigid registration stage,
the corresponding points calculated using non-rigid ICP do
not reflect the accurate deformation, especially in the top
and bottom region. On the other hand, because our method
does not require pre-rigid registration to find the corre-
sponding points, this variation can be captured by our regis-
tration and mapping method accurately. These results
justify the advantage of our method over the rigid and non-
rigid ICP method. In order to demonstrate that our method
can handle both global and local deformation simulta-
neously, we create a bump on the shape of Fig. 5b as shown
in Fig. 5g. Then we align the surface in Figs. 5a, 5b, 5c, 5d,
5e, 5f, 5g using our method. Both global and local deforma-
tions (bump) can be captured by our method as shown by
arrows in Fig. 5h. Therefore, these results confirm that our
method can detect and localize the non-isometric deforma-
tion and find the correspondence and their displacements
resulted from both global and local deformations.

4.1.3 Comparison to a Spectral-Based Method

In order to compare our method with a similar spectral-
based technique, we employ an approach suggested by Shi
et al. in [22]. They proposed a method based on aligning the
eigenvectors of two surfaces via optimization of a conformal
metric on the surfaces. They employed the eigenvectors for

all the points of the surfaces therefore the computation is
very expensive.

In this experiment, we employ a template hippocampus
and create 1500 uniform vertices on the surface. Then, similar
to the previous section, we synthetically deform the shape by
bending and stretching the shape from upper and lower
sides. The bending and stretches are larger in this experi-
ment than in the previous one. Figs. 6a and 6b show the orig-
inal and synthetically deformed surfaces, respectively.
Figs. 6c and 6d show the results of the alignment using Shi
et al.’s and ourmethods. As can be seen, the bottom tip of the
surface cannot be aligned correctly using Shi et al.’s method
but ourmethod can align all the points accurately.

In order to quantitatively evaluate the capabilities of
these methods in localizing the point-to-point correspon-
dence, we use the following metric:

A ¼ 1�
Pm

i¼1 jdi � dOi jPm
i¼1 jdOi j

; (25)

where di is the distance between corresponding points cal-
culated using either methods, dOi is the known ground truth
distance, m is the number of all nodes and i is the index of
nodes. The experiments demonstrate that the average out-
come for our method is 91.4 percent while it is 85.8 percent
for Shi et al.’s method. This number is 75.6 percent for ICP
method. Therefore, our method can find the point-to-point
correspondence better than the other two methods for

Fig. 5. Comparison of our method with ICP method using synthetic data. (a) presents the original surface and (b) is obtained by bending and stretch-
ing the shape from the upper and lower ends. (c) shows the result of mapping these two shapes. (d) shows the result of ICP rigid registration result.
The ICP method register the shape from one side and therefore this method cannot generate accurate result for bending deformation. (e) and (f)
present the results of point-to-point mapping from the original surface to the deformed one using our method and ICP method, respectively. Because
the result of non-rigid ICP depends on rigid ICP, the result is not accurate. Our method can detect the deformation accurately. In order to show that
our method can handle both global and local deformation simultaneously, we make a bump on the deformed surface as presented in (g). The result
of mapping (a) to (g) is presented in (h).

Fig. 6. Comparison of our method with Shi et al.’s method [22] using synthetic data. (a) presents the original surface and (b) is obtained by bending
and stretching the shape from the upper and lower ends. (c) shows the result of Shi et al.’s approach. The lower tip of the shape is not aligned
correctly using Shi et al.’s method while our method can align all the points accurately. (d) shows the result of mapping these two shapes using our
method. (e) presents the color map visualization of the corresponding points of the shapes using our method.
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complex deformation. In this experiment we use 10 itera-
tions and 12 non-zero eigenvalues and eigenvectors to do
the alignments. For 1500 mesh vertices, our method takes 67
seconds while Shi et al.’s approach takes 94 minutes. In [22],
they mentioned that their execution time for 1000 triangle
faces with approximately 500 vertices, is 20 minutes.

Table 1 demonstrates the comparison between our
method, Shi et al.’s method, and non-rigid ICP method. As
mentioned before, non-rigid ICP method requires rigid reg-
istration before aligning two surfaces while Shi et al.’s and
our methods do not have this requirement. All the methods
can localize the deformation of the surface but our method
has the best average accuracy based on metric defined in
Equation (25). The computational time for our method is
considerably less than Shi et al.’s method and similar to
non-rigid ICP. Therefore, our method has the best features
to align two surfaces.

4.2 Applications on Real Patient Imaging Data

4.2.1 Alzheimer Data

Alzheimer disease (AD) is a brain mis-functionality that is
caused by the loss of neurons and neural volume. Hippo-
campus is vulnerable to damage in the early stage of Alz-
heimer. Volumetric longitudinal studies using MR images
show hippocampal atrophy during time in comparison to
healthy cases. In this study we show the point-to-point
deformation for an Alzheimer case. We employ 10 AD and
10 healthy cases, which have longitudinal study for one
year to track and compare the deformation of hippocampi.
The cases are downloaded from the hippocampal study
from the Alzheimers Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) and are segmented
using FreeSurfer software. Then, the 3D objects and meshes
with 3000 vertices are generated. In this study, we use the

first 10 eigenvectors to align the surfaces. Figs. 7a and 7b
show a sample of AD case for the baseline and after one
year. The deformation in the tail part can be detected visu-
ally. The deformation mapping is shown by using the blue
arrows in Fig. 7c. It needs to be mentioned that the deforma-
tion mapping is down-sampled by five in order to better
visualize the results. As can be seen, our method can detect
the deformation accurately. Fig. 7d shows the 6th eigenvec-
tor before and after alignment. Columns A and B show the
eigenvector for the baseline surface before and after align-
ment, respectively. Column C shows the targeted surface
eigenvector. It is noted that our method can match and align
the eigenvectors. The color map shows the scaled value of
the eigenvector.

In order to show the variation of eigenvalues of the mani-
folds before and after alignment, we list the 2nd to 10th non-
zero eigenvalues of baseline hippocampus (before and after
mapping) and hippocampus after one year in Table 2. The
eigenvalues are normalized by the first nonzero one to
remove the scale factor. It can be seen that after applying the
spectrum alignment algorithm, the eigenvalues of the source
manifold have changed towell alignwith the target ones.

4.2.2 Cardiac Data

We use the Sunnybrook Cardiac Data [40] for this experi-
ment. The data is acquired from the 3D left ventricle during
cardiac cycles from end diastolic to end systolic, and then,
back to end diastolic cycle. For this study, we use five cases
for each category: heart failure with infarction, heart failure
without infarction, left ventricle (LV) hypertrophy, and
healthy. Meshes with 5000 vertices are generated. 10 non-
zero eigenvalues and the corresponding eigenvectors are
used for alignment. We map the surface for the end diastolic
(first time point) to all other 19 time points. Then, the mean
averages of the displacements for all the nodes are

TABLE 1
Comparison among our Method, Shi et al.’s Method

and Non-Rigid ICP Method

Capabilities Our
Method

Shi et al.’s
Method

Non-rigid
ICP

No Rigid Registration @ @
Local Deformation @ @ @
Average Accuracy: A 91.4% 85.8% 75.6%
Computation < 120s > 20m > 60s

Fig. 7. (a) shows the baseline hippocampus and (b) shows the hippocampus for the same subject after one year. (c) presents the result of mapping
the baseline hippocampus to the one after one year. (d) presents the 6th eigenvector before and after mapping. Column A shows the eigenvector
before alignment and column B shows the eigenvector after alignment. Column C shows the 6th eigenvector for the target surface.

TABLE 2
The Result of Aligning Eigenvalues from the Baseline

Hippocampus to One After One Year (Target) Using the
Same Case as in Fig. 7

Manifold �i=�1; i 2 ½2; 10�
Baseline 3.40, 7.39, 10.66, 15.36, 17.04, 21.50, 23.13, 24.94, 29.77
Target 4.17, 8.65, 11.42, 16.23, 18.97, 23.18, 26.19, 30.53, 32.38
Aligned 4.17, 8.65, 11.42, 16.23 , 18.96, 23.17, 26.19, 30.49, 32.39
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calculated and used to generate a plot of surface displace-
ment for 19 different time points. Fig. 8a shows the result of
mapping these surfaces using our method and the mean
average plot for a sample case. The first shape close to the
origin of the axes is the diastolic shape and the rest of the
shapes are the target ones. As can be seen, the results follow
the heart beating pattern. Fig. 8b shows the overlay of the
first time point surface (cyan) to the 7th one (yellow) which
has the most mean displacement according to the average
plot. The results of mapping these two surfaces are also pre-
sented in this figure by using arrows, which connect the cor-
responding points and show the point-to-point deformation
mapping. One can see that our method can detect the con-
traction and the tangential turning deformation of the heart.

This method can be used in different applications in car-
diac study. The first application is longitudinal study of a
subject. In this study, the 3D images of the subject are gener-
ated for more than one heart beating full cycles. Using these
models, the deformation plot for mean average of displace-
ment can be generated. Physicians usually look at more
than one cycles to exam the abnormality of the heart. By
using our method, the abnormality can be detected via the
mean average plot and then using the point-to-point defor-
mation mapping to find out the specific abnormal time
points. Therefore, the abnormal area of the ventricle may be
detected. Fig. 9a shows three heart beating cycles and the
one time point which is marked by a red circle in the 2nd
cycle showing abnormality according to its location. As can
be seen, the abnormality can be detected using our method.

We detect this abnormality by creating a bump (Fig. 9c) on a
heart surface (Fig. 9b). Then, our method can generate the
displacement color map and the abnormal region can be
also located (Fig. 9d).

The second application is the cross-subject analysis
through temporal alignment. The same time point of a heart
beat cycle for two different subjects can be identified. For
instance, in one subject, the largest heart contraction may
happen at the 7th time point, but in another subject, the
largest heart contraction may be detected in 8th time point.
Using our method, different time points in different subjects
can be aligned according to the heart beating cycle through
temporal alignment. Fig. 10 shows this procedure. Using

Fig. 8. (a) The result of mapping the first time point shape to all other
shapes and then computing the mean average of the distance. The yel-
low surface is the left ventricle in diastolic state. The other shapes shows
the contracted left ventricle toward systolic state overlaid on the yellow
surface. (b) The result of mapping the first time point surface (cyan) to
the 7th one (yellow) which has the most deformation according to the
plot in (a).

Fig. 9. The longitudinal study for a subject using our method. By studying
more than one cycle, the abnormal beat can be detected using our
method and the abnormal area of the left ventricle can be identified. (a)
shows 3 heart beat cycles and the abnormal time point is marked by a
red circle. We create this abnormality by creating a bump on a heart
surface. (b) shows the original heart. (c) shows the deformed surface.
The deformed area is marked by a red circle. (d) shows the displace-
ment color map generated by our method to detect the abnormal region.

Fig. 10. The blue and green curves show the mean average mappings
for two different cases. The black dashed curve shows the blue curve
after alignment.

3336 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Wayne State University. Downloaded on March 26,2022 at 20:54:17 UTC from IEEE Xplore.  Restrictions apply. 



this alignment, we can align different healthy cases and
then use the aligned mean average mapping to generate a
standard mean average mapping. This mapping can be
used to compare with normal and patient cases in order to
categorize the abnormal cases from the normal ones by
using the difference indicator between this mapping and a
target one. In Fig. 11, the red plot shows the standard mean
average plot generated by calculating the average of mean
average mappings from temporally aligned five healthy
cases. Fig. 11a shows a healthy case in a blue curve, as com-
pared with the standard mean average mapping. Fig. 11b
shows a diseased case in a green curve when temporally
aligned to the standard mean average mapping and Fig. 11c
shows a LV hypertrophy case in a black curve. Yellow area
shows the difference between two curves. As can be seen,
the difference area in healthy case is much less than that in
the patient cases. Using difference area, one can accurately

categorize healthy cases from patient cases. Figs. 11d, 11e,
and 11f show the displacement mapping of the left ventricle
from the diastolic to systolic state for normal, diseased,
and hypertrophy cases showed in Figs. 11a, 11b, and 11c,
respectively.

4.3 Application on Hand Data

In order to demonstrate that our method can be used on non-
medical applications as well, we use data of different hand
gestures and create 3000 uniform vertices on the surfaces.
Figs. 12a, 12b, and 12c show different gestures of the hand.
We employ the shape in Fig. 12a as the original surface and
then align it to the shapes in Figs. 12b, and 12c. Figs. 12d
and 12e show the results of this alignment using ourmethod.
The original and target surfaces are overlaid and the point-
to-point alignment is shown using the arrows that connect
the corresponding points. As can be seen, different parts of

Fig. 11. The result of comparing the mean average of five temporally aligned healthy cases, to a healthy and two patient cases. In all plots, the red
curves show the average plot generated by calculating the average of five aligned healthy cases’ mean average mappings. (a) The blue curve shows
a healthy case. (b) The green curve shows a diseased heart case. (c) The black curve shows a hypertrophy case. One can use the difference
between two curves (yellow area) to accurately distinguish the healthy from patient cases. (d), (e), and (f) show the displacement mapping of the left
ventricle from the diastolic to systolic state for normal, diseased, and hypertrophy cases showed in (a), (b), and (c), respectively.

Fig. 12. The results of aligning different hand gestures. (a) shows the original surface. (b), and (c) show the target surfaces. (d) and (e) show
the results of aligning original surface to the surfaces demonstrated in (b) and (c) respectively. The results show that our method can detect the
point-to-point correspondence between two surfaces correctly.
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the hand are aligned correctly and our method can detect the
point-to-point correspondence accurately.

5 CONCLUSION AND DISCUSSION

In this paper, we have introduced a new method based on
shape spectrum to find the point-to-point correspondence
between two surfaces undergoing global and local deforma-
tions. We employ both eigenvalues and eigenvectors of the
surfaces in the alignment. Our method can localize the non-
isometric deformation of the surface and find the displace-
ment mapping for all the vertices. Because we use certain
feature points instead of all the vertices to align the eigenvec-
tors, our method is considerably more efficient than existing
methods. We have applied our method to both synthetic and
real data, and the results confirm the advantage and accuracy
of our method. We have also compared our method with
non-rigid ICPmethod and a similar spectrum-basedmethod.
The results show that our method has the best accuracy. In
terms of computational time, our method is considerably
faster than previous spectrum-basedmethod and similar per-
formance as non-rigid ICPmethod.

Note that, for searching for proper eigenvectors, in
addition to sign ambiguity, there are some cases that the
order of the eigenvectors switches. In addition, by using
large number of eigenvectors, numerically it is possible for
near multiplicities of eigenvectors to cause the eigen-spaces
to split in different directions [22]. In such cases, the eigen-
vectors matching becomes difficult. In our algorithm, we
mainly focus on resolving the sign ambiguities. The order
switching of eigenvectors and detection of high dimensional
multiple eigenvectors will be our future research work.
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