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Abstract—One of the fundamental goals of computational neu-
roscience is the study of anatomical features that reflect the func-
tional organization of the brain. The study of physical associations
between neuronal structures and the examination of brain activity
in vivo have given rise to the concept of anatomical and functional
connectivity, which has been invaluable for our understanding of
brain mechanisms and their plasticity during development. How-
ever, at present, there is no robust and accurate computational
framework for the quantitative assessment of cortical connectivity
patterns. In this paper, we present a quantitative analysis and mod-
eling tool that is able to characterize anatomical connectivity pat-
terns based on a newly developed coclustering algorithm, termed
the business model-based coclustering algorithm (BCA). We apply
BCA to diffusion tensor imaging (DTI) data in order to provide
an automated and reproducible assessment of the connectivity pat-
terns between different cortical areas in human brains. BCA not
only partitions the cortical mantel into well-defined clusters, but
also maximizes the connectivity strength between these clusters.
Moreover, BCA is computationally robust and allows both outlier
detection as well as parameter-independent determination of the
number of clusters. Our coclustering results have showed good per-
formance of BCA in identifying major white matter fiber bundles in
human brains and facilitate the detection of abnormal connectivity
patterns in patients suffering from various neurological diseases.

Index Terms—Coclustering, corticocortical connectivity, DTI,
fiber tracking.

I. INTRODUCTION

W ITH ever-improving imaging technologies, the com-
plexity and scale of brain imaging data have continued

to grow at an explosive pace. Recent advances in imaging tech-
nologies, particularly in diffusion tensor imaging (DTI), have
allowed us to have an increased understanding of both nor-
mal and abnormal brain structures and functions [1]. It is well
understood that normal brain functions are dependent on the
interactions between those that are linked through a complex
neural network and specialized functional areas of the brain that
process information within local and global networks.
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Fig. 1. Cerebral cortex sends and receives connections from various subcorti-
cal structures. (a) Reciprocal connections between cerebral cortex and thalamus,
called thalamocortical connectivity; (b) reciprocal connections between differ-
ent cortical areas, called corticocortical connectivity.

Although the cerebral cortex sends and receives connec-
tions from various subcortical structures, such as thalamus [see
Fig. 1(a)], the largest part of the connections arriving at the cere-
bral cortex comes from the cerebral cortex itself [see Fig. 1(b)].
One of the most promising approaches to identify distinct func-
tional areas within the cerebral cortex originates from the no-
tion that functionally discrete areas of the cortical mantel can be
delineated based on their corticocortical connectivity patterns.
Therefore, assessing such connectivity patterns of corticocorti-
cal fiber tracts is crucial for our understanding of the mecha-
nisms involved in brain function and may provide clues toward
the identification and characterization of many neurological
diseases.

DTI is a noninvasive magnetic-resonance-imaging-based
technique which allows the in vivo measurement of local water
diffusion in brain tissues. Most of the intra- and extracellular
fluid present in the human body diffuses in the direction along
fibrous tissue structures, such as brain white matter. For each
voxel, a diffusion tensor can be obtained, characterizing the
preferred water diffusion direction. Therefore, DTI gives us the
local diffusion profile of the brain and allows the assessment of
fiber connectivity patterns within the brain.

Although DTI has been extensively applied to display both
major and minor fiber tracts in human brains, a systematic
framework allowing reproducible delineation of even major
fiber tracts is still elusive. The objective of our research is to
devise such a scheme that can facilitate the segmentation of
distinct functional territories within the cortex based on quanti-
tative assessment of fiber tract connectivity. Such a basic scheme
is illustrated in Fig. 2: most cortical voxels in one region of the
cortex are strongly connected to a specific remote cortical re-
gion with the connection to any other anatomical territory being
much weaker. For example, most of the voxels in cortical region
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Fig. 2. Our proposed coclustering model.

C2 are connected to voxels in cortical region C1 , with only few
connections to other cortical regions.

Traditional clustering algorithms [2]–[8] are not applicable
since they do not account for connectivity and anatomical con-
straints; as a result, they will fail to identify accurately the cor-
responding corticocortical connectivity patterns. Consequently,
in order to perform an automated connectivity analysis, there
is a pressing need to further develop an advanced partitioning
scheme that simultaneously partitions voxels into groups, and
at the same time, identifies the strongest pairwise connectivity
among various groups.

The main contributions of this paper are:
1) we are the first to propose a new coclustering model, which

formulates corticocortical connectivity analysis as a com-
putational problem;

2) based on the coclustering model, we propose a business-
model-based coclustering algorithm (BCA) to identify
functional cortical areas based on the locations of termi-
nal points of corticocortical fiber bundles and anatomical
constraints. In contrast to traditional clustering paradigms,
BCA is not only able to partition image voxels within the
cortical mantel into well-defined clusters, but also is able
to maximize the connectivity strength between such clus-
ters. Moreover, BCA is able to automatically identify out-
liers as well as the number of cortical clusters with high
efficiency;

3) The application of BCA to human DTI datasets enables
automated, reproducible, and cross-subject assessment of
the connectivity patterns of major fiber tracts in human
brains.

This paper extends our previous method [9] with a more
comprehensive study and improvement: first, while our pre-
vious work only proposed the coclustering algorithm for in-
dividual brain analysis, this paper extends it to cross-subject
analysis of brain fiber tracts, resulting in a totally new section,
Section V; second, the original coclustering algorithm requires
the user to manually specify input parameters for the analysis of
each individual brain; in this paper, we have proposed a strategy
to automatically decide these parameters, thus automating the
parameter-setting step. The transfer operator is also improved to
enhance its performance and effectiveness by introducing addi-
tional transfer conditions; third, details about image acquisition,
data preprocessing procedures, cross-subject experiments, and

statistical evaluation for control groups, patient groups, and their
intergroups are reported in order to further evaluate our coclus-
tering algorithm and its application to the clinical research.

The rest of the paper is organized as follows: Section III
formalizes the coclustering model for the corticocortical fiber
tract analysis. Section IV proposes our coclustering algorithm,
BCA, in order to assess fiber tract connectivity between remote
cortical areas. Section V presents image data acquisition, DTI
fiber tracking for visualizing coclustering results, experiments
and evaluation of results on control groups, as well as the appli-
cation of our framework to clinical research. Finally, Section VI
concludes the paper and comments on future work.

II. BACKGROUND AND RELATED WORK

Although the cerebral cortex sends and receives connections
from various subcortical structures, the largest part of the con-
nections arriving at the cerebral cortex comes from the cerebral
cortex itself. Therefore, assessing connectivity patterns of cor-
ticocortical fiber tracts is crucial for our understanding of the
mechanisms involved in brain function and may provide clues
toward the identification and characterization of many neuro-
logical diseases.

Recently, tractography based on DTI has been shown to pro-
duce results that are consistent with known pathways formed
by major white matter fiber tracts in human brains [10], [11].
As the characteristics of in vivo water diffusion depend upon
the microscopic tissue architecture [12], changes in the diffu-
sion characteristics serve as markers of change in the tissue
microarchitecture. Assuming that water molecules diffuse in a
homogeneous medium, diffusion measurements in each image
voxel are fitted with a 3 × 3 second-order tensor model to char-
acterize the self-diffusion of water molecules. This diffusion
tensor represents an ellipsoid in space which is mathematically
described by the direction and length of its main axes. Deter-
ministic fiber tracking is then incorporated by starting from a
seed voxel and then following the direction of the longest (or
primary) eigenvector until a termination criterion (such as the
decrease of fractional anisotropy below a threshold value) is
satisfied [13]. This allows the creation of distinct connections
between a set of starting and ending points, which are shown
to correspond to known fiber tracts in human brains. Moreover,
this connectivity can be quantified by relating the number of
fibers originating from the set of seed points to the number of
fibers which terminate in the set of ending points. We hypoth-
esize that the connectivity strength can provide clues about the
functional performance of a network and can also be used to
delineate distinct functional areas within the cortex.

Most clustering algorithms can serve the obvious goal of
white matter segmentation. These techniques employed tradi-
tional clustering methods such as agglomerative or divisive clus-
tering, in which pairwise similarity measures between individ-
ual trajectories are identified for the clustering criteria. These
measures can be in the native space of the DTI or some low-
dimensional feature space thus reducing computational time.
One of the earliest works proposed by Ding et al. [14] classi-
fied the fiber bundles into “K-most-similar” fiber bundles using
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an algorithm similar to K-means [2]. The mean of Euclidean
distance measure tracks the similarity between fiber tracts. The
seed region of interest (ROI) is chosen on a 2-D slice, thus
limiting the algorithm to work with certain structures of in-
terest. Zhang and Laidlaw [15] proposed a nine-valued vector
similarity identifying the centroid of the starting points, middle
points, and ending points of a tract for hierarchical clustering.
Maddah et al. [16] introduced an atlas-based clustering tech-
nique for effective delineation of fiber tracts. A reference brain
is identified and landmarked into various hand-drawn regions
depending on functional areas identified by underlying tracts.
Spatial information is captured for each fiber path trajectory by
fitting a B-Spline representation which can be compared to its
corresponding location on the atlas using the spatial and geo-
metric properties and labeled accordingly. Spectral clustering
techniques [17], [18] find a local affinity matrix created from a
set of eigenvectors that can be used to cluster the fiber traces.
O’Donnell and Westin [17] employed the Nystrom method to
interpolate the values of an eigenvector system identifying the
embedding vectors from a tract-similarity matrix. The embed-
ding vectors are then clustered using any clustering method.
Jonasson et al. [18] used high angular resolution diffusion imag-
ing (HARDI) data to create a co-occurrence matrix that lists the
number of times two fibers share the same voxel. Because of
the high orientational resolution of HARDI, the matrix creation
is trivial though data acquisition is impractical when compared
to DTI. A similar technique using a weighted undirected graph
instead of a data matrix is presented by Brun et al. [19]. The tech-
nique uses normalized cuts [20] to partition a graph into clusters.
Clustering based on local shape models and probabilistic models
were explored by some authors that described a spatial model
based on intrinsic shape properties [21] and a posterior distribu-
tion model [22] based on length, similarity angle, and continuity
angle between candidate tracts and reference tracts.

Traditional partitioning-based clustering algorithms, such as
K-means and K-medoids [3] are simple and efficient. However,
their final results may be overly sensitive to initialization and
the presence of outliers. In addition, these methods require the
knowledge of K, which might not be possible for many applica-
tions. Hierarchical clustering algorithms [4], [5] do not require
the number of clusters K as input, but they require a termina-
tion condition and do not support re-classification of objects to
new clusters. Density-based algorithms [6]–[8] have good per-
formance with respect to noise handling and do not require the
specification of K. However, they do not consider the maxi-
mal connectivity strength condition between clusters. Spectral
clustering algorithms [17], [18] can efficiently partition objects
into clusters, but have similar limitations of not considering
the cross-connectivity between clusters, and the need of man-
ual specification of the number of clusters and other parameter
values for each individual dataset.

Despite some success in clustering and delineating functional
cortical areas using DTI, a systematic framework which allows
functional parcellation of the neocortex into distinct functional
units based on quantitative assessment of fiber tract connectivity
has not yet been produced, and the relationship among func-
tional territories, fiber tracts, and neuronal connections remains

controversial. Most aforementioned work can only handle few
structures of interest and are computationally expensive. Also,
the dispersion effect of the fibers near the cortical regions can
seriously affect similarity measures based on distance, hence
reducing the clustering accuracy. Therefore, there is a pressing
need to further develop advanced clustering algorithms that al-
low better characterization of brain connectivity patterns, and
as a result, improve our understanding of process interactions in
a complex biological system. Since our proposed BCA makes
clustering decisions using both the cortical ending points and the
connectivity traces, it can handle the dispersion effect as well
as proximity of the fiber traces deep within the white matter
structures.

It is important to note the major differences between this work
on corticocortical connectivity analysis and previous work on
thalamocortical connectivity analysis [23]. First, the thalamo-
cortical problem requires two predefined classes for cocluster-
ing, the class of cortical voxels and the class of thalamic voxels,
while the corticocortical problem does not have such an anatom-
ical constraint to exploit, resulting in a much larger exploration
space and a dramatic increase in computational complexity. Sec-
ond, the cross-connectivity cost in thalamocortical connectivity
is only determined by the connectivity across objects in differ-
ent classes, while the cost in corticocortical connectivity has to
consider connections between all objects. Third, the thalamo-
cortical problem requires the number of clusters for each class
of objects; while there are no such clues to predefine the num-
ber of clusters for objects in the corticocortical problem. As a
result, the previous GCA algorithm [23] is inapplicable to the
corticocortical problem. Since GCA and BCA address two fun-
damentally different problems and one algorithm will not work
for the other problem, these two algorithms are incomparable
by experiments.

III. COCLUSTERING MODEL

In this section, we present our coclustering model, which
models the corticocortical connectivity analysis problem. In this
model, the structure of the cortex and corticocortical connec-
tions are represented as a graph G = (V, F ) (see Fig. 2), where
V is the set of cortical voxels and F represents all the pairwise
corticocortical connections. For each voxel v ∈ V , we use F (v)
to denote the other voxel that is connected to v. Although not
required by our model, the working hypothesis is that “each
cortical region is strongly connected to another specific cortical
region and is weakly connected to other cortical regions.” The
goal of a coclustering procedure is to group cortical voxels into
K clusters (where K will be determined automatically) while
minimizing the cross-connectivity cost between those clusters,
so that: 1) close voxels are within the same cluster, while distant
voxels are in different clusters; 2) each cluster is strongly con-
nected to another cluster, called its spouse cluster; and (3) the
total cross-connectivity cost between each cluster and its any
other nonspouse cluster is minimized.

To achieve the aforementioned goals, we introduce the no-
tions of spouse cluster and partner cluster and develop a model
that aims to minimize the cross-connectivity cost between
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clusters by requiring that for each cluster, its spouse cluster
should mostly coincide with its partner cluster. We firstl define
the notion of association strength of cluster Cj with respect to
cluster Ci .

Definition 3.1 [Association Strength θ(Ci, Cj )]: Given a par-
tition C = {C1 , . . . , CK } of G(V, F ), the association strength
of Cj w.r.t. Ci is defined as

θ(Ci, Cj ) =
Nij

|Ci |
(1)

where Nij denotes the total number of connections between Ci

and Cj and |Ci | is the total number of voxels in Ci .
The spouse cluster of Ci is the cluster that has the maxi-

mum association strength w.r.t. Ci , which is defined formally as
follows.

Definition 3.2 (Spouse Cluster): Given a partition C =
{C1 , C2 , . . . , CK } of G(V, F ), the spouse cluster of a cluster
Ci is defined as

SC(Ci) = {Ck |Ck ∈ C and ∀Cj ∈C , θ(Ci, Ck ) ≥ θ(Ci, Cj )}.
(2)

In the case that multiple clusters have the same maximum
association strengths w.r.t. Ci , our model will nondeterministi-
cally select one of them as the spouse cluster of Ci . A cluster
and its spouse cluster forms a cocluster.

Definition 3.3 (Cocluster): Given a partition C of G(V, F ),
C = {C1 , C2 , . . . , CK }, 〈Ci, Cj 〉 is called a cocluster if Cj is
the spouse cluster of Ci .

Example 3.4: In Fig. 2, C2 is C1’s spouse cluster and C1 is
C7’s spouse cluster. As a result, 〈C1 , C2〉 and 〈C7 , C1〉 form two
coclusters. Note that the notion of cocluster is nonsymmetric,
i.e., 〈Ci, Cj 〉 is a cocluster does not imply 〈Cj , Ci〉 is a cocluster.
In our example, 〈C1 , C7〉 is not a cocluster although 〈C7 , C1〉
is a cocluster.

We define the partner cluster of a cluster Ci as the cluster
consisting of all the voxels that are connected to voxels in Ci .

Definition 3.5 (PC): Given a partition C = {C1 , C2 , . . . , CK }
of G(V, F ), the partner cluster for a cluster Ci ∈ C is defined
as

PC(Ci) = {v′|v′ ∈ V and ∃v ∈ Ci, (v′, v) ∈ F}. (3)

Obviously, PC(Ci) has the largest connection strength to Ci

(θ(Ci,PC(Ci)) = 1). In an ideal case, if all partner clusters
and spouse clusters coincide exactly as shown in Fig. 3(a), then
the overall association strength is maximized as the association
strength between each cluster and its spouse cluster (which is
also its partner cluster) is maximized. However, this is not the
case in general, as shown in Fig. 3(b). Therefore, maximizing
the overall association strength can be reduced to maximiz-
ing the coincidence between each cluster’s spouse cluster and
partner cluster. Below, we quantify the deviation of a cluster’s
partner cluster from its spouse cluster by partner within-cluster
variation PWCV. In this way, we can further reduce the problem
of maximizing the overall association strength to minimizing the
total PWCV (TPWCV).

Fig. 3. Partner clusters in (a) an ideal case and (b) general case. (a) SC(C1 ) =
PC(C1 ). (b) SC(C1 ) �= PC(C1 ).

In order to calculate PWCV, we first define the centroid of a
cluster and its WCV to quantify the similarity of objects within
one cluster.

Definition 3.6 (Centroid): Given a partition C = {C1 ,
C2 , . . . , CK } of G(V, F ), the centroid of cluster Ci is defined
as

−→µi =

∑
−→
Xn∈Ci

−→
Xn

|Ci |
. (4)

Definition 3.7 (WCV): Given a partition C = {C1 ,
C2 , . . . , CK } of G(V, F ), the WCV of cluster Ci is defined
as

WCV(Ci) =
∑

−→
Xn∈Ci

d(−→Xn,−→µi ) (5)

where d(−→Xn,−→µi ) is the Euclidean distance between the voxel−→
Xn and the centroid −→µi of cluster Ci .

Definition 3.8 (PWCV): Given a partition C = {C1 ,
C2 , . . . , CK } of G(V, F ), the PWCV of a partner cluster
PC(Ci) is defined as

PWCV(PC(Ci)) =
∑

−→
Xn∈P C (Ci )

d(−→Xn,−→νi ) (6)

where νi is the centroid of SC(Ci).
Note that, instead of using the centroid of the partner clus-

ter, the centroid of the corresponding spouse cluster is used to
calculate PWCV(PC(Ci)). The intuition is that, in an ideal par-
titioning, the partition {PC(C1), . . . ,PC(CK )} should mostly
coincide with {SC(C1), . . . ,SC(CK )}.

Then, we define the TWCV and TPWCV to quantify the
overall quality of a partitioning.

Definition 3.9 (TWCV): Given a partition C = {C1 ,
C2 , . . . , CK } of G(V, F ), the TWCV of C is defined as

TWCV(C) =
K∑

i=1

WCV(Ci)

=
K∑

i=1

∑

−→
Xn∈Ci

D∑

d=1

(Xnd
− µid

)2

=
K∑

i=1

D∑

d=1

X2
nd

−
K∑

i=1

1
|Ci |

D∑

d=1

(SCFid
)2 (7)

where SCFid
is the sum of the ith feature of all voxels in Ci .
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Fig. 4. Compare coclustering results with traditional clustering results in
the aforesaid four cases. (a) Coincide case. (b) Split case. (c) Transfer case.
(d) Merge case.

Definition 3.10 (TPWCV): Given a partition C = {C1 ,
C2 , . . . , CK } of G(V, F ), the TPWCV of a partition
{C1 , . . . , CK } is defined as

TPWCV(PC(C1), . . . ,PC(CK ))

=
K∑

i=1

PWCV(PC(Ci))

=
K∑

i=1

∑

−→
Xn∈P C (Ci )

D∑

d=1

(Xnd
− νid

)2 . (8)

Finally, the coclustering problem can be formally stated as
follows: given a graph G = (V, F ), a distance metric d for
nodes between vi ∈ V and vj ∈ V (i �= j), and α as a weight
value, partition G into K coclusters, {〈C1 ,SC(C1)〉, . . . ,
〈CK ,SC(CK )〉} such that the following objective function
OWCV is minimized

OWCV(C) =α × TWCV(C)

+ (1 − α) × TPWCV(PC(C1), . . . ,PC(CK )).

(9)

Note that our objective function does not include a component
that directly maximizes the overall association strength. This is
so because the association strength and TWCVs have different
units and their direct aggregation is problematic. However, by
minimizing TPWCV, which is a component of the objective
function, the overall deviation of partner clusters from spouse
clusters is minimized, and thus, the overall association strength
is maximized. In particular, when all partner clusters coincide
exactly with spouse clusters, the overall association strength
reaches its maximum.

While a traditional clustering paradigm [2], [3] does not con-
sider the connection patterns between clusters, our coclustering
model considers both the distances and connections between
voxels. As a result, our coclustering model can provide sev-
eral salient advantages over traditional clustering in partitioning
graphs in general and in corticocortical connectivity analysis in
particular. Fig. 4 illustrates the comparison between the parti-
tioning results from our coclustering model and from the tradi-
tional clustering paradigm. In Fig. 4(a), the coclustering result
from our model (right) coincides with the traditional clustering
results (left), in which objects are grouped into four clusters from

C1 to C4 , and similar objects are in one cluster, while dissimilar
objects are in different clusters. In this coclustering partition,
each cluster is strongly connected to its spouse cluster and each
partner cluster coincides with the corresponding spouse cluster.
In Fig. 4(b), while a traditional clustering procedure that only
considers TWCV groups C2 and C4 into one cluster (left), our
clustering model can potentially split that cluster into C2 and
C4 by considering that most voxels in C2 are connected to C1
and most voxels in C4 are connected to C3 (right). In Fig. 4(c),
while a traditional clustering procedure might consider v1 and
v2 as outliers, or classify them to C4 simply because they are
closer to C4 (left), our coclustering model can potentially reas-
sign them into C3 by observing that these two voxels, like other
voxels in C3 , are mainly connected to C1 (right). Finally, in
Fig. 4(d), while a traditional clustering procedure partitions two
clusters C3 and C4 as they fall apart to some degree in distances
(left), our coclustering model can potentially merge them into
one cluster C3 by observing that all voxels in C1 and C2 are
connected to C3 (right).

The proposed coclustering model is different from the model
[23] for thalamocortical connectivity in the following aspects:
1) a cluster and its spouse cluster are all from cortical voxels,
while previously one has to come from cortical voxels and the
other from thalamic voxels; 2) we introduce the concept of
association strength to quantify each cluster’s spouse cluster;
and 3) the new concepts PC, PWCV, and TPWCV are introduced
to determine the cross-connectivity costs between clusters and
there is no constraint on the number of clusters, as well as the
class that a cluster belongs to.

IV. THE BCA COCLUSTERING ALGORITHM

In this section, we propose the BCA to solve the cocluster-
ing problem. The BCA starts with a density-based initialization,
which generates an initial number of cortical clusters. Then, it
produces a better solution from the current solution by apply-
ing the following three operators, viz. split, transfer, and merge
sequentially. This procedure is iterated until a certain termi-
nating condition is reached, e.g., after certain number of iter-
ations or when the improvement between consective iterations
is within some user-specified threshold. In the following, we
describe the initialization, split, transfer, and merge operators in
detail.

A. Density-Based Initialization

Our density-based initialization is based on the idea of
DBSCAN [24], in which clusters are identified by a density-
based spational clustering algorithm that uses two global density
parameters: ε, the maximum radius of a voxel, and δ, the min-
imum number of voxels in an ε-neighbor of a voxel v, denoted
Nε(v), for the voxel to be a core voxel. A voxel v′ is directly
density-reachable from a voxel v w.r.t. ε, δ if v′ ∈ Nε(v). A
voxel v′ is density-reachable from a voxel v w.r.t. ε, δ if there is
a chain of voxels v1 = v, . . . , vn = v′ such that vi+1 is directly
density-reachable from vi . A voxel v′ is density-connected to v
w.r.t. ε, δ if there exists a voxel v′′ such that both v and v′ are
density-reachable from v′′ w.r.t. ε and δ. A cluster Ck is formed
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Fig. 5. (a) Coclustering with various densities; (b) adaptive determination of
εC j

and threshold δC j
.

in DBSCAN by starting a core voxel v and adding all voxels
that are density-reachable from v or density-connected to v to
Ck .

While a density-based clustering initialization has the advan-
tage of being able to identify clusters of arbitrary shapes (as
cortical regions can be of different shapes), there are two major
issues we need to resolve: 1) different brains differ in their sizes
and the numbers of voxels; hence, applying the same values of ε
and δ to each brain will fail to identify some key corresponding
regions across brains; and 2) different cortical regions in a brain
have different densities; hence, applying the same values of ε
and δ to a whole brain fails to identify some sparse clusters.

To resolve the first issue, we have hypothesized that, although
each brain might differ in the total number of voxels, the propor-
tion of voxels that fall in each corresponding anatomical region
is the same. This hypothesis is formulated as

δ1

N1
=

δ2

N2
= · · · =

δN

NN
= Cδ (10)

where Np (p = 1, . . . , N) is the total number of voxels for brain
Bp , and Cδ is a brain-independent constant with an empirical
value of 0.00435 for the best results in our study. In this way,
δp can be calculated as Cδ × Np . To calculate εp , we apply
Chebyshev’s inequality [25]. Let vi be a random cortical voxel
in brain Bp , let µp and θ2

p be the mean and variance of all voxels’
shortest distances in Bp , respectively. We have

P{|vi − µp | < εp} ≥ 1 −
θ2

p

ε2
p

. (11)

In our study, we use εp = 5 × θp and get P{|vi − µp | < 5θp} ≥
0.96, which implies that vi has a probability of at least 96%
within the radius of five standard deviations around the mean.
One important property of Chebyshev’s inequality is that the
aforesaid equation holds regardless of the exact distribution of
a random variable, and only the knowledge of mean µp and
variance θ2

p is required.
To resolve the second issue, which arises due to the fact that

different cortical regions have different densities of voxels [see
Fig. 5(a)], instead of using the radius εp and threshold δp to ex-
pand all distance-reachable voxels from Nεp

(v) for all clusters
that have diverse densities, we apply εCi

and threshold δCi
to

locally determine the extension of each cluster. The assumption
is that each cortical region has a similar local density while dif-
ferent cortical regions can have dramatically different densities.
In order to dynamically and adaptively determine the local den-

sity parameter values for εCi
and δCi

for each working cluster
Ci , first, a core voxel v and its Nεp

(v) are identified as an initial
cluster Ci . Then, the value of εCi

= 5θCi
and δCi

= Cδ |Ci | are
calculated in a way similar to εp and δp , except that we use the
current voxels in Ci instead of the voxels of the whole brain.
For each voxel v′, its NεC i

(v′) is added to Ci . The procedure
is repeated until we reach NεC i

(v) ≤ δCi
. In Fig. 5(b), a new

cluster Ci is formed by εp and δp . Then, εCi
is used to expand

Ci within the radius of εCi
(blue circles), if the current number

of voxels NεC i
(v) is no less than δCi

, a new version of εCi

(purple circles) is recalculated. This procedure continues until
NεC i

(v) ≤ δCi
(green circle).

After the above procedure, some voxels might be still unclas-
sified due to the following reasons: 1) some voxels cannot form
a new cluster by εp and δp ; 2) some voxels cannot be assigned
to any cluster by an expansion based on εCi

and δCi
; or 3) some

voxels can be noises and are distant to all other voxels. We pro-
ceed with these voxels as follows. 1) For each voxel v, let v′ be
the closest voxel to v that has been classified to some cluster Ci .
If dist(v, v′) ≤ εp , then v is assigned to Ci as well. This step is
repeated until no more voxels can be classified using this step.
2) For those voxels which are still unclassified after step (2),
they are considered as outliers. All cocluster outliers are then
eliminated from graph G(V, F ), forming G(V ′, F ′).

B. The Split Operator

The goal of the split operator is to eliminate the situation that
a cluster hierarchically contains subclusters that have different
spouse clusters, as illustrated in Fig. 4(b), by an attempt to split
a cluster into two clusters when such a split will improve the
result of coclustering that is characterized by the following split
condition:

Definition 4.1 (Split Condition): Given a coclustering CC =
{〈C1 , SC(C1)〉, . . . , 〈Ci, SC(Ci)〉, . . . , 〈CK , SC(CK)〉}, let
Ci1 be the set of voxels in Ci ∈ CC that are connected to
{SC(Ci), Ci2 be Ci − Ci1 , and CC′ = {〈C1 ,SC(C1)〉, . . . ,
〈Ci1 ,SC(Ci1 )〉, 〈Ci2 ,SC(Ci2 )〉, . . . , 〈CK ,SC(CK )〉}, then we
say that Ci satisfies the split condition iff

1) |Ci1 | ≥ δCi 1
and |Ci2 | ≥ δCi 2

;
2) OWCV(CC′) ≤ OWCV(CC);
3) θ(Ci,SC(Ci)) ≤ θ(Ci2 ,SC(Ci2 )).
Intuitively, the split condition ensures that after a split, 1) the

number of voxels in each new cluster is still greater than or equal
to δi1 and δi2 ; 2) the OWCV value for the new coclustering will
not increase; and 3) the association strengths of the two new
clusters Ci1 and Ci2 will be no less than the association strength
of the original cluster Ci . This is always true for Ci1 , and thus,
we only need to require θ(Ci,SC(Ci)) ≤ (Ci2 ,SC(Ci2 )) in the
aforesaid definition of the split condition. Algorithm Split is
sketched in Fig. 6. Basically, it iteratively splits the coluster-
ing result until no more cluster satisfies the aforegiven split
condition.

C. The Transfer Operator

The transfer operator attempts to reassign certain voxels to
a new cluster, as illustrated in Fig. 4(c), in order to improve
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Fig. 6. Algorithm Split.

Fig. 7. Algorithm Transfer.

the result of coclustering that is characterized by the following
transfer condition:

Definition 4.2 (Transfer Condition): Given a coclustering
CC = {〈C1 , SC(C1)〉, . . . , 〈Ci, SC(Ci)〉, . . . , 〈Cj , SC(Cj )〉,
. . . , 〈CK ,SC(CK )〉}, let v ∈ Ci, F (v) �∈ SC(Ci), and Cj be
another cluster such that F (v) ∈ SC(Cj ). After transfer-
ring v from Ci to Cj , Ci becomes C ′

i , Cj becomes C ′
j ,

and CC becomes CC′ = {〈C1 ,SC(C1)〉, . . . , 〈C ′
i ,SC(C ′

i)〉,
. . . , 〈C ′

j ,SC(C ′
j )〉, . . . , 〈CK ,SC(CK )〉}, we say that v satisfies

the transfer condition iff
1) |C ′

i | ≥ δC ′
i
;

2) v ∈ Ci, F (v) �∈ SC}(Ci) and F (v) ∈ SC(Cj );
3) OWCV(CC′) ≤ OWCV(CC);
4) θ(Ci,SC(Ci)) ≤ θ(C ′

i ,SC(C ′
i)) and θ(Cj ,SC(Cj )) ≤

θ(C ′
j ,SC(C ′

j )).
Intuitively, the transfer condition ensures that after a transfer,

1) Ci still contains at least δp voxels; 2) we transfer v from Ci to
Cj only if the connectivity involving v is a cross-connectivity,
i.e., v does not connect to the spouse cluser of Ci but connects
to the spouse cluster of Cj ; 3) the OWCV value for the new
coclustering will not increase; and 4) the association strengths
of the two affected clusters will not decrease. Algorithm Transfer
is sketched in Fig. 7. Basically, it attempts to assign voxels to a
new cluster if it satisfies the transfer condition. The procedure
terminates when no more voxel satisfies the aforementioned
transfer condition.

D. The Merge Operator

Finally, the merge operator attempts to merge two clusters,
illustrated in Fig. 4(d), if such a merge will improve the result
of coclustering that is characterized by the following merge
condition:

Fig. 8. Algorithm Merge.

Definition 4.3 (Merge condition): Given a coclustering
CC = {〈C1 , SC(C1)〉, . . . , 〈Ci, SC(Ci)〉, . . . , 〈Cj , SC(Cj )〉,
. . . , 〈CK ,SC(CK )〉}, and two clusters Ci, Cj ∈ CO, we
merge Ci and Cj into Cm and derive a new co-
clustering CC′ = {〈C1 ,SC(C1)〉, . . . , 〈Cm ,SC(Cm )〉, . . . ,
〈CK−1 ,SC(CK−1)〉}. Then, we say that Ci and Cj satisfy the
merge condition iff

1) OWCV(CC′) ≤ OWCV(CC);
4) θ(SC(Ci), Cm ) ≤ θ(SC(Cm ), Ci) and θ(SC(Cj ), Cm )

≤ θ(SC(Cm ), Cj ).
Intuitively, the merge condition ensures that after a merge,

1) the OWCV value for the new coclustering will not increase
and 2) the association strength of SC(Ci) (SC of Ci) and SC(Cj )
(SC of Cj ) are not reduced, with their new spouse cluster Cm .
The Algorithm Merge is sketched in Fig. 7. Basically, it merges
two clusters into one if the two clusters satisfy the aforemen-
tioned merge condition. The algorithm terminates when no more
pair of clusters satisfy the aforementioned merge condition.

V. IMAGE PROCESSING AND EXPERIMENTS

To facilitate the cross-subject fiber tract analysis, we develop
a comprehensive framework that includes three major software
modules: 1) a fiber tracking module that is responsible for DTI
preprocessing; 2) a coclustering processing module that imple-
ments the proposed BCA and automatically produces coclus-
tering results and analytical results for each brain; 3) and a
visualization and analysis module to visualize coclusters and
conduct statistical analysis for control groups, patient groups,
and their intergroups based on the postprocessed coclustering
results. Modules 1) and 3) are developed in Visual C++ on the
Windows platform, and module 2) is developed using C#. The
visualization routines are referenced from the VTK library. A
Pentium Core Duo processor with 2 GB RAM and an Nvidia
8600GT graphics card is used for all computations. The total
time taken for processing a single dataset is around 20 minutes
including human intervention.

This section details data acquisition and DTI fiber tracking
for visualizing coclustering results, experiments and evaluation
of the BCA coclustering results on normal subjects (controls),
as well as the application of our framework to the diagnosis of
Tourette syndrome (TS) patients.

A. Image Data Acquisition

MRI studies were performed on a GE 1.5T Signa unit (GE
Medical Systems, Milwaukee, Wisconsin). Volumetric imaging
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Fig. 9. (a) and (b) Nondiffusion-weighted image (T-1 image) and the
six gradient-weighted images, respectively. (c)–(e) Various diffusion profiles
ranging from an isotropic profile (spherical) to a highly anisotropic profile
(cigar-shaped), with their corresponding eigendirections. e1 is the primary
eigendirection.

was performed utilizing a T1-weighted spoiled gradient echo
(SPGR) sequence. The 3-D SPGR technique generates 124
contiguous 1.5 mm sections of the entire head using a 35/5/1
(TR/TE/NEX) pulse sequence, flip angle of 35◦, matrix size
of 256 × 128, and FOV of 220 mm. Diffusion-weighted dual
spin-echo single-shot echoplanar MR imaging was performed
using the following parameters: 6000/110 (TR/TE), image ma-
trix 256× 256, FOV of 240 mm, 40 planes with a slice thickness
of 3 mm covering the whole brain. The DTI sequence consists
initially of an image volume with no diffusion weighting (b =
0 s/mm2) followed by the acquisition of image volumes in six
gradient directions ([1,0,1], [−1,0,1], [0,1,1], [0,−1,1], [1,1,0],
[1,−1,0]) with a b-value of 1000 s/mm2 . For each b-value and
gradient direction, six images were acquired and magnitude av-
eraging was used to avoid artifacts from subject motion.

B. DTI Computing

DTI [26] is a new technique that measures the diffusion of
water molecules in human brain tissue and allows the in vivo
assessment of local anisotropic water diffusion in human brains.
Once the diffusion tensor is determined at each voxel location,
the information can be used to create continuous fiber tracts by
following the direction of the strongest diffusion, also referred
to as the primary eigendirection [see Fig. 9(c)–(e)]. Such fiber
tracts are subsequently used to estimate reciprocal connectivity
between various subcortical structures. Moreover, quantitative
measures extracted from the diffusion tensor provide a mea-
surement of overall connectivity strength, and thus, may aid in
the clinical management of patients with various neurological
diseases.

In deterministic tractography, a single fiber model is assumed
at each image voxel characterized by a diffusion tensor D with
six independent elements. To obtain numerical values for the

Fig. 10. (a) Example of a deterministic fiber tract; (b) fiber tracts for an ROI
in the corpus callosum, with the deterministic tracking.

diffusion tensor, at least seven independent measurements are
required: six diffusion-weighted images [Fig. 9(a)] along six
independent diffusion sensitizing gradient directions x, and one
nondiffusion-weighted image [Fig. 9(b)]. An eigenvalue decom-
position of D results in an optimal rotation transformation from
the reference coordinate system to a new basis system along the
principal directions (eigenvectors e1, e2, and e3) of the diffu-
sion profile. The three eigenvalues λ1 , λ2 , and λ3 characterize
the length of the main axis of the constructed ellipsoid and pro-
vide an orientation-independent measure of anisotropy which
describes the structural geometry of the underlying microstruc-
ture. The fractional anisotropy (FA) in each image voxel is
subsequently defined as

Definition 5.1 [Fractional Anisotropy (FA)]: Given the eigen-
values λ1 , λ2 , and λ3 , the fractional anisotropy of a fiber tract is
defined as

FA(λ1 , λ2 , λ3) =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

√
2
√

λ2
1 + λ2

2 + λ2
3

.

(12)
A high FA indicates a strong directionality of water diffusion

in the underlying tissue, corresponding to an ellipsoidal diffu-
sion profile. A low FA value indicates low-directionality corre-
sponding to a spherical diffusion profile, as shown in Fig. 9(c).
Since FA provides a quantitative measure of the anisotropy, it
is used as a stopping criteria for fiber tracking in white matter.

Fig. 10(a) shows an illustrative example of the applied fiber
tracking algorithm. The arrows represent the primary eigendi-
rection e1 which corresponds to the strongest diffusion direc-
tion. Starting at the center of each voxel, the fiber is tracked
within the voxel along the primary eigendirection until it hits
the boundary between two voxels, after which the direction
changes to the primary eigendirection of the next voxel. The
fiber is tracked in both forward and backward directions and
is connected together to form one continuous fiber tract. The
procedure is repeated for all voxels within the brain volume. To
terminate a fiber tract, one of two conditions needs to be met:
either the voxel FA value falls below a predefined threshold or
the angle between two consecutive eigendirections exceeds a
predefined turning angle. The threshold value for FA is usually
chosen as 0.15 and the threshold for the turning angle is typically
chosen to be 70◦. This fiber tracking procedure allows optimal
tracking of prolate diffusion profiles, where λ1  λ2 and λ3 .
Empirical studies have shown that this tractography technique
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TABLE I
BCA EXPERIMENTAL RESULTS IN A POPULATION OF PATIENT DATASETS

allows reliable tracking of major fiber bundles in the human
brain [27]. For the purpose of our research, we were interested
in major corticocortical fiber bundles connecting different func-
tional cortical areas. As the pathways of these fiber bundles are
well known, they are well suited to assess the feasibility of the
proposed coclustering algorithm.

C. Experiments and Evaluation of Coclustering Results

Six normal subjects were chosen for our experiment. High-
resolution MR Tl-weighted images as well as DTI image vol-
umes were acquired for each subject and subsequently coregis-
tered using an in-house-developed registration program. More-
over, Tl-weighted MR images were deskulled and the exposed
cortical surface was then subdivided into 512 finite elements
using a recursive parcellation scheme. Based on a user-defined
depth parameter these finite elements were then extended into
the cortex creating a cortical mantel of 15 mm depth. The depth
parameter was chosen as 15 mm depth so that the border zone
between the cortical gray matter and the underlying white mat-
ter was included. Fiber tracking was initiated from each voxel of
the cortical mantel using the deterministic fiber tracking method
described in the previous Section V-B. Once fiber tracking was
completed, corticocortical fibers (fibers both originating and ter-
minating in the cortical mantel) and their corresponding starting
voxels were saved for subsequent coclustering. In order to ex-
clude short U-shaped fibers, those fibers in which the starting
and end voxel belonged to the same finite element were ex-
cluded. Moreover, to ensure optimal separation between various
coclusters, a minimal fiber length of 100 mm was selected.

1) BCA Experimental Results: We have implemented BCA
on a population of patient datasets, in which five cocluster-
ing results from patient PA to PE were chosen as shown in
Table I (their real names are hidden for privacy protection).
As DBSCAN is not directly applicable to produce coclustering
results, we implemented DBSCAN to initialize the clustering
results at the first and then generated coclustering results ac-
cording to definitions in Section III. The distinct improvement
of BCA from DBSCAN-based coclustering algorithm (DCA)
can be seen in Fig. 11(a): For patient PA , OWCV produced
by DCA is 20.8 times greater than OWCV by BCA; For pa-
tient PB , OWCV generated by BCA has achieved 90.87% de-
crease than its counterpart; Such improvement can also be seen
from patient PC to PE , the values of OWCV are reduced by
95.79%, 93.26%, and 95.62%, respectively. In addition, ε and
δ provided by our domain scientists for DCA are very close
to the parameters that are automatically generated by BCA, as
shown in Table I (PID : patient identifier; NV : the number of

Fig. 11. (a) Comparison of OWCV between BCA and DCA; (b) evaluation
of coclustering results at four phases.

cortical voxels for coclustering; OWCVDCA , εDCA and δDCA :
OWCV, ε and δ produced by DCA; εBCA and δBCA : ε and δ pro-
duced by BCA. OWCVInit , OWCVSplit , OWCVTransfer and
OWCVBCA : OWCV produced by Initialization, Split, Trans-
fer, and Merge operators). Overall, the experiments have shown
that our proposed BCA can not only systematically optimize
parameters for a population of data varied in size and density,
but also produce much better coclustering results than those of
DCA.

Fig. 11(b) shows the decrease of OWCV after perform-
ing each operator of BCA. For patient PA , OWCV reaches
9462832E + 4 at the initialization phase. It sharply goes down
to 5599247E + 4 after running the Split operator, which is a
40.83% decrease from the initialized value. Then, OWCV con-
tinuously drops to 5230424E + 04 after the transfer phase, a
6.59% decrease from the prior phase. Finally, OWCV value is
65.97% reduced after applying the merge operator. Fig. 11(b)
also shows OWCV at each phase for patient PB to PE and these
results demonstrate the similar trend of the optimization perfor-
mance as PA . The average decrease rate by Split, Transfer, and
Merge operator is around 47.79%, 1.12%, and 61.07%, respec-
tively. It is expected that the transfer operator produces much
smaller effects on OWCV than other operators, as only few vox-
els near the margin of clusters might need to be transferred to a
new cluster. The reducing effects on OWCV by performing the
split and merge operators are varied in datasets, but their stan-
dard derivation derived from the coclustering results are 0.076
and 0.119. It means that efforts of applying each operator remain
consistent to different datasets. The consistent trend in decreas-
ing OWCV across a population dataset also demonstrates that
the consistent coclustering patterns exist in the population of
human fiber tracts.

2) 3-D Visualization of the BCA Experimental Results:
Fig. 12(a) shows all cortical voxels before coclustering and
Fig. 12(b) shows the corticocortical fiber tracts following fiber
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Fig. 12. (a) Cortical voxels with each voxel associated with a cortical volume element; (b) Cortico-cortical fiber connections of at least 100 mm long with both
ending points being cortical voxels under depth of 15 mm; (c) All cortical voxels on a normal brain are visualized based on our coclustering results generated by
BCA, and the voxels in one cocluster are rendered by one color; (d) all fiber tracts of the brain are visualized (in a coronal view) based on the coclustering results.
No anatomical constraints are employed except for the side of the hemisphere.

tracking. The BCA algorithm partitions all fiber tracts into a
number of automatically determined coclusters and each clus-
ter is then rendered using one color, as shown in Fig. 12(c).
Subsequently, all fibers constituting a particular cocluster are
rendered in the same color, as displayed in Fig. 12(d). Our visu-
alization results show that major fiber bundles are well identified
using BCA even in the absence of anatomical constraints. For
example, in Fig. 13, the cocluster created between regions 8
and 9 represents fiber tracts that connect the two hemispheres
through the corpus callosum and the cocluster created between
regions 1 and 3 represents the inferior longitudinal fasciculus.
The quantitative evaluation of coclustering results is described
in the subsequent sections.

3) Comparison of BCA Results to Manual Definition of Ma-
jor Fiber Tracts: In order to assess the validity of the created
coclusters, we compared the results of two major fiber tracts,
the arcuate fasciculus (AF) and the superior longitudinal fasci-
culus (SLF) (Fig. 14). The fiber tracts were initially obtained
from the BCA algorithm and subsequently derived based on

Fig. 13. Automatic labeling of the interested regions for groups of subjects.
The cocluster between regions 8 and 9 show the connectivity patterns in the cor-
pus callosum, and the cocluster between regions 1 and 3 show the connectivity
patterns in inferior longitudinal fasciculus. Coclustering results are visualized
and compared with different subjects.

manual definition using anatomical landmarks within the brain.
In order to quantify the correlation between the two meth-
ods, we determined for each fiber tract the number of fibers
originating/terminating in each of the 512 cortical elements.
Subsequently, Pearsons correlation was calculated between the
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Fig. 14. 3-D rendering of two major fiber tracts in the brain of a control
subject. Fiber tracts derived from deterministic fiber tracking are displayed in
the same space as high-resolution T1-weighted MR image volumes. The upper
row shows sagittal views whereas the lower row shows coronal and axial views,
respectively, for improved spatial orientation. The arcuate fasciculus (a) (on
the left, rendered in red) connects cortical language areas while the superior
longitudinal fasciculus (b) (SLF, on the right, rendered in brown) connects
cortical areas responsible for selection and retrieval of spatial information.

two 512-element vectors for both fiber tracts. The results of this
correlation analysis are listed as follows. The correlation be-
tween the two methods was determined as 0.83 ± 0.09 for the
AF indicating an excellent agreement between the BCA method
and manual fiber tract definition. The correlation between the
two methods for the SLF was found to be 0.65 ± 0.11. This
value is lower, which is consistent with the greater physiologi-
cal variability of this fiber bundle. These results indicate a very
good overall agreement between the two methods.

4) Quantitative Evaluation of Coclustering Results: To al-
low quantitative assessment of the magnitude with which
two cortical regions are connected, we defined a connectivity
strength (CS) measure defined next. The CS measure allows for
comparison of fiber tract connectivity among subjects and is
a prerequisite for cross-subject analysis. Thus, given the mean
and variance of the CS measure in a control group, abnormally
high or low fiber connectivity can be objectively diagnosed in
patients.

Definition 5.2 [Connectivity Strength (CS)]: Given a partition
C = {C1 , C2 , . . . , CK } of G(V, F ), the connectivity strength
for a cocluster 〈Ci, Cj 〉 is defined as

CS(|Ci |, |Cj |, NCi j
, NCj i

) =
(|Ci | + |Cj |)(NCi j

+ NCj i
)

2|Ci‖Cj |
(13)

where NCi j
is the number of fibers from cluster Ci to cluster

Cj and NCj i
is the number of fibers from cluster Cj to cluster

Ci . |Ci | and |Cj | are the number of voxels in cluster Ci and Cj ,
respectively.

5) Application of the BCA Algorithm in Clinical Research:
To evaluate the performance of the BCA in clinical research,
we compared the connectivity strength of two major fiber tracts,
the AF and the major part of the SLF between a group of chil-
dren suffering from Tourette syndrome (TS) and an age-matched
control group. TS is a childhood-onset neuropsychiatric disorder
characterized by the presence of motor and vocal tics, together
with a range of semicompulsive behaviors. Functional distur-

TABLE II
CONNECTIVITY STRENGTH OF AF AND SLF FIBER

TRACTS FOR FIVE TS SUBJECTS

Fig. 15. Comparison of connectivity strength between the control and TS
group for the arcuate fasciculus (left) and the SLF (right). Connectivity strength
differs significantly between the two groups in the arcuate fasciculus but is
similar in the SLF.

bances in the frontostriatal thalamic circuit [28] are thought
to be pivotal in producing TS symptoms; however, it is likely
that the arcuate fasciculus is implicated as well [29]. The arcuate
fasciculus connects cortical areas responsible for language com-
prehension (Wernicke’s area) and language generation (Broca’s
area) in the dominant (in right-handed subjects the left) hemi-
sphere (see Fig. 14)), whereas the SLF connects the prefrontal
with the parietal cortex and provides information regarding per-
ception of visual space. As both the spatial attention and the
regulatory mechanisms for selection and retrieval of spatial in-
formation are believed to be normal in TS, we expected that
the connectivity strength of AF is an important parameter in
differentiating normal and abnormal subjects, while the con-
nectivity strength of the SLF should not differ between the two
groups. Initially, coclusters representing the AF and the SLF
were selected and the corresponding connectivity strength was
calculated according to Definition 5.2.

To test our hypothesis, we performed cross-subject statistical
analysis based on our coclustering results. Based on the statis-
tical results on the normals, we identify the normative distribu-
tion for both the fiber tracts. The normal variability for AF has
a mean of 0.50 with standard deviation of 0.03. Corresponding
variablity of SLF has a mean of 0.77 with a standard derivation
of 0.07. Any significant difference from this normative distri-
bution is considered abnormal. Significant differences between
the connectivity strengths obtained from the two groups were
assessed using an independent sample t-test. Table II shows
connectivity strength values determined in the two groups. As
hypothesized, our results indicate a significantly lower connec-
tivity strength of the left arcuate fasciculus between TS patients
and controls (0.30 ± 0.09 versus 0.50 ± 0.03, p = 2.2E − 5),
but a similar connectivity strength between the two groups in
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the SLF (0.73 ± 0.09 versus 0.77 ± 0.08, p = 0.19), as shown
in Fig. 15).

VI. CONCLUSION AND FUTURE WORK

In this paper, we defined the coclustering problem and de-
veloped a coclustering algorithm, termed the BCA, which has
been applied to in vivo fiber tract analysis of corticocortical con-
nectivity patterns. Our study suggests that the developed BCA
is well suited for the segmentation of major fiber tracts from
DTI data, both in its computational stability and its process-
ing speed. Moreover, the obtained results were consistent with
well-known fiber tracts and correlated well with manually de-
fined major fiber bundles. Our framework facilitates automatic
analysis of tractography data for a large number of human sub-
jects in clinical research and is likely to aid in the integration
of genetic information with human image-derived phenotype
data. Future research will also focus on translating the current
version of the BCA to the analysis of fiber tracts derived from
probabilistic fiber tracking methods, permitting also quantitative
assessment of minor fiber tracts.
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