
A Reference Architecture for
Scientific Workflow Management

Systems and the VIEW SOA Solution
Cui Lin, Student Member, IEEE, Shiyong Lu, Member, IEEE, Xubo Fei,

Artem Chebotko, Member, IEEE, Darshan Pai, Student Member, IEEE,

Zhaoqiang Lai, Farshad Fotouhi, Member, IEEE, and Jing Hua, Member, IEEE

Abstract—Scientific workflows have recently emerged as a new paradigm for scientists to formalize and structure complex and

distributed scientific processes to enable and accelerate many scientific discoveries. In contrast to business workflows, which are

typically control flow oriented, scientific workflows tend to be dataflow oriented, introducing a new set of requirements for system

development. These requirements demand a new architectural design for scientific workflow management systems (SWFMSs).

Although several SWFMSs have been developed that provide much experience for future research and development, a study from an

architectural perspective is still missing. The main contributions of this paper are: 1) based on a comprehensive survey of the literature

and identification of key requirements for SWFMSs, we propose the first reference architecture for SWFMSs; 2) according to the

reference architecture, we further propose a service-oriented architecture for VIEW (a VIsual sciEntific Workflow management system);

3) we implemented VIEW to validate the feasibility of the proposed architectures; and 4) we present a VIEW-based scientific workflow

application system (SWFAS), called FiberFlow, to showcase the application of our VIEW system.

Index Terms—Reference architecture, scientific workflows, scientific workflow management system, SOA, VIEW.

Ç

1 INTRODUCTION

SCIENTIFIC workflows have recently emerged as a new
paradigm for scientists to integrate, structure, and

orchestrate a wide range of local and remote heterogeneous
services and software tools into complex scientific processes
to enable and accelerate many scientific discoveries [1]. A
scientific workflow is the computerized facilitation or
automation of a scientific process, in whole or part, which
usually streamlines a collection of scientific tasks with
data channels and dataflow constructs to automate data
computation and analysis to enable and accelerate scientific
discovery. A scientific workflow management system
(SWFMS) is a system that completely defines, modifies,
manages, monitors, and executes scientific workflows
through the execution of scientific tasks whose execution
order is driven by a computerized representation of the
workflow logic. The design of a reference architecture at an
appropriate level of abstraction that addresses architectural
requirements for SWFMSs is critical and challenging.

The Workflow Management Coalition (WfMC) proposed
a reference architecture for business workflows [2] in 1995.
Since then, the reference architecture and its variants [3]
have been widely adopted in the development of different

business workflow management systems (BWFMSs) [4], [5],
[6], [7], [8]. However, these reference architectures are not
suitable for SWFMSs as business workflows and scientific
workflows have different goals. While the goal of business
workflows is to reduce human resources (and other costs)
and increase revenue, the goal of scientific workflows is to
reduce both human and computation costs and accelerate
the speed of turning large amounts of bits and bytes into
knowledge and discovery. Moreover, business workflows
are typically control flow oriented, while scientific work-
flows tend to be dataflow oriented, introducing a new set of
requirements and challenges for system development, from
the support of intensive user interaction and visualization,
customizable and extensible GUI, reproducibility, high-end
computing, to heterogeneous data, software tool, and
service management. While several SWFMSs [9], [10], [11],
[12], [13], [14] have been developed during the past few
years, which provide much experience for future research
and development, an architectural reference that can
provide a high-level organization of subsystems and their
interactions in an SWFMS is missing. The state of the art is
still ad hoc in scientific workflow design, specification,
development, execution, and provenance tracking, etc. First,
each system uses a proprietary workflow language, whose
semantics has not yet been fully investigated and forma-
lized. Second, each system has either no explicit architec-
tural design or the architecture is proprietary and restricted
greatly by the legacy system that the SWFMS is built upon.
For example, Kepler is built on the Ptolemy II system, and
therefore, each new requirement that is needed by an
SWFMS is based on extensions to the architecture of
Ptolemy. Pegasus, on the other hand, is built upon Condor
and Dagman by adding another workflow mapper on the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009 79

. C. Lin, S. Lu, X. Fei, D. Pai, Z. Lai, F. Fotouhi, and J. Hua are with the
Department of Computer Science, Wayne State University, Detroit, MI
48202. E-mail:
{cuilin, shiyong, xubo, darshan, kevinlai, fotouhi, jinghua}@wayne.edu.

. A. Chebotko is with the Department of Computer Science, University of
Texas—Pan American, Edinburg, TX 78539. E-mail: artem@wayne.edu.

Manuscript received 9 Nov. 2008; revised 15 Jan. 2009; accepted 28 Jan. 2009;
published online 9 Feb. 2009
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-11-0098.
Digital Object Identifier no. 10.1109/TSC.2009.4.

1939-1374/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

top of these two systems. Third, all these systems have
different provenance models, not only in terms of what
provenance information should be recorded, but also in
terms of representation, storage, and querying models. We
expect that the availability of such a reference architecture
can provide a basis for comparison between different
systems and a guidance for the architectural design of an
SWFMS in a specific scientific domain.

To address this issue,

1. we propose the first reference architecture for
SWFMSs based on a comprehensive survey of the
literature and identification of key requirements;

2. according to the proposed reference architecture, we
further propose a service-oriented architecture for
the VIEW system. Leveraging SOA [15], VIEW

consists of six loosely coupled service components,
each of which corresponds to a functional compo-
nent that is identified in the reference architecture,
whose functionality is exposed as a Web service;

3. we implemented the VIEW system to validate the
feasibility of the proposed architectures; and

4. we present a VIEW-based scientific workflow appli-
cation system (SWFAS), called FiberFlow, to demon-
strate the capabilities of VIEW in support of user-
interaction-intensive, visualization-intensive, and
compute-intensive scientific workflows in a hetero-
geneous and distributed computing environment.

The rest of the paper is organized as follows: Section 2
identifies seven key architectural requirements for SWFMSs.
In response to these requirements, Section 3 proposes our
reference architecture for SWFMSs. According to the
reference architecture, Section 4 further proposes a service-
oriented architecture for VIEW (a VIsual sciEntific Workflow
management system). Section 5 presents configuration
management for VIEW subsystems, and Section 6 showcases
the FiberFlow system using VIEW as its underlying SWFMS.
After that, we evaluate five representative SWFMSs using
the proposed reference architecture in Section 7, followed by
related work in Section 8. Finally, Section 9 concludes the
paper and comments on future work.

2 SEVEN KEY ARCHITECTURAL REQUIREMENTS

In addition to the general requirements of scalability,
reliability, extensibility, availability, and security, what are
the key architectural requirements for an SWFMS? Based on
a comprehensive study of the workflow literature from an
architectural perspective [16] and our own experience
from the development of the VIEW system, we identify
the following seven key architectural requirements for
an SWFMS:

R1: User interface customizability and user interaction
support. In scientific workflows, scientists are often the
end users to design, modify, run, rerun, and monitor
scientific workflows. User friendly graphical user inter-
faces are critical to increase the usability of an SWFMS.
Domain-specific visualization capability is often needed to
support the visualization of various workflow artifacts.
The goal is to speed up the exploratory process of arriving at
a proper workflow design with appropriate parameter
values and input data sets that lead to sought-after
scientific results. Therefore, a key architectural requirement

is the flexibility of customizing the user interface according
to different science and engineering disciplines, scientific
domains, or problems, or to an individual scientist’s style,
while reusing the same underlying workflow management
framework. Customizing user interface should be localized
and should not affect any other functional components of
the system.

R2: Reproducibility support. Reproducibility is the funda-
mental principle of any science method. Scientific results
produced from the execution of scientific workflows must
be reproducible. Therefore, sufficient provenance informa-
tion, including the derivation history of a data product,
needs to be maintained in order to answer the following
questions: What workflows or workflow steps are exe-
cuted to produce this result? Which versions of softwares
and OSs are used? What parameter values are used? What
input data sets have contributed to this result? What
scientists’ interactions are involved in producing this
result? With such information, a scientific result can be
reproduced in the same system or in other peer systems
when necessary. Therefore, a key functional component for
an SWFMS is the management of provenance metadata,
from collection, representation, storage, and querying, to
visualization. Such a component is usually not required for
a BWFMS.

R3: Heterogeneous and distributed services and software tools
integration. Scientists often need to integrate and orchestrate
a wide range of heterogeneous analytical and computa-
tional services and software tools into a scientific workflow
for solving a complex scientific problem. Such services and
software tools are usually written in various programming
languages, invoked by different invocation mechanisms,
and run in heterogeneous and distributed computing
environments. Therefore, a key architectural requirement
is to provide an abstraction of various services and software
tools as workflow tasks (abr. task in this paper). Tasks not
only keep scientists transparent to the heterogeneity and
distribution of underlying task components, but also
promote SWFMS extensibility so that the integration of
future services and software tools whose interfaces and
communication protocols are yet unknown does not affect
other functional components of an SWFMS.

R4: Heterogeneous and distributed data product management.
The execution of scientific workflows often consume and
produce huge amounts of distributed data objects. These
data objects can be of primitive or complex types, files in
different sizes and formats, database tables, or data objects
in other forms. Scientists are often overwhelmed and lost in
the sea of heterogeneous and distributed data objects.
Therefore, a key architectural requirement for an SWFMS is
to provide an abstraction of these data objects as data
products. Data products for SWFMSs include: 1) workflow
source data that are registered into an SWFMS from external
sources (produced by other systems, instruments, or
experiments); 2) workflow parameters that are specified and
tuned by users for each workflow run; 3) workflow results
which consist of workflow intermediate and final results
produced by workflow runs. Therefore, an SWFMS needs to
support the efficient management of data products, includ-
ing data product storage, archival, browsing, querying,
access, movement, and visualization.

R5: High-end computing support. Today, many scientific
problems need the support of high-end computing, such as

80 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

Grid computing and Cloud computing [17]. Given the
fast advance of high-end computing technology, a key
architectural requirement for an SWFMS is to separate
the science-focused and technology-independent problem
solving environment (PSE) from the underlying often
fast advanced high-end computing infrastructure. In this
way, domain scientists can focus on their science while
utilizing the state-of-the-art computing technologies in a
transparent fashion.

R6: Workflow monitoring and failure handling. The
monitoring of the progress of the workflow execution
is very important, particularly for long-running scientific
workflows. Moreover, since scientific workflows are often
designed and modified by scientists in an ad hoc fashion
and can involve various distributed tasks that are
accessed over network communications, many exceptions
or failures can occur in an unforeseeable way. Finally,
the complexity and scale of data analysis and computa-
tion in scientific workflows impose additional challenges
on workflow monitoring and failure handling. Therefore,
a key architectural requirement for an SWFMS is to
provide the support for status and failure monitoring at
various levels and the mechanism for catching, localiz-
ing, and handling failures automatically or with minimal
human intervention.

R7: Interoperability. As more and more scientific research
projects become collaborative in nature and involve multi-
ple geographically distributed organizations, many scien-
tific workflows are distributed and collaborative, consisting
of multiple subworkflows, each of which might be managed
by a different SWFMS. Therefore, a key architectural
requirement for SWFMSs is to promote and facilitate the
interoperability between different SWFMSs so that one
SWFMS can take advantage of the software tool libraries
and salient features provided by another SWFMS. The
interoperability for SWFMSs lies in three levels: 1) task-level
interoperability, which requires that various tasks and data
products from different SWFMSs can interoperate one with
another; 2) workflow-level interoperability, which requires that
a scientific workflow in one SWFMS can be executed in or
invoked by another SWFMS; and 3) subsystem-level inter-
operability, which requires that a subsystem in one SWFMS
can be reused by or shared by different SWFMSs.

3 A REFERENCE ARCHITECTURE FOR SWFMSS

Although the reference architecture proposed by WfMC [2]
has been widely used for BWFMSs, this reference archi-
tecture does not satisfy key requirements R1-R5 for
SWFMSs identified in the previous section. In this section,
we propose a reference architecture for SWFMSs. As shown
in Fig. 1b, the reference architecture consists of four logical
layers, seven major functional subsystems, and six inter-
faces. Fig. 1a shows a typical software stack of a scientific
workflow application: on top of an operating system, a data
management system and a service management are used by
an SWFMS for data management and service management,
respectively. An SWFAS is developed over an SWFMS by
the introduction of additional domain-specific application
data and functionalities.

3.1 Layers

The first layer is the Operational Layer, which consists of a
wide range of heterogeneous and distributed data sources,
software tools, services, and their operational environ-
ments, including high-end computing environments. The
separation of the Operational Layer from other layers
isolates data sources, software tools, services, and their
associated high-end computing environments from the
scope of an SWFMS, thus satisfying requirement R5.

The second layer is called the Task Management Layer.
Tasks are the building blocks of scientific workflows. Tasks
consume input data products and produce output data
products. At the same time, provenance is captured
automatically to record the derivation history of a data
product, including original data sources, intermediate data
products, and the steps that are applied to produce the data
product. This layer abstracts underlying heterogeneous
data into data products, services, and software tools into
tasks, and provides efficient management for data products,
tasks, and provenance metadata. Therefore, the Task
Management Layer satisfies requirements R2, R3, and R4.
Moreover, the separation of the Task Management Layer
from the Operational Layer promotes the extensibility of the
Operational Layer with new services and new high-end
computing facilities, and localizes system evolution due to
hardware or software advances to the interface between the
Operational Layer and the Task Management Layer. The

LIN ET AL.: A REFERENCE ARCHITECTURE FOR SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS AND THE VIEW SOA SOLUTION 81

Fig. 1. (a) The position of an SWFMS within a software stack and (b) zoom-in view of the reference architecture for SWFMSs.

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

task-level interoperability requirement (R7: level 1) should
be addressed in this layer.

The third layer is the Workflow Management Layer, which
is responsible for the execution and monitoring of scientific
workflows. At this layer, the building blocks of a scientific
workflow are the tasks provided by the underlying Task
Management Layer. In this layer, an execution of a scientific
workflow is called a workflow run, which consists of an
coordinated execution of tasks, each of which is called a task
run. Therefore, the Workflow Management Layer addresses
requirements R6 and R7. The separation of the Workflow
Management Layer from the Task Management Layer
concerns two aspects as follows: 1) it isolates the choice of
a workflow model from the choice of a task model, so
changes to the workflow structure do not need to affect the
structures of tasks and 2) it separates workflow scheduling
from task execution, thus improves the performance and
scalability of the whole system. The interoperability of
workflows (requirement R7: level 2) has to be addressed
by standardizing workflow models, workflow run models, and
workflow languages.

The fourth layer is the Presentation Layer, which provides
the functionality of workflow design and various user
interfaces and visualizations for all assets of the whole
system. The Presentation Layer has interfaces to each lower
layer (not shown in the figure for simplicity). The
separation of the Presentation Layer from other layers
provides the flexibility of customizing the user interfaces of
the system and promotes the reusability of the rest of
system components for different scientific domains. Thus,
this separation supports requirement R1. The interoper-
ability of workflows (requirement R7: level 2) should
be addressed by standardizing the workflow layout (e.g.,
look-and-feel) at this layer.

3.2 Subsystems

The seven major functional subsystems correspond to the
key functionalities required for an SWFMS. Although the
reference architecture allows the introduction of addi-
tional subsystems and their features in each layer, this
paper only focuses on the major subsystems and their
essential functionalities.

The Workflow Design subsystem is responsible for the
design and modification of scientific workflows. Workflow
Design produces workflow specifications represented in a
workflow specification language that supports a particular
workflow model. One can design and modify a scientific
workflow using a standalone or Web-based workflow
designer, which supports both graphical- and scripting-
based design interfaces. The interoperability of workflows
(requirement R7: level 2) should be addressed in this
subsystem by the standardization of workflow languages.

The Presentation and Visualization subsystem is very
important especially for data-intensive and visualization-
intensive scientific workflows, in which the presentation of
workflows and visualization of various data products and
provenance metadata in multidimensions are the key to
gain insights and knowledge from large amount of data and
metadata. These two subsystems are located at the Pre-
sentation Layer to meet requirement R1. In this subsystem,
the interoperability of workflows (requirement R7: level 2)
should be addressed by the standardization of scientific
workflow layout.

The Workflow Engine subsystem is at the heart of the
whole system and is the subsystem that provides manage-
ment and execution environments for workflow runs. The
Workflow Engine creates and executes workflow runs
according to a workflow run model, which defines the state
transitions of each scientific workflow and its constituent
task runs. The interoperability of workflows (requirement
R7: level 2) should be addressed by the standardization of
interfaces, workflow models, and workflow run models, so
that a scientific workflow or its constituent subworkflows
can be scheduled and executed in multiple Workflow
Engines that are provided by various vendors. In SWFMSs,
multiple Workflow Engine subsystems can be distributed,
and each Workflow Engine can execute several workflows
in parallel.

The Workflow Monitoring subsystem meets requirement
R6 and is in charge of monitoring the status of workflow
execution during workflow runtime and if failures occur,
provides tools for failure handling [18].

The Task Management subsystem addresses heterogeneity
and distribution issues (requirement R3) and provides
management and execution environment for tasks, accord-
ing to a task model and task run model, respectively. The
interoperability of tasks between various workflow envir-
onments (requirement R7: level 1) can be addressed in
this subsystem.

The Provenance Management subsystem meets require-
ment R2 and is mainly responsible for the manage-
ment of scientific workflow provenance metadata,
including their representation, storage, archival, search-
ing, and visualization.

The Data Product Management subsystem meets require-
ment R4 and is mainly responsible for the management of
heterogeneous data products. One key challenge for data
product management is the heterogeneous and potentially
distributed nature of data products, making efficient access
and movement of data products an important research
problem. The interoperability of data products between
various workflow environments (requirement R7: level 1)
can be addressed in this subsystem.

3.3 Interfaces

Each subsystem interacts with other subsystems by its
interfaces. The interoperability between subsystems (re-
quirement R7: level 3) in various SWFMSs should be
addressed by standardizing the interfaces provided by each
subsystem. In the reference architecture, six interfaces are
explicitly defined, which show how the Workflow Engine
interacts with other subsystems. The details of the interfaces
between subsystems at the same layer are not shown in the
figure for simplicity.

Interface I1 provides a set of interfaces for the commu-
nications between Workflow Design subsystem and the
Workflow Engine, so workflow specifications created by
workflow design tools can be interpreted in the workflow
execution environment. Interface I2 provides a set of
interfaces to report workflow run status from the Workflow
Engine to the Workflow Monitor and to send back
information from the Workflow Monitor to the Workflow
Engine when dealing with exceptions, failure, and recovery.
Interface I3 provides a set of interfaces to deal with the
communications between the Workflow Engine and
the Task Management subsystem: the Workflow Engine

82 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

subsystem sends requests to run each task, and the Task
Management subsystem replies the task execution progress
and acknowledges the Workflow Engine whether a task run
completes or fails. Interface I4 provides a set of interfaces
for communication between the Workflow Engine and
the Provenance Management for provenance tracking
and reproducibility support. Interface I5 provides a set of
interfaces between the Workflow Engine and the Data
Product Management subsystem: the Workflow Engine
requests data product information from the Data Product
Management subystem, and the Data Product Management
subsystem responds to the request by acknowledging the
availability of the required data product and delivering
data or metadata as requested. Finally, Interface I6 provides
a set of interfaces to interoperate with other Workflow
Engines. Workflow specifications can be passed through I6

to another Workflow Engine for execution.

3.4 Discussion

Due to the fundamental difference between scientific
workflows and business workflows, our proposed reference
architecture is significantly different from the reference
architecture for BWFMSs. First, the reference architecture
for SWFMSs contains the important components of prove-
nance management and data product management to
support scientific result reproducibility and to facilitate
and speed up data analysis, respectively, which are not
present in the reference architecture for BWFMSs. Second,
the separation of the Presentation Layer from the Workflow
Management Layer enables the support of user interaction
and user interface customizability, thus reducing human
cycles to scientific discovery. Third, the separation of the
Workflow Management Layer from the Task Management
Layer separates workflow engineering from task engineer-
ing, therefore allowing the parallel advancement of work-
flow management and task management. Finally, the
separation of the Task Management Layer from the
Operational Layer enables the separation of management
of uniform workflow tasks from the heterogeneous low-
level task implementation strategies and execution environ-
ments. Such a layered architectural design is important: for
computer scientists, it enables abstractions and different
independent implementations for each layer; for domain
scientists, it provides the opportunity to develop a stable
and familiar PSE where rapid technologies can be leveraged
but the details of which are shielded transparently from the
scientists who need to focus on science itself.

4 SERVICE-ORIENTED ARCHITECTURE FOR VIEW

In order to validate the feasibility of our proposed reference
architecture, we propose a service-oriented architecture for
our VIEW system that complies with the reference archi-
tecture. In this section, we first present our architectural
design principles that serve the foundation for the design of
the VIEW system; these principles are desirable require-
ments from a general software engineering perspective
rather than requirements specifically essential for SWFMSs.
Second, we introduce the overall VIEW system architecture
and the architectures of subsystems. Finally, we discuss the
advantages of using SOA in SWFMSs. While the architec-
ture of VIEW conforms to the reference architecture, VIEW

uses SOA but the reference architecture does not assume

that interfaces between subsystems are services-oriented.
While VIEW has a distributed architecture, the reference
architecture does not have this assumption. The separation
of the reference architecture from the VIEW architecture
allows a generic nature of the reference architecture and
provides the freedom for VIEW and other systems to take a
particular implementation strategy by using the state-of-
the-art technologies, such as SOA.

4.1 Architectural Design Principles

The development of the VIEW system complies with the
following principles. In addition to the principles described
in [3], we have several principles to satisfy the requirements
of SWFMSs.

P1: Loose-coupling. In the VIEW system, each subsystem is a
loosely coupled, autonomous, reusable, and discoverable
service component, and each service component commu-
nicates with others by simply requesting their services with
the interfaces described by WSDL. Changing the implemen-
tation of one service component while remaining the same
interfaces does not affect other service components. Service
components interact with each other by Web service invoca-
tion using SOAP messages via Internet-based protocols.

P2: Localized database access. In the VIEW system, a service
component is not allowed to directly access the databases
that are managed by other service components; instead, a
service component accesses data by requesting services
provided by other service components. There are two
reasons behind this: 1) databases for each service compo-
nent are configurable, and provide a more flexible
implementation for each subsystem on demand, so different
service components are allowed to share the same database
or each service component can use their own databases and
2) the design of models and data management for each
service component may change, but such changes can
be transparent to other service components by using the
same interfaces.

P3: Model-based service component. The granularity of
services, i.e., how fine or coarse-grained services should be
designed, is an important issue for system development. In
the VIEW system, the granularity of services is based on the
granularity of data models, that is, all operations over one
data model is grouped into one service and described by
one WSDL, while operations over different data models
are separated into different services. In this way, the
modification of one data model (e.g., a task model) will
not affect the functionality of another data model (e.g., a
task run model).

4.2 Overall Architecture and Subsystem
Architectures

The overall architecture of VIEW in Fig. 2 consists of six
service components that correspond to the main functional
subsystems proposed in the reference architecture. Other
than Workbench, the interface for each service component is
defined and described by WSDL: IWE; IWM; ITM; IPM , and
IDPM for the interface of the Workflow Engine, the Work-
flow Monitor, the Task Manager, the Provenance Manager,
and the Data Product Manager, respectively, which
comprises the VIEW Kernel. In the following, we focus our
discussion on the architectural details of the VIEW Kernel.

Workbench. The Workbench subsystem implements
the functions of workflow design, presentation, and

LIN ET AL.: A REFERENCE ARCHITECTURE FOR SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS AND THE VIEW SOA SOLUTION 83

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

visualization identified at the Presentation Layer in the
reference architecture. Currently, it consists of five compo-
nents (see Fig. 3a): Workflow Designer, Provenance Explorer,
and the GUIs for the VIEW Kernel.

Workflow Designer provides a scientist-friendly GUI
for the design and modification of scientific workflows. A
scientist can drag and drop registered tasks and data
products into the design panel and link them one to another
using various dataflow and control flow constructs. Work-
flow Designer is supported by our proposed workflow
specification language, called SWL to define a scientific
workflow, according to the VIEW Workflow Model, which
supports hierarchical (nested) scientific workflows. Work-
flow definitions in the Workflow Designer are saved in
XML files into a Local Workflow Repository. A workflow
definition in the VIEW Workbench consists of three parts:
1) a workflow specification to store the logical structure and its
constituent components; 2) workflow run parameters to store
all parameters for each task run; and 3) a workflow layout to
store the graphical layout of the scientific workflow that is
required to display the workflow in the Workflow Design
Panel. The first two parts are needed for the execution of
a workflow run, and the last part is to display and
manipulate a scientific workflow in the VIEW Design Panel.

Provenance Explorer enables a user to browse and
visualize scientific workflow provenance metadata. More-
over, together with the GUI for the Data Product Manager,
one can present and visualize various data products from
simple data values and plain texts to complex data types.

The VIEW Workbench supports Windows-based user
interfaces for the VIEW Kernel while reusing the same
service components. These scientist-friendly GUIs interact
with subsystems via ITM , IWM , IPM , and IDPM , respectively.

This leads to the architectural flexibility to allow scientists
to customize their own GUIs for each particular SWFAS,
thus satisfying requirement R1.

Workflow Engine. The architecture of the Workflow
Engine subsystem is shown in Fig. 3b. Centered around
Scheduler, the Workflow Engine consists of six functional
modules: Scheduler, Translator, Controlflow Management,
Dataflow Management, Workflow Status Management, and
Provenance Collector.

First, Translator provides a mapping scheme for translat-
ing a workflow specification into an optimized internal
executable workflow representation. Workflow definitions
delivered from Workflow Designer are saved into the
Workflow Definition Repository via IWE . A workflow defini-
tion in Workbench’s Workflow Repository should be
consistent with the version in Workflow Definition Repo-
sitory during workflow execution. Second, the separation of
controlflow and dataflow management from workflow
scheduling greatly improves the extensibility of the VIEW

Workflow Model since the introduction of additional
control flow or dataflow constructs can be achieved by
upgrading their individual modules without modifying
other modules. Third, as Scheduler is able to support
multithread processing, it can initialize and maintain a
number of workflow runs simultaneously, Workflow Status
Storage provides a foundation for workfow run monitoring
and failure handling (requirement R6). Finally, Provenance
Collector is responsible for collecting all provenance
information and storing them into Provenance Manager
via IPM . Since the VIEW Workflow Engine supports an open
and extensible SWL and is loosely coupled with other
subsystems, the workflows/subworkflows designed by
other SWFMSs can directly request to and invoked by the
VIEW Workflow Engine via the Web service communication
and invocation. Thus, the sharing and mapping between the
VIEW Workflow Engine and other SWFMSs can be greatly
facilitated (requirement R7: level 2).

In contrast to BWFMSs that mostly manage control-flow-
oriented workflows, in which the order of task execution is
explicitly specified by control flow constructs, such as
sequential, conditional, and loop, the VIEW Workflow
Engine is developed for dataflow-driven scientific work-
flows. As a result, the availability of input data for a task
initiates its execution, and the movement of data via data
channels determines the execution order of a workflow.

Workflow Monitor. Our current implementation of the
Workflow Monitor uses a Publish/Subscribe model [19]

84 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 3. Architecture of (a) the VIEW Workbench and (b) the VIEW Workflow Engine.

Fig. 2. Overall architecture of the VIEW system.

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

and focuses on the implementation of monitoring workflow
execution status. Future implementation will introduce
other features including forward and backward recovery
in the case of failures. The details of these techniques are out
of the scope of this paper.

Provenance Manager. The architecture of the Prove-
nance Manager subsystem shown in Fig. 4a includes three
layers: the provenance management layer, the provenance model
mapping layer, and the provenance storage layer.

The provenance management layer is responsible for the
representation of workflow run provenance via domain
ontologies that serve as vocabularies to describe and
serialize provenance metadata. It consists of two modules:
provenance model management and provenance querying.
Provenance Model Management manages the ontologies
that include both general provenance vocabularies and
domain-specific ontologies used to represent knowledge in
a particular scientific field, e.g., Biology or Physics
(requirement R2). To address the requirements of prove-
nance representation interoperability, extensibility, and
semantic integration in VIEW, we use Semantic Web
technologies for provenance representation. In particular,
Web Ontology Language (OWL) is used to express
ontologies, and Resource Description Framework (RDF)
is used to serialize provenance metadata. Provenance
Querying is expressed by RDF query language SPARQL.
Exception Handling analyzes all errors reported and
implements several strategies to resolve them, so the
subsystem can continue functioning.

The provenance model mapping layer serves as an
integration medium between the provenance management
layer and the provenance storage layer. It currently contains
three mappings: 1) OWL-to-Relational schema mapping gen-
erates a relational database schema based on an ontology
that is used to represent provenance metadata; 2) RDF-to-
Relational data mapping maps provenance metadata in RDF
to relational tuples and store them into the relational
database; and 3) SPARQL-to-SQL query mapping translates
provenance queries in SPARQL into relational queries in
Structured Query Language (SQL) that can be executed by
the Relational Database Management System (RDBMS). The
main challenge of this layer is to provide various efficient
semantics-preserving mappings between different data
models. More details on provenance storage and querying
in VIEW are available in [20], where a sample provenance
ontology is described and the three mappings are further
studied and experimentally evaluated.

The relational model layer includes a relational prove-
nance storage implemented using an RDBMS, which serves
as an efficient back end to store and query provenance
metadata. In this layer, provenance metadata is stored in
relational tables and queried using SQL. The requirements
addressed by this layer include efficiency and scalability of
provenance metadata management.

Data Product Manager. The architecture of Data Product
Manager subsystem shown in Fig. 4b consists of three
layers: the data product management layer, the data product
model mapping layer, and the data product storage layer.

The data product management layer consists of a set of
modules that are responsible for the management of data
products based on the VIEW Data Product Model. The Data
Product Manager allows scientists to access various data
products transparently with respect to their heterogeneity
and distribution (requirement R4), supported by Data Product
Registration, Annotation, and Querying. The Data-Type Man-
agement module defines and manages all required data types
to support data storage and task execution. All VIEW

subsystems use the same set of data types that are defined
by the Data Product Manager, so the introduction of a new
data type in Data-Type Management becomes effective to all
other subsystems. The Data Product Movement mainly has
three functions: 1) data products are allowed to be moved
from client-side to Data Product Repository or File Repository
during data product registration via IDPM ; 2) data products
sometimes have to be moved from where they are registered
to where a task resides in order to execute the task; and
3) data products produced by workflow execution can be
moved back to Data Product Repository/File Repository,
or registered with the Data Product Manager via IDPM .

The data product model mapping layer serves as an
integration medium between the data product management
layer and the data product storage layer. The rationale
for such an architecture is that for different scientific
domains, there are different data product models, imple-
mentations, and storage approaches that may require
different mapping schema, but sharing the same architecture.
One can introduce new data product models, new imple-
mentations, or new storage approaches by simply adding
new mapping modules in this layer, without affecting
modules in other layers.

In the data product storage layer, the Data Product
Manager employs a relational Data Product Repository to
store data products metadata, and File Repository to store
files, so XML-to-Relational data mapping [21], [22] is required

LIN ET AL.: A REFERENCE ARCHITECTURE FOR SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS AND THE VIEW SOA SOLUTION 85

Fig. 4. Architectures of (a) the VIEW Provenance Manager and (b) the VIEW Data Product Manager.

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

in data product model mapping layer to map XML-
modeled data products into relational databases.

Task Manager. The VIEW Task Manager supports a
distributed architecture, consisting of a Task Master and a
set of Task Executors of various types.

Task Master. The architecture of the Task Master shown in
Fig. 5a consists of three layers: the task management layer,
the task model mapping layer, and the task storage layer. The
task management layer provides a set of modules that are
responsible for the management of tasks and task runs, based
on the VIEW Task Template Model and the VIEW Task Run
Model. The Task Master allows scientists to register/delete a
task transparently with respect to its heterogeneity and
distribution (requirement R3), which is supported by the
modules of Task Registration, Annotation, and Querying.
The task run execution and management are handled by
the models of Task Run Steering, Mapping, and Dispatch. More
specifically, Task Run Steering is used to listen to requests
from other subsystems to create/abort/pause/resume a task
run via ITM . Task Mapping performs a dynamic mapping
from an abstracted task interface to a task component
containing a physical implementation, and then delivers
the task run to Task Run Dispatch, where a Task Executor is
dynamically assigned to execute the task component.

In the task model mapping layer, XML-to-Relational data
mapping [21], [22] is required to map XML-modeled task
template specifications into relational Task Repository, and
map XML-modeled task run descriptors into the relational
Task Status Storage. The extensions of various mapping
mechanisms are allowed to plug-in the task model mapping
layer to incorporate heterogeneous data-model storages in
the task storage layer (the details of task template
specifications and task run descriptors are out of the scope
of this paper).

Task Executor. In order to support the distributed
execution of tasks in a wide range of heterogeneous
environments (requirement R3), a new architectural sub-
system called Task Executor is introduced. Task Executor
improves the VIEW system in the following aspects:

1. it separates the task and task run management
environment in Task Master from the task execution
environment in Task Executors;

2. task execution becomes more reliable as tasks can be
executed on distributed Task Executors, avoiding
the problem of a centralized architecture that may
suffer from a single point of failures;

3. different tasks for one workflow can be executed in
parallel at distributed nodes to improve perfor-
mance and efficiency; and

4. the integration of a new type of service or applica-
tion is achieved by the extension of one Task
Executor, without affecting other Task Executors
and the Task Master.

The architecture of the Task Executor consists of three
layers: the task run execution layer, the task run model mapping
layer, and the task run storage layer.

The task run execution layer provides a set of modules
that control the task run execution based on the VIEW Task
Run Model. Task Run Steering is used to listen to requests
from Task Master to abort/pause/resume a task run via
ITM . Task Execution performs data movement and invokes a
task component for a task run.

The implementations at the task run model mapping
layer and the task run storage layer vary from the following
scenarios: task run status can be simply maintained in the
main memory, instead of a persistent storage. However, for
large-scale workflows that are composed of a great number
of tasks, maintaining a large number of task run status has
to rely on a persistent Task Run Status Storage, such as a
relational database. Then XML-to-Relational data mapping
[21], [22] is required at the task run model mapping layer
to map XML-modeled task run descriptors into relational
Task Run Status Storage. Task Run Data Repository at the
task run storage layer is used to save temporary data
products that are moved from distributed data sources for a
task execution.

4.3 Advantages of Using SOA in SWFMSs

While the emergence of SOA as an architectural paradigm
provides many benefits for distributed computing [23], we
identify the following advantages of using SOA specifically
for the development of an SWFMS:

1. Service loose coupling: Service loose coupling mini-
mizes the dependencies among subsystems of an
SWFMS by the definitions of a set of language and
platform-independent interfaces. In our proposed
architecture, each subsystem’s functionality is ex-
posed as a Web service. As a result, an SWFMS can
be composed on demand from various subsystems
provided by different parties as Web services. One
can also easily switch from one service to another for
each subsystem. For example, there may be several

86 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 5. Architectures of (a) the Task Master and (b) the Task Executor.

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

provenance management services available, and
using SOA, one can use and switch any provenance
management service on demand for a specific
SWFMS.

2. Service abstraction and autonomy: A Web service
provides an abstract interface that is independent
from its implementation. In addition, each Web
service is autonomous in the sense that a service
provider has the control over the application logic
that the Web service encapsulates. As a result, a
service provider can dynamically change the im-
plementation and deployment environment of a
Web service for a subsystem of an SWFMS with no
downtime for the SWFMS as long as such changes
do not affect the defined interface. Such autonomy
also greatly facilitates the management of the
development and evolution of the whole system.

3. Service reusability: As each subsystem of an SWFMS
becomes a uniform computing unit with standard
interface descriptions and universal accessibility
through standard communication protocols, it can
be reused across various SWFMSs, even simulta-
neously used by both local SWFMSs and other
SWFMSs across the Internet.

4. Service discoverability: As each subsystem of an
SWFMS is implemented as a Web service that is
enriched with a semantic description, one can
register the service in some public service registries.
As a result, a subsystem becomes discoverable and
can be selected and used by other SWFMSs on
demand.

5. Service interoperability: Service interoperability is
enabled by the open standards of messages and
communication protocols for Web services, which
are supported by a large body of IT industry and the
Web Services Interoperability Organization (WS-I).
Using Web services, the interoperability across
various SWFMSs (requirement R7: level 3) can be
greatly improved.

5 SERVICE CONFIGURATION MANAGEMENT

Some SWFMSs are built upon a monolithic system or a
centralized database that acts as a single point of failure:
when a component of the system or a database fails, there is
no way to continue executing workflows. In response to this
issue, the VIEW system is composed of a set of loosely
coupled and distributed service components, and each
service component has multiple alternative services dis-
tributed on other machines. Accordingly, there is a need for
the management of these services to provide higher system
availability. In this section, we present a service configura-
tion management in the VIEW system that provides a
flexible configuration functionality for the VIEW Kernel and
VIEW Task Executors.

5.1 VIEW Kernel Configuration Management

The VIEW Kernel consists of several loosely coupled service
components, and each of them could have multiple backup
services deployed on different machines. One service
component may have various implementations, but sharing
the same WSDL. All of these service components are
deployed at distributed environments.

In addition, a database in the VIEW system could
specifically serve one service component, or multiple
backup service components, or even be shared by serval
service components of the VIEW Kernel. To support
database failover, one serving database could also setup
several mirror databases on distributed machines, and each
of them is kept synchronized with the serving database, so
that once this database fails, its service component(s) can
switch to any other mirror databases.

To enable an on-demand VIEW Kernel, the VIEW system
provides a service component, called VIEW Configuration
Management, to manage the configurations of all VIEW

Kernel service components and their serving databases.
First, the Configuration Management GUI embedded in the
VIEW Workbench allows scientists to register all deployed
service components for the VIEW Kernel and their serving
database(s). The service components for a VIEW Kernel
subsystem employ the same WSDL to describe their
common interfaces. Second, when the VIEW system is
adopted by a specific SWFAS, a template of the VIEW

system can be composed on demand by configuring each
VIEW Kernel service component and its database(s), which
are already registered in the Configuration Management.
Third, such template of the system can invoke the chosen
services during the runtime. Once a service of the template
is unavailable, configuration management will invoke
another alternative service. As the alternative service and
unavailable service share the same database(s) and reposi-
tories in their subsystem storage layer, workflow run
and task run status are still valid, which makes it possible
to resume the workflow execution starting from the
service downtime.

5.2 Task Executor Configuration Management

To support the invocation and execution of various
heterogeneous task components, the VIEW Task Manager
introduces several types of Task Executors, with each type
of Task Executor corresponding to a type of tasks with
regard to their programming languages, invocation me-
chanisms, and computing environments. Each type of Task
Executors shares one common implementation that is
different from other types. Each Task Executor can be
deployed either at the host of the Task Master or at any
other standalone host. All Task Executors employ the same
architecture and the same WSDL.

To improve the failover in task execution, the VIEW

system provides Task Executor Configuration Management
to manage the configuration of all Task Executors. First, the
Configuration Management GUI embedded in the VIEW

Task Manager allows scientists to register all available Task
Executors. Second, an appropriate Task Executor can be
automatically assigned to a task by the VIEW Task Master
during task execution. Finally, if a Task Executor happens
to be unavailable during task runtime, an alternative Task
Executor will be chosen to retry the execution. In this case,
the whole scientific workflow does not need to be aborted
or restarted, as other Task Executors will not be disturbed
during the failover procedure of the failed Task Executor.

6 SYSTEM IMPLEMENTATION AND CASE STUDIES

In this section, we first present the VIEW system
implementation and deployment, and then we introduce

LIN ET AL.: A REFERENCE ARCHITECTURE FOR SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS AND THE VIEW SOA SOLUTION 87

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

an SWFAS, called FiberFlow, to showcase an application
of the VIEW system.

6.1 System Implementation and Deployment

We implemented the VIEW system using the Microsoft
Visual Studio 2005 and the Microsoft .NET Framework.
First, we reused existing components of our previous VIEW

prototype [24] by upgrading original codes from Native
VC++ to Managed C++, which can interoperate with all
other .NET capable languages. Second, we restructured the
VIEW system according to the proposed architectures and
introduced new service components: the Workflow Moni-
tor, the Task Manager, the Task Executor, the Data Product
Manager, and the Service Configuration Management.
Third, we implemented a set of operations that need to be
exposed as Web services for each service component.
Fourth, we manipulated and transported XML-format data
among memory, files, and databases using the ADO.NET
and the SQL Server 2005. Finally, we enhanced the VIEW

Workbench in its presentation and visualization capability
using VTK and OpenGL.

The VIEW system allows a flexible deployment for a
specific SWFAS. The VIEW Kernel can be deployed as a
whole in one machine, or each service component can be
deployed in a distributed node. To enhance fault tolerance
of the system, a service component could have multiple
backup services deployed at different machines, and each
backup service has its own distinct URL available on the
Internet. In case that one service is down, the VIEW system
can dynamically switch to an alternative service.

6.2 VIEW-Based FiberFlow System

VIEW is an application-independent SWFMS, serving as a
foundation on which various SWFASs can be developed
according to their own domain-specific requirements. The
FiberFlow system is such an SWFAS developed for
automatic transforming the large-scale neuroimaging data
to knowledge through cross-subject, cross-modality com-
putation, ultimately leading to high clinical intelligence and
more informed and accurate decision making in various
neural diseases.

The complexity of workflows in the FiberFlow system
poses the grand challenges which can be summarized in the

following three aspects. First, each workflow may produce
a large amount of processed data under different experi-
mental parameter settings. All analytical results and
intermediate results vary from data types and formats,
and therefore generate great challenges for data manage-
ment. Second, some computation-intensive tasks are
required to be performed on distributed Grid environments
in order to reduce the wait time. Third, most tasks in
FiberFlow are also interaction-intensive and visualization-
intensive, as domain scientists need to frequently manip-
ulate, process, and evaluate the imaging data. Due to the
aforementioned challenges, an SWFMS is ideal to manage
all the research artifacts to speed up the effective FiberFlow
exploratory process.

Fig. 6b demonstrates a typical workflow designed in the
FiberFlow system which is to automate population-based
statistical analysis of the variances of fiber bundle shapes
and fiber connectivity strengths among normal individuals
and patients [25]. Most data products involved in this
workflow are volume image files, such as Magnetic
Resonance Imaging (MRI) and Diffusion Tensor Imaging
(DTI). They are stored in the Analyze format, which is one of
the standard formats for 3D medical imaging. All tasks in
this workflow are implemented as Windows-based applica-
tions, and some of them require client-side user interactions
to identify Regions of Interests (ROIs).

In a nutshell, the first task is to perform segmentation
using the Brain Extraction Tool (BET), which segments a
subject’s neocortex based on DTI and MRI imaging data,
and outputs new volume image files with the subject’s
skull being stripped away. These files become the input for
the Volume Alignment (VA) task. This task conducts spatial
mappings between the two skull-stripped DTI and MRI
files and generates a text file containing a matrix of all
mapping parameters. Besides BET, another preprocessing
task is called Tensor Fit (TF). It computes tensor fields using
DTI data and generates various invariant metrics which,
together with other outputs derived from BET and VA, are
inputs of the Fiber Tracking task for fiber tractography [26].
To derive a population-based statistics on human brains of
varying sizes and shapes, the Conformal Mapping (CM) task
is applied to perform an intersubject registration, which
maps skull-stripped MRI to a common 3D template space.

88 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 6. (a) The VIEW Workbench embedded with five subsystem control panels and a workflow design panel, and (b) a user-interaction-intensive and

visualization-intensive scientific workflow displayed in a customized GUI for the VIEW-based FiberFlow system.

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

Meanwhile, the text-based output from the Fiber Track
task, together with all volume files from TF, are applied
with the Fiber Bundle Estimator task to identify the specific
fiber bundle of interest and computes its isosurface.
The user interactions for picking up ROIs are required in
this task. Then, a volume file recording ROI bundles is
produced and supplied to the ROIs Connectivity (RC) task.
Based on the DTI imaging, RC creates a probabilistic model
based on the Bayesian inference theory and estimates
connectivity between ROIs. The task’s output recording 3D
fiber bundles becomes the input of Skeletonization, and the
result from Skeletonization is supplied to the Shape Metric
Computation (SMC) task to generate quantitative shape
descriptors. Finally, the Statistical Evaluation task collects
all data products generated from CM, RC, and SMC to
produce statistical results using the t-distribution. The
statistical results can be visualized by the Visualization task,
using the MRI as the spatial context with the affected
tissues labeled and the statistical variations colored with
different colormaps.

The service-oriented architecture of VIEW enables a fast
and convenient development of the FiberFlow system, by
customizing subsystem GUIs, while reusing the underlying
VIEW Kernel. Some customizations are performed on the
FiberFlow Workbench without changing any source codes
of the VIEW Workbench (see Fig. 6b). For example, the
VIEW Workbench provides the options for users to choose
which subsystem GUI to be displayed on the control panel.
Users can also customize icons, menus, font size, and color
in the workflow design panel to make the look-and-feel
consistent with other nonworkflow-based subsystems em-
bedded in FiberFlow. We plan to collect more use case
scenarios to improve the flexibility and configurability of
customizing the VIEW Workbench for different scientific
domains. By reusing the VIEW Kernel, the Task Manager
and the Data Product Manager manage a library of software
tools and data products for this domain. The Workflow
Engine manages our entire set of FiberFlow workflows
composed by existing software tools and data products. The
Workflow Monitor is used to monitor workflow execution
progress, and the Provenance Manager is employed for
provenance management, on which provenance mining
and provenance visualization are being conducted for our
domain-specific analysis.

7 EVALUATING REPRESENTATIVE SWFMSS USING

THE REFERENCE ARCHITECTURE

In this section, we evaluate five representative SWFMSs
using the proposed reference architecture: Taverna [27],
Kepler [28], Triana [14], Pegasus [12], and Swift [11]. The
analysis is performed based on the seven key architectural
requirements in the context of the proposed reference
architecture. Our evaluation criteria are as follows: if a
system provides a full support to the specified requirement,
a score of “+” will be assigned; if no support is provided to a
particular requirement, a score of “–” will be assigned; a
partial score of “+/–” will be assigned to a system when the
support is clearly partial or when there is an ambiguity
associated with such support. With respect to each require-
ment, we also describe a summary of the five systems to
shed some lights on the state of the art. We have left out our
own VIEW system in this study to avoid a biased evaluation.

The evaluation results are presented in Fig. 7. We observe
that Pegasus and Swift provide weak user interaction
support (R1), mainly due to the technical challenge of
supporting interaction in a batch-based grid system, while
Taverna, Kepler, and Triana provide better user interaction
support. Currently, almost all these systems have poor
support to user interface customizability (R1) due to the
tightly coupled nature between system interfaces and
runtime subsystems. All the five systems currently support
provenance (R2), emphasizing the importance of prove-
nance in SWFMSs. However, since the provenance module
is closely coupled with its owner SWFMS in these systems,
reuse of the provenance subsystem across other SWFMSs is
difficult. Taverna, Kepler, and Triana have partial support
to the integration of heterogeneous services and software
tools (R3), while Pegasus and Swift focus only on grid-based
applications. Therefore, a general framework that can
provide an abstraction of heterogeneous services and
applications as workflow tasks is still missing. Such a
framework needs to clearly separate abstraction of a
workflow task from its implementation and provides
mapping and binding mechanisms between the inputs/
outputs of a workflow task to the inputs/outputs to its
wrapped service and application component. Although the
importance of data management has been recently empha-
sized in the scientific workflow community [29], data
product management (R4), particularly the abstraction of
logical data products with transparent data set representa-
tions, formats, and locations, is relatively an unexplored
area in the scientific workflow community. For example,
Pegasus and Swift mainly work at the level of files, while
Taverna and Kepler work at the levels of XML messages,
files, and database records. Only few systems provide some
limited support to the abstraction: Kepler supports the
notion of Nested Data Collections by using custom collec-
tion-oriented actors (coactors), while Swift introduces the
XDTM notation to define a mapping between the logical
organization and the underlying physical structure of data
sets, which are limited to files and directories so far.
Currently, Pegasus and Swift have better support to high-
end computing (R5); in the meanwhile, other systems are
being enhanced in such support: Kepler and Taverna
provide custom tasks to communicate with the Grid
environment, while Triana uses the GAT interface to access
Grid jobs. One challenge for data management is how to
avoid the movement of large amounts of data back and forth
from a Workflow Engine to the Grid environment, while
seamlessly integrating workflow tasks that are services-
based and Grid-based applications. All these five SWFMSs
currently provide some degree of support to workflow

LIN ET AL.: A REFERENCE ARCHITECTURE FOR SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS AND THE VIEW SOA SOLUTION 89

Fig. 7. Architectural evaluation of five SWFMSs.

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

monitoring and failure handling (R6); however, failure
handling for large-scale and distributed scientific workflows
remains a challenge. Finally, interoperability (R7) is poorly
supported in all these SWFMSs, although some limited
pairwise interoperability has been investigated. A commu-
nity-based initiative such as the Open Provenance Model
[30] is a good effort toward this direction, and we expect that
interoperability will become more important when more
and more scientific projects become collaborative and need
the integration of multiple SWFMSs.

8 RELATED WORK

Although the term “scientific workflows” were first coined
by Vouk and Singh in 1996 [31] for workflow applications in
scientific PSEs, only recently, there is an increasing
momentum for the research and development of SWFMSs
and their applications, due to the increasingly demanding
requirements of many compute-intensive and data-inten-
sive scientific applications, enabled by the underlying
advances of computing technologies, notably Services
computing [13], Grid computing [32], and Cloud computing
[17]. Scientific workflows leverage existing techniques
developed for business workflows but deviate from them
as a result of a different set of requirements raised from a
wide range of science and engineering problems [33]. While
business workflows are control flow oriented with the
mission of carrying out business logic to achieve a business
goal, scientific workflows tend to be dataflow oriented and
aimed at enabling, facilitating, and speeding up the
derivation of scientific results from raw data sets.

Although the reference architecture proposed by the
WfMC [2] has been well adopted in the development of
different BWFMSs, including the recent development of the
YAWL system [4] that is aimed at exploring various
workflow patterns [34]. Existing architectures for BWFMSs
are not appropriate for SWFMSs since business workflows
are typically control flow oriented, while scientific work-
flows tend to be dataflow oriented, introducing a new set of
requirements and challenges for system development, from
the requirements of intensive user interaction, customized
user interface, reproducibility, high-end computing, inter-
operability, to heterogeneous data product, service, and
application management. In particular, this reference
architecture does not satisfy the key requirements from R1
to R5 for an SWFMS.

Several SWFMSs have been developed over the past few
years. Although some of them provide architectures, they
are system and domain specific and fail to satisfy some of
the key architectural requirements for SWFMSs identified in
Section 2. The Kepler system [28] is a Java-based open
source SWFMS. Kepler is built upon the Ptolemy II system
and features a monolithic architecture with various exten-
sion modules for functionalities needed for scientific work-
flows [28]. The Taverna system [27] is another Java-based
open source SWFMS mainly targeted for life science.
Taverna features a three-layered architecture [27]: The
Application Data Flow layer provides a user’s perspetive of
a workflow, hiding the complexity of interoperation of
services; the Execution Flow layer is responsible for work-
flow scheduling, service discovery, data, and metadata
management; and the Processor Invocation layer is respon-
sible for the invocation of concrete services. The Triana

system [14] has a sophisticated graphical user interface for
workflow composition and modification, including group-
ing, editing, and zooming functions. Coming from the
gravitational wave field, the system contains a large
repository of tools for data analysis and processing. The
VisTrails system [10] is developed to manage visualizations
and is the first system that supports provenance tracking of
workflow evolution in addition to tracking the data product
derivation history. The Pegasus system [12] provides a
framework which maps complex scientific workflows onto
distributed grid resources. Artificial intelligence planning
techniques are used in Pegasus for workflow composition.
Finally, the Swift system [11] combines a novel scripting
language called SwiftScript with a powerful runtime system
to support the specification and execution of large loosely
coupled computations over Grid environments.

Although these SWFMSs provide much experience in
future research and development, a study from an
architectural perspective is still missing. The lack of a
reference architecture prevents the interoperability between
different systems and limit the reusability, flexibility, and
extensibility of systems, as well as the configuration of
heterogeneous modular subsystems. As a result, it is hard to
execute one scientific workflow across different SWFMSs,
and a subsystem in one SWFMS is not able to be reused by
another SWFMS, even though they provide the same
functionality. Therefore, there is a pressing need for an
architectural reference that can provide a high-level
organization of subsystems and their interactions in an
SWFMS. The availability of such a reference architecture
cannot only provide a guidance for the architectural design
of a particular SWFMS, but also provide a basis to assess
and compare various SWFMSs and promote the interoper-
ability between different systems.

Scientific workflow systems can be seen as one kind of
dataflow-oriented PSEs [31], which provide computational
facilities needed to solve a target class of problems.
Scientific workflow systems are related to and bear some
features of dataflow-based visualization systems, such as
AVS, IBM’s Data Explorer, and SCIRun. From a software
engineering perspective, scientific workflows can be seen as
one methodology for component-based software engineer-
ing, where workflow tasks are the abstraction of software
components, and a scientific workflow application is
developed by the construction of workflow tasks and their
composition. As most scientific workflow systems provide
user-friendly interfaces for designing scientific workflows,
scientific workflows are closely related to the field of visual
programming languages, where not only the components
and the structure of scientific workflows need to be
described but also the layout of workflows in display
should be precisely defined.

Our proposed reference architecture aims to be technol-
ogy-independent for long-term sustainability. The VIEW
SOA solution is an instance of this reference architecture in
the light of the well-known S3 SOA reference architecture
[35]. As a result, our VIEW SOA solution is an enhancement
of the reference architecture with all the advantages
brought by the SOA technology.

This paper extends [36] with the following additional
contributions:

90 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

1. the architecture of the Data Product Manager is
provided in details;

2. in Section 4.2, we introduce a new architectural
component, called Task Executor, to support task
execution in heterogeneous and distributed environ-
ments;

3. we add an innovative Configuration Management
service to dynamically configure, invoke, and
manage VIEW subsystems and VIEW Task Execu-
tors, resulting in a new section, Section 5;

4. a newly developed SWFAS, called FiberFlow, is
introduced in Section 6 to showcase an application of
the VIEW system.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the first reference architecture
for SWFMSs and presented an SOA solution for the VIEW

system. We implemented VIEW to validate the feasibility of
the proposed architectures and introduced an SWFAS,
the FiberFlow system, to showcase the applications of our
VIEW system. Ongoing work includes the extension of our
architecture to address security issues, a more comprehen-
sive evaluation of the VIEW system, and the development of
various SWFASs using VIEW.

ACKNOWLEDGMENTS

The architects of this paper were Cui Lin and Shiyong Lu.
The developers of the VIEW Kernel were Cui Lin, Xubo Fei,
and Artem Chebotko. The developers of the VIEW Work-
bench were Cui Lin, Xubo Fei, and Zhaoqiang Lai. The
developers of the FiberFlow system were Cui Lin and
Darshan Pai. The advisors of this paper were Shiyong Lu,
Farshad Fotouhi, and Jing Hua. This research was
supported in part by Michigan Technology Tri-Corridor
basic research grant MTTC05-135/GR686 and US National
Science Foundation grant IIS-0713315. The authors give
thanks to Mr. Chunhyeok Lim, who was involved in the
implementation of the VIEW Data Product Manager.

REFERENCES

[1] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, C. Pautasso,
T. Heinis, R. Grønmo, H. Hoff, A. Berre, M. Glittum, and S.
Topouzidou, “Developing Scientific Workflows from Heteroge-
neous Services,” SIGMOD Record, vol. 35, no. 2, pp. 22-28, 2006.

[2] D. Hollingsworth, Workflow Management Coalition Specification: The
Workflow Reference Model, Document Number TC00-1003, v. 1.1,
1995.

[3] P. Grefen and R. de Vries, “A Reference Architecture for
Workflow Management Systems,” Data Knowledge Eng., vol. 27,
no. 1, pp. 31-57, 1998.

[4] W. van der Aalst, L. Aldred, M. Dumas, and A. ter Hofstede,
“Design and Implementation of the YAWL System,” Proc. Center
for Advancement of Informal Science Education Conf. (CAiSE ’04),
pp. 142-159, 2004.

[5] L. Liu, C. Pu, and D. Ruiz, “A Systematic Approach to Flexible
Specification, Composition, and Restructuring of Workflow
Activities,” J. Database Management, vol. 15, no. 1, pp. 1-40, 2004.

[6] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh,
“Webwork: METEOR2’s Web-Based Workflow Management
System,” J. Intelligent Information Systems, vol. 10, no. 2, pp. 185-
215, 1998.

[7] G. Alonso, R. Günthör, M. Kamath, D. Agrawal, A. Abbadi, and C.
Mohan, “Exotica/FMDC: A Workflow Management System for
Mobile and Disconnected Clients,” Distributed and Parallel Data-
bases, vol. 4, no. 3, pp. 229-247, 1996.

[8] F. Leymann and D. Roller, “Business Process Management with
FlowMark,” Proc. IEEE CS Int’l Conf. (COMPCON ’94), pp. 230-
234, 1994.

[9] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.
Jones, E. Lee, J. Tao, and Y. Zhao, “Scientific Workflow Manage-
ment and the Kepler System,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1039-1065, 2006.

[10] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H.
Vo, “VisTrails: Visualization Meets Data Management,” Proc.
Special Interest Group on Management of Data Conf. (SIGMOD ’06),
pp. 745-747, 2006.

[11] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Vonlaszewski, I.
Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, Reliable, Loosely
Coupled Parallel Computation,” Proc. IEEE Int’l Workshop Scien-
tific Workflows (SWF ’07), pp. 199-206, 2007.

[12] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. Berriman, J. Good, A. Laity, J. Jacob,
and D. Katz, “Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems,” Scientific Pro-
gramming J., vol. 13, no. 3, pp. 219-237, 2005.

[13] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. Greenwood,
T. Carver, K. Glover, M. Pocock, A. Wipat, and P. Li, “Taverna: A
Tool for the Composition and Enactment of Bioinformatics
Workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045-3054, 2004.

[14] S. Majithia, M. Shields, I. Taylor, and I. Wang, “Triana: A
Graphical Web Service Composition and Execution Toolkit,” Proc.
IEEE Int’l Conf. Web Services (ICWS ’04), pp. 514-524, 2004.

[15] L. Zhang, J. Zhang, and H. Cai, Services Computing. Springer, 2007.
[16] C. Lin and S. Lu, “Architectures of Workflow Management

Systems: A Survey,” Technical Report TR-SWR-01-2008, 2008.
[17] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid

Computing 360-Degree Compared,” Proc. IEEE Grid Computing
Environments Workshop, pp. 1-10, 2008.

[18] D. Georgakopoulos, M. Hornick, and A. Sheth, “An Overview of
Workflow Management: From Process Modeling to Workflow
Automation Infrastructure,” Distributed and Parallel Databases,
vol. 3, no. 2, pp. 119-153, 1995.

[19] K. Ostrowski, K. Birman, and D. Dolev, “Extensible Architecture
for High-Performance, Scalable, Reliable Publish-Subscribe Event-
ing and Notification,” Int’l J. Web Service Research, vol. 4, no. 4,
pp. 18-58, 2007.

[20] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and
Querying Scientific Workflow Provenance Metadata Using an
RDBMS,” Proc. Second IEEE Int’l Workshop Scientific Workflows and
Business Workflow Standards in E-Science, pp. 611-618, 2007.

[21] M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, “Efficient
Schema-Based XML-to-Relational Data Mapping,” Information
Systems, vol. 32, no. 3, pp. 458-476, 2007.

[22] A. Chebotko, M. Atay, S. Lu, and F. Fotouhi, “XML Subtree
Reconstruction from Relational Storage of XML Documents,” Data
Knowledge Eng., vol. 62, no. 2, pp. 199-218, 2007.

[23] T. Erl, Service-Oriented Architecture Concepts, Technology and Design.
Pearson Education, Inc., 2005.

[24] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, and F. Fotouhi,
“VIEW: A Visual Scientific Workflow Management System,” Proc.
IEEE Int’l Workshop Scientific Workflows (SWF ’07), pp. 207-208,
2007.

[25] D. Pai, O. Muzik, and J. Hua, “Quantitative Analysis of Diffusion
Tensor Images Across Subjects Using Probabilistic Tractography,”
Proc. Int’l Conf. Image Processing (ICIP ’08), pp. 1448-1451, 2008.

[26] C. Lin, S. Lu, X. Liang, J. Hua, and O. Muzik, “Cocluster Analysis
of Thalamo-Cortical Fiber Tracts Extracted from Diffusion Tensor
MRI,” Int’l J. Data Mining and Bioinformatics, vol. 2, no. 4, pp. 342-
361, 2008.

[27] T. Oinn, M. Greenwood, M.J. Addis, M.N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D.J. Marvin, P. Li,
P. Lord, M.R. Pocock, M. Senger, R. Stevens, A. Wipat, and
C. Wroe, “Taverna: Lessons in Creating a Workflow Environment
for the Life Sciences,” J. Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1067-1100, 2002.

[28] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance Collection
Support in the Kepler Scientific Workflow System,” Proc. Int’l
Provenance and Annotation Workshop (IPAW ’06), pp. 118-132, 2006.

[29] E. Deelman and A. Chervenak, “Data Management Challenges of
Data Intensive Scientific Workflows,” Proc. IEEE Int’l Symp.
Cluster Computing and the Grid (CCGRID ’08), pp. 687-692, 2008.

LIN ET AL.: A REFERENCE ARCHITECTURE FOR SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS AND THE VIEW SOA SOLUTION 91

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

[30] Open Provenance Model, http://twiki.ipaw.info/bin/view/
Challenge/OPM, 2009.

[31] M. Vouk and M. Singh, “Quality of Service and Scientific
Workflows,” Proc. Working Conf. Quality of Numerical Software,
pp. 77-89, 1996.

[32] J. Yu and R. Buyya, “A Taxonomy of Scientific Workflow Systems
for Grid Computing,” SIGMOD Record, vol. 34, no. 3, pp. 44-49,
2005.

[33] I. Taylor, E. Deelman, D. Gannon, and M. Shields, Workflows for
E-Science. Springer-Verlag London, Ltd., 2007.

[34] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, vol. 14,
no. 1, pp. 5-51, 2003.

[35] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K. Channabasa-
vaiah, “S3: A Service-Oriented Reference Architecture,” IT
Professional, pp. 10-17, 2007.

[36] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi,
“Service-Oriented Architecture for VIEW: A Visual Scientific
Workflow Management System,” Proc. IEEE Int’l Conf. Services
Computing (SCC ’08), pp. 335-342, 2008.

Cui Lin received the BE degree from Beijing
Information Technology Institute. She is cur-
rently working toward the PhD degree at the
Department of Computer Science, Wayne State
University. She spent a few years working for
IBM as a system analyst and the project
manager, and certified as an IBM DB2 expert.
She is currently a member of the Scientific
Workflow Research Laboratory (the SWR Lab).
Her research interests include scientific work-

flows, services computing, and bioinformatics. She has published
several refereed international journals and conference papers, and
currently serves as a publication chair for an international workshop on
scientific workflows. She is a student member of the IEEE.

Shiyong Lu received the PhD degree from the
State University of New York at Stony Brook in
2002. He is currently an assistant professor in
the Department of Computer Science, Wayne
State University, and the director of the Scientific
Workflow Research Laboratory. His research
interests include scientific workflows and data-
bases. He has published more than 70 refereed
international journal and conference papers in
the above areas. He is the founder and currently

a cochair of the IEEE International Workshop on Scientific Workflows,
an editorial board member for International Journal of Medical
Information Systems and Informatics, and for International Journal of
Semantic Web and Information Systems. He also serves as a program
committee member for several top-tier IEEE conferences including SCC
and ICWS. He is a member of the IEEE.

Xubo Fei is currently working toward the PhD
degree in the Department of Computer
Science, Wayne State University. His current
research interests include scientific workflows
and their applications in bioinformatics and
biology simulation.

Artem Chebotko received the BS degree in
computer science from Ukraine State Maritime
Technical University, the MS degree in manage-
ment information systems from Ukraine State
Maritime Technical University, and the PhD
degree in computer science from Wayne State
University. He is an assistant professor in the
Department of Computer Science, University of
Texas—Pan American. His research interests
include scientific workflow provenance metadata

management and semantic web data management. He currently serves
as a program committee member of two international workshops on
scientific workflows. He is a member of the ACM and the IEEE.

Darshan Pai received the MS degree in
computer engineering with a specialization in
software systems from Wayne State University.
He is currently working toward the PhD degree
at the Department of Computer Science, Wayne
State University. Currently he is a part of the
Graphics and Imaging Lab conducting research
in 3D medical image visualization and analysis.
He is also a research contributor to the School of
Medicine, Wayne State University. He is a

student member of the IEEE.

Zhaoqiang Lai received the BS and MS
degrees from Huazhong University of Science
and Technology in 2003 and 2006, respectively.
He is currently working toward the PhD degree
at the Department of Computer Science, Wayne
State University, and a research assistant in the
Graphics and Imaging Laboratory. His research
interests include computer graphics and visuali-
zation.

Farshad Fotouhi received the PhD degree in
computer science from Michigan State Univer-
sity in 1988. In August 1988, he joined the faculty
of Computer Science at Wayne State University,
where he is currently a professor and the chair of
the department. His major areas of research
include XML databases, semantic Web, multi-
media systems, and query optimization. He has
published more than 100 papers in refereed
journals and conference proceedings, served as

a program committee member of various database-related conferences.
He is on the Editorial Boards of the IEEE Multimedia Magazine and
International Journal on Semantic Web and Information Systems. He is
a member of the IEEE.

Jing Hua received the MS and PhD degrees in
computer science from the State University of
New York at Stony Brook in 2002 and 2004,
respectively. He is an assistant professor of
computer science at Wayne State University and
the director of the Graphics and Imaging Lab. His
research interests include computer graphics,
visualization, biomedical imaging, and infor-
matics, and his research is currently funded by
the US National Science Foundation, the NIH,

and the Michigan State Foundations. He serves as an editorial board
member for Scientific Journals International and International Journal of
Technology Enhanced Learning and a program committee member for
many international conferences. He is a member of the IEEE.

92 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Authorized licensed use limited to: Wayne State University. Downloaded on April 19, 2009 at 12:58 from IEEE Xplore. Restrictions apply.

