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Abstract
3D non-rigid shape correspondence, as an important research topic in 3D shape analysis, is useful but challenging in computer
graphics, computer vision, and pattern recognition. Despite recent success of several deep neural networks for shape corre-
spondence, those networks cannot achieve robust results on non-rigid objects due to their local deformation complexity. This
paper presents a novel and efficient shape correspondence network—Shared Optimized Res-CapsuleNet (SORCNet)—that
learns point features based on enhanced descriptors to solve dense correspondence between non-rigid 3D shapes. To further
improve the iterative efficiency and accuracy of the model, we design an optimized residual network structure, based on the
stochastic gradient descent algorithm with momentum and weight decay (SGDW). Moreover, as the convolutional neural
network does not perform well when the shape has directional variance, we present a shared capsule network structure with
dual routings, which correlates the hierarchical geometric relationships of the semantic parts well to extract more informative
point features. We proved that the primary capsule has a greater influence on feature extraction than the routing and decoder
parts. The entire network, SORCNet, is integrated and trained/tested by taking the descriptors and Laplacian eigenbases of
two shapes as input. The experiments on public datasets, such as FAUST, SCAPE, TOSCA and KIDS, demonstrate the better
effectiveness, accuracy, and adaptability of our method than those of the state of the art in 3D shape correspondence.

Keywords Shape correspondence · Shape descriptors · Optimized residual networks · Capsule networks

1 Introduction

Driven by the rapid developments of various 3D sensors [1],
3D shape correspondence has become increasingly impor-
tant in 3D shape analysis, which is the foundation for shape
registration, recognition, retrieval, segmentation, etc. For
non-rigid shape correspondence, the main difficulties are that
the arbitrary deformation of shape causes additional com-
plexity, and there are so many variables required to define
the dense mapping. Even though some progresses [2–4] have
been made, the task of finding dense shape correspondence
is still very challenging.
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The non-rigid shape correspondence problem can be sum-
marized as finding a point-wise matching between the points
of two shapes. Traditional approaches minimize certain
structure distortion, such as local features [5,6], geodesic
[2,7] or diffusion distances [8], to establish the matching.
Generally, those methods have a high computational com-
plexity, and may produce a dense correspondence with poor
surjectivity. Another kind of matching methods attempt to
solve the correspondence in a parameterized domain or func-
tional space with fewer degrees of freedom. For example,
some of them restrict the correspondence space to confor-
mal maps [3,9], and some [10,11] choose the eigenfunction
of the Laplace–Beltrami operator as the embedding coor-
dinates to compute the matching in the eigenspace. Unlike
the point-wise correspondence method, the soft correspon-
dence method maps one point on one shape to more than one
point on the other shape. Ovsjanikov et al. [4] introduced a
soft correspondence framework, named functional maps, by
mapping the correspondence between shapes to linear opera-
tors between function spaces, with an effective representation
of the Laplacian eigenbases. The pipeline of this framework
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can be found in Fig. 1 . This idea has been extended by sev-
eral subsequent works [12,13]. Litany et al. [14] combined
it with deep learning and proposed a deep neural network
architecture called FMNet to obtain a good approximation
of the functional map. Despite the flexibility the framework
has, the highly expressive descriptor functions and a large
number of constraints are required to obtain a good solution.

As aforementioned, the functional maps framework
requires descriptor functions and Laplacian eigenbases as
input. For shape descriptors, they can be roughly divided into
two categories: handcrafted shape descriptors [5,15,16] and
learning-based shape descriptors [17,18]. Some approaches
also use deep neural networks to enhance the representa-
tion ability of descriptors [19]. In the deep functional maps
framework, extracting features to get high-quality, robust and
informative descriptor functions is the key. There have been
several deep feature extraction methods proposed. Particu-
larly for objects with position and direction information, the
recent capsule network [20] has achieved good results in 2D
domains [21,22] and been gradually extended to 3D data [23].

Inspired by the deep functional map [14], we propose a
new deep learning method for the shape correspondence,
SORCNet, to further improve the convergence rate in the
model design and better capture the shape features by using
the latent capsule. For most Non-Rigid Shape Correspon-
dence methods, they focused on extracting features using
classical descriptors or DNN. On the contrast, CapsNet
allows a powerful semantic understanding of the shapes’
components and their directions and positions. But, the draw-
back is that the convolution layer in the standard CapsNet is
not capable enough to build capsules that can describe the
sophisticated features in the dataset. Based on this observa-
tion, we see a great room to explore and create a new, better
algorithm. We use the optimized ResNet derived from the
SGDW algorithm, which provides efficient feature extrac-
tion and description, for the construction of the main capsule
and the decoding of the potential capsule. Our approach is
general, and we have demonstrated its efficiency in extract-
ing descriptors for Non-Rigid shapes. The SORCNet mainly
includes two components. The first one is to propose an
optimized residual network to learn the enhanced descrip-
tors and obtain shape correspondence from a pair of shapes.
The second one is to use the stacked latent vectors to learn
the features for the shape matching/deformation and their
probability and hierarchy in the network, which can greatly
improve the approximation of the functional maps.

Our main contributions can be summarized as follows:

– We propose an optimized network structure inspired by
the SGDW algorithm, called OptResBlock, to enhance
the expressive ability of the network, which outperforms
the original network with a higher accuracy.

Fig. 1 The pipeline of the functional maps framework. In this frame-
work, functional maps can be concisely represented as a matrix C

– Due to the nice property from capsule network structure
(e.g., describing the shape size, direction, and deforma-
tion informatively, robustness to affine transformation,
etc.), a shared capsule network architecture for 3D
descriptor learning (i.e., with shared parameters for two
shapes), called Desc-CapsNet, is proposed to extract
features from two shapes, in order to obtain more pow-
erful descriptor functions with various shape parameters
concentrating not spatially but semantically across the
shapes. It lead to faster network convergence while sig-
nificantly improving correspondence accuracy.

– We present a dual routings procedure (a sigmoid dynamic
routing and an attention EM routing) for higher classi-
fication accuracy of capsules. Besides, we modify the
traditional geodesic distance loss to a spectral loss func-
tion by defining the ground-truth domain correspondence
matrix and considering the orthogonality constraint of the
ideal domain mapping matrix, leading to a faster calcu-
lation time and better accuracy.

– Experiments on accuracy, generalization and conver-
gence efficiency with different datasets have shown great
improvements when integrating the proposed OptRes-
Block and the shared Desc-CapsNet in the uniquely
designed architecture. It demonstrates that the shared
Desc-CapsNet can effectively learn the descriptors and
outperforms the state-of-the-art deep learning methods
as well as traditional methods, especially when adding
the optimized block (i.e. Our integrated SORCNet).

2 Related work

The calculation of the correspondence between 3D shapes
is a very important research field in computer vision. We
review the most closely related methods below, and interested
readers can refer to the survey articles [24,25] and go deeper
into other shape correspondence methods.
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2.1 Non-rigid shape correspondence technology

Various algorithms for shape correspondence have been pro-
posed so far. The most commonly used is the traditional shape
matching method based on statistical features, and many
scholars have carried out further work on the basis of fea-
ture descriptors. Rodolà et al. [26] used random forests to
classify shapes based on their wave kernel signature (WKS)
features to solve the shape matching problem and achieve
good results. With the advent of deep learning technique, it
has been used to obtain the correct deformation model from
3D data directly. Monti et al. [27] generalize the CNN archi-
tecture to non-Euclidean domains (graphs and manifolds) to
learn local, stationary, and compositional task-specific fea-
tures. Wang et al. [28] parameterize the multi-scale localized
neighborhoods of a keypoint into regular 2D grids and use a
triplet network to derives discriminative local descriptors of
3D surface for non-rigid shape matching. The SplineCNN
[29] advances a novel convolution operator based on B-
splines, which makes the computation time independent from
the kernel size for irregular structured and geometric input.
Specifically, a landmark framework called functional maps
[4] represents maps between shapes as small matrices encod-
ing relations between basis functions of the shapes. This
framework is described and expanded in [30]. Inspired by
that, several learning methods have been proposed for pre-
dicting structured maps [12–14,31] rather than labeling each
point independently. But the weakness is that the optimal-
ity criterion is generally obtained in line with the deviation
from the ground-truth functional maps, so that errors in pre-
computed descriptors will result in mapping deviation. Thus,
based on the supervised learning approach, self-supervised
and unsupervised learning methods have been proposed
[32,33]. However, those methods rely heavily on the selec-
tion of descriptors and cannot efficiently represent the local
deformation of the shape. Compared with those, our SORC-
Net can fully extract the information such as the direction and
position of the descriptor to the feature space to obtain higher
robustness, correspondence accuracy and generalization.

2.2 Capsule network

The CapsNet is introduced by Hinton et al. [20,34] and
becomes a popular new neural network architecture due to
its improved performance in many aspects of image pro-
cessing. Because of its general applicability and robustness
to affine transformations, etc., capsule network has been
widely used in 2D deep learning. Durate et al. [21] proposed
the concept of “capsule pool,” extending the capsule net-
work to the subdivision and classification of actions. Lin
et al. [22] demonstrated that capsule networks can learn
more meaningful 2D manifold embeddings than traditional
CNNs. For optimization of the original complex dynamic

routing, Hinton et al. [35] improved the routing by expecta-
tion maximization (EM) algorithm. Chen and Crandall [36]
presented “trainable routing” to make capsules better clus-
tered. Since the capsule network has achieved great success
in the field of 2D image processing, some researchers con-
sider about extending the capsule networks to 3D domain.
Zhao et al. [23] presented 3D point-capsule networks, to
extract local 3D features while maintaining the invariance of
the spatial arrangement of the input point cloud data. Cher-
aghian and Petersson [37] extended the concept of capsule
in 3D and introduced 3DCapsule for point clouds. It intro-
duces a new module, ComposeCaps, which replaces spatially
related feature mapping and learns new mapping. In our
work, we extend the capsule network to translate the infor-
mation from descriptors to latent feature space. From the
perspective of learning for two sets of data, it is necessary
to share weights in our Desc-CapsNets between two tasks
to model the sophisticated attribute relationships, which can
lead to higher robustness and learning efficiency of the SOR-
CNet.

2.3 Optimized network structure design

There have been extensive works done on the structural
design of neural networks. Early neural network designs
were based on generic algorithms to find the architecture
and weights [38]. Domhan et al. [39] uses Bayes to optimize
the network architecture. Some researchers [40,41] adapt the
adaptive strategy to extend the network structure layer by
layer from a small network according to some principles.
Although impressive results have been achieved, they do not
explicitly indicate where the connections should occur in
the network architecture. In [42], it is demonstrated that the
structure of the neural network can be designed inspired by
the optimization algorithm. The optimization algorithm is a
type of method that can help us to minimize or maximize
the objective function (sometimes called the loss function).
The standard feedforward neural networks have been proved
that propagation in a neural network is equivalent to using
a gradient descent algorithm to minimize certain functions
f (x) [42], which means that faster optimization algorithms
can inspire better neural network structures. There are many
optimization algorithms proposed to solve the general opti-
mization problem, i.e., minx f (x). The gradient descent
(GD) algorithm [43] is one of the most commonly used
optimization methods and is the basis of many other opti-
mization algorithms. In order to increase the iteration speed
and improve the accuracy of the model, our OptResNet uses
the SGDW [44] algorithm to optimize the propagation struc-
ture of the residual network to enhance the input descriptors
of shapes.
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3 Correspondence with functional maps

Our work is based on a manifold functional maps framework
and the Laplace–Beltrami operator describing manifolds. For
the basic concepts and processes of specific functional maps,
we refer readers to [30].

The Laplace–Beltrami operator [45] is a second-order dif-
ferential operator defined on a Riemannian manifold, which
is a generalization of the Laplacian operator in the Euclidean
space. It essentially describes the coordinate value of a point
in space and the mean value of its neighborhood coordi-
nates. For a compact closed manifold A, an indicator function
f : A → R is constructed and can be represented as a linear
combination of basis functions:

f =
∑

i≥1

aiφ
A
i (1)

where φi , i = 1, 2, . . . denotes the eigenfunctions which
form an orthonormal basis for f . ai = 〈f, Œi〉A denotes the
coefficient corresponding to the ith eigenfunction. f is the
corresponding discretization of the smooth function f .

As described in [30], we consider a correspondence
between points of two shapes A and B as a linear opera-
tor T : f (A) → f (B), which means mapping functions
on A to functions on B. The map T can be expressed as a
matrixCwith coefficients {c ji }. When A and B are equipped
with a set of basis functions {φi } and

{
ψ j

}
calculated by the

Laplacian eigenfunctions, respectively, we have:

T ( f ) =
∑

j≥1

∑

i≥1

ai c jiψ j (2)

Note that for
{
c ji

}
in matrixC, if {φi } and

{
ψ j

}
are orthog-

onal to some inner products 〈·, ·〉, {
c ji

} = 〈T (φi ), ψ j 〉. The
basis functions truncate the series in Eq. (2) after the first k
coefficients to calculate domain mapping matrix C, which is
approximate to the original map. Supposing there exists an
operator applied on a pair of shapes A and B, it will pro-
duce a set of pairs of corresponding descriptor functions.
That means, given a pair of coefficients ai = 〈f, Œi〉 and
bi = 〈g,  j〉 in the bases {φi } and

{
ψ j

}
respectively, and

stack them into the columns of matrices A1 and B1, then,
the optimization problem of the networks can be defined as
computing the optimal functional map C:

Copt = arg min
C

‖CA1 − B1‖2 (3)

4 SORCNet design

In this paper, we build an end-to-end deep neural net-
work named “Shared OptRes-CapsNet” (SORCNet) upon

the functional maps framework. We believe that CapsNet
allows a powerful understanding of the shapes’ components
and their directions and positions. Since the convolution
layer in the standard CapsNet is not perfect enough to build
capsules that can describe the sophisticated features in the
dataset, we use the optimized ResNet derived from the
SGDW algorithm, which provides efficient feature extrac-
tion and description, for the construction of the main capsule
and the decoding of the potential capsule.

The basic pipeline can be described by the following steps:
first to calculate the first k eigenfunctions of the Laplace–
Beltrami operators on a pair of shapes; second, to learn the
descriptor functions of shapes, and express it upon the basis
of the corresponding shape from the equations A1 and B1;
third, to calculate the k × k correspondence matrix C by
solving an least squares problem according to Eq. (3); finally,
to compute the spectral error loss according to the ground-
truth point-wise mapping, and obtain the soft correspondence
between shapes A and B. The entire network architecture is
given in the right box in Fig. 2.

Our network takes two sets of descriptors as inputs and
outputs the enhanced descriptors using same parameters.
Generally, the capsule is a set of vectors. The length of
a capsule represents the probability of the existence of an
entity, and the direction represents the instantiated param-
eters, such as hand position, size, direction and shape. In
the propagation, each lower-level capsule delivers learned
and predicted data to the higher-level capsule. If multiple
predictions agree, the higher-level capsule becomes active.
The SORCNet firstly learn descriptors with two optimization
residual networks. Then, the extracted features are max-
pooled and concatenated to form the primary capsules.

4.1 Enhanced primary capsules

According to a study by Li et al. [42], the propagation in the
neural network is equivalent to using the gradient descent
algorithm to minimize some function F(x). For the feedfor-
ward neural network, at each layer, a linear transformation
is applied to the input xk and then a nonlinear transforma-
tion follows, which can be described as xk+1 = Φ(Wkxk).
Different from the linear transformation A of traditional
optimization, Wk is learnable so that each layer has a differ-
ent linear transformation matrix. Drawing inspiration from
that, we derive a new network structure formula θi+1 =
Φ (Uθi ) + (α − wi )θi − αθi−1 from the SGDW algorithm
to enhance the representation ability of capsules. From the
derivation results, to a certain extent, ResNet and DenseNet
can also be seen as special cases of neural network struc-
tures inspired by optimization algorithms. In this subsection,
we give a proof of the relation between the neural network
structure and the GD optimization algorithm and describe
the derivation process of the new network structure.
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Fig. 2 The framework of our proposed network SORCNet (Shared
OptRes-CapsNet). We input the 352-d SHOT descriptors and the Lapla-
cian eigenfunctions from a pair of shapes and then obtain refined
descriptors through the optimization blocks and splice with the SHOT
operators, which are projected onto the Laplacian basis eigenfunctions
{φi } and

{
ψ j

}
to produce the spectral representations A1 and B1. The

functional map is represented by Eq. (3), and the loss is derived from Eq.
(20). The two OptRes-CapsNets, respectively, share weights for the two
sets of data. The purple box above is the structure of OptRes-CapsNet.
The green box at the bottom left shows the structure of OptResBlock
for the primary capsule construction

In the standard feedforward neural network, the propaga-
tion of each layer can be expressed as:

θi+1 = Φ (Uθi ) (4)

where θi is the output of the i-th layer, Φ(·) is an activation
function, and U is a linear transformation. In the structural
design stage, the weight matrix U is considered to be fixed
for analysis. In order to relate Eq. (4) to the gradient descent
process ξk+1 = ξk−∇(ξk), it is necessary to find an objective
function F (ξ) to optimize.

Lemma 1 Assume that U is a symmetric positive definite
matrix. Set V = √

U. Then, there is a function f (ξ) that
makes Eq. (4) be equivalent to optimize F (ξ) = f (Vξ):

(1) Define a new variable Ψ ′(ξ) = Φ(ξ).
(2) Use gradient descent algorithm to optimize f (ξ).
(3) Obtain θ0, θ1,..., θk from ξ0, ξ1,..., ξk through θ =

V−1ξ .

For the commonly used activation function Φ(ξ), define
function Ψ ′(ξ) such that Ψ ′(ξ) = Φ(ξ). Then, an expres-

sion can be obtained: ∇ ∑
j Ψ

(
VT

j ξ
)

= VΦ(VT ξi ) =
VΦ(Vξi ).

Proof Let f (ξ) be defined as:

f (ξ) = ‖ξ‖2

2
−

∑

j

Ψ
(
VT

j ξ
)

, VT
j ξ > 0 (5)

where V j is the j-th column of the matrix V. Then, we have:

∇ f (ξi ) = ξi − VΦ(Vξi ) (6)

using the iteration of the GD algorithm to minimize Eq. 5.
We have:

ξi+1 = VΦ(Vξi ) (7)
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Recover θ by θ = V−1ξ , which leads to:

θi+1 = V−1ξi+1 = Φ(V ξi ) = Φ(V 2θi ) = Φ (Uθi ) (8)

which is the same as Eq. (4), and the proof is complete. 
�
Then, we replace the GD algorithm with the SGDW algo-

rithm. The SGDW algorithm is an improved algorithm of
gradient descent. It adds a momentum after the gradient
descent step. The original formula of SGDW is expressed
by:

xt+1 = xt − vt − ηwt xt , vt = γ vt−1 + ηgt (9)

And it can be simplified as an equivalent form of:

ξi+1 = ξi − ∇ f (ξi ) + α (ξi − ξi−1) + wiξi (10)

Substitute Eq. (6) in Eq. (10). Then, it becomes:

ξi+1 = VΦ(Vξi ) + α(ξi − ξi−1) − wiξi (11)

Identically, recover θ by θ = V−1ξ , we have:

θi+1 = Φ (Uθi ) + (α − wi )θi − αθi−1 (12)

In the previous derivation, Uθi appears as a fully con-
nected linear transformation. It is the product of the matrix
U and the vector θi . Here, it is extended to a convolution
operation. In addition, different layers of the network have
different weight matrices U, and the form of U is not limited
to square matrices, so the input and output sizes can be differ-
ent. Φ is a nonlinear transformation defined by an activation
function, which can be extended to pooling and batch normal-
ization (BN). Φ(·) can be a nonlinear activation, which can
be expressed as a combination of pooling, batch normaliza-
tion, convolution, or fully connected linear transformation.
Through these different combinations, the network structure
Eq. (4) can evolve into different networks.

According to Eq. (12), a neural network structure can
be designed, as an optimized residual network structure
with two shortcuts. When deriving and designing the neu-
ral network structure, the coefficients in the formula can be
statically fixed values, or dynamic learning generated. That
is, α and wi can be set to any constants. The network struc-
ture inspired by the structure corresponding to this formula
is shown in the green box on the bottom left in Fig 2.

In our work, the optimization residual block is used
to enhance descriptors for the representation ability of
capsules. According to the above formula, we build the net-
work by stacking 9 layers of one-dimensional convolution:
Conv1d352+BN+RelU+Conv1d352+BN+RelU. Conv1dx
denotes a 1 × 1 convolution layer with that outputs a vector
with x-dimension. Then, we concat the output features and

the input descriptors. After extracting features, for the diver-
sity of learning, we first replicate the reconstituted descriptor
8 times, and then use independent conv1d (1024) with differ-
ent weights to extract feature maps with different attentions.
The 8 multiple independent convolutional layers make sure
of the diversity of posture feature learning. Then, we do
the max-pooling operation on them to obtain a global latent
representation, which are the primary capsules (1024 × 8).
Then, the squash function, a special nonlinear activation
function, is adopted to ensure the length of the output vector
representing the probability of the shape feature, which is
denoted as:

Squash(s j ) = ‖s j‖2

1 + ‖s j‖2

s j
‖s j‖ (13)

The function shrinks short vectors to almost 0 and long
vectors to a length below 1. After that, according to the
mechanism of capsule network, we use the dynamic rout-
ing procedure to send the output of the primary capsules to
the higher level latent capsules (32 × 32).

4.2 Dual routingmodule

The basis of the capsule network is a routing procedure,
which transfers information from the previous capsule layer
through a protocol [20]. If the consistency between the lower
layer and the higher layer capsules is higher, it means that
the coupling coefficient between these capsules is high, and
the input of these lower capsules will be sent to the corre-
sponding higher capsules. For the procedure, the prediction
u j |i of the next layer is obtained by the dot product of the
capsule of the current layer vi and the weight matrix Wi j .
The coupling coefficient ci j is a logarithmic probability and
is updated iteratively through the agreement between succes-
sive capsule layers. These coefficients can be considered as
weights to suppress or encourage the contribution of lower-
level capsules to certain higher-level capsules. Calculation
of the weighted sum of the predicted u j |i is expressed in Eq.
(14); the compression is according to the definition of Eq.
(13), that is, the capsule v j of the next layer.

s j =
∑

i

ci j u j |i , u j |i = Wi jvi (14)

In the dynamic routing mechanism module, after the out-
put of the processed low-level capsules is obtained, the
activated high-level capsules should be determined, that is,
the clustering process of features. This paper mixes two rout-
ing methods (i.e., sigmoid dynamic routing and attention EM
routing) to cluster features. Fig 3 illustrates dual routing oper-
ation for the input capsule.
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Fig. 3 Dual routing procedure from the first capsule layer to the capsule
v j in the second capsule layer. The green box shows details of the self-
attention mechanism in EM routing

Sigmoid dynamic routing In [46], it demonstrates that the
probabilities of the features sent to latent capsules are nearly
equal, which may lead to a misclassification. Thus, we cal-
culate the coupling coefficients ci j by the sigmoid function:

ci j = 1

1 + e−bi j
(15)

It means that ci j no longer represents the distribution prob-
ability of the final capsule, but represents the correlation
strength between the main capsule and the potential cap-
sule. Important prediction vectors are multiplied by larger
coupling coefficients to make important features more deci-
sive, while irrelevant features have less influence. The routing
algorithm for the entire iteration process is as in Algorithm
1.

Algorithm 1 Sigmoid Dynamic Routing Algorithm
Require: The primary capsule vi , parameter Wi j
Ensure: the output capsule v j
1: Initialize weights matrices Wi j
2: u j |i = Wi jvi
3: bi j ← 0
4: for i in N iterations do
5: ci j = 1

1+e−bi j

6: s j ← ∑
i ci j u j |i

7: v j ← Squash(s j )
8: bi j ← bi j + u j |iv j
9: end for
10: return v j ;

Attention EM routing In the EM routing algorithm [35],
the high level capsules are regarded as Gaussian mixture dis-
tribution, and the mean value and variance of the output
capsules are updated iteratively, as well as the distribution
probability Ri j of the capsules. Inspired by that, we propose
a routing algorithm with iterative attention layers. As shown
in the left green box of Fig. 3, a self-attention mechanism

Algorithm 2 Attention EM Routing Algorithm
Require: The activated primary capsules vi ; the activation values ai ;

attention matrix Aatt
Ensure: the activation a j and pose Y j of capsules in layer N
1: Initialize weights matrixes W v

i j , W
A
i j ; costs β1 and β2; hyperparam-

eters λ

2: Ri j ← 1/(number of high-level capsules)
3: Vi j = W v

i jvi

4: vhi j := h-th component o f Vi j
5: a j = W A

i j Aatt
6: for i in N iterations do
7: procedure M for high-level capsule j :
8: Ri j = Ri j ai

9: yhj ←
∑

i Ri j v
h
i j∑

i Ri j

10: (zhj )
2 ←

∑
i Ri j (v

h
i j−yhj )

2
∑

i Ri j

11: costh ← (β1 + log(zhj ))
∑

i Ri j

12: a j ← a j + logistic(λ(β2 − ∑
h cost

h))

13: procedure E for high-level capsule i :

14: Pi j ← (
∏

h 2π(zhj )
2)−1/2exp(− ∑

h
(vhi j−yhj )

2

2(zhj )
2 )

15: Ri j ← v′
j Pi j∑
j v′

j Pi j

16: end for
17: return Y j , a j ;

[47] is added to facilitate the routing algorithm to capture
more relevant features more accurately, which is generated
by two linear functions and an activation function. For the
input X ∈ R

n×m , a parameterized function projecting input
Xi from m dimensions to l dimensions is defined as:

Fl(X) = ReLU(XW1 + b1)W2 + b2 (16)

where W1 ∈ R
m×m , W2 ∈ R

m×l . In practice, we use two
Conv1d layers with ReLU activations to obtain the dense
attention matrix. Then, the formula for finding the dense
attention matrix D is as follows:

D = repB(B) ∗ repC (C) (17)

where B,C = Fb(X), Fc(X). Fb(.) and Fc(.), respectively,
project X onto b and c dimensions with b × c = n. repB(.)

and repC (.) represent duplicate the content c and b times
respectively. In addition, another two random attention matri-
ces R1, R2 ∈ R

n×m are defined as a randomly initialized
matrix. Then, the mixed attention matrix can be written as:

Aatt = Softmax(α1D + α2(R1R
T
2 )) (18)

where αi are learnable parameters. The iterative attention EM
algorithm is as in Algorithm 2:

Mixed capsule routing In the dynamic routing procedure,
in order to allow the cluster centers to retain the main infor-
mation of the features and show the importance of the features
better, the results are mixed by concatenate the latent capsules
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obtained by the individual two routings. The self-attention
mechanism is embedded in the EM routing algorithm to
obtain more active regions of interest, and further help to
improve the significant part of its familiar with the relation-
ship between the significant objects through a dual routing
mechanism.

4.3 Latent capsule auto-encoder

As shown in the upper box in Fig. 2, the whole OptRes-
CapsNet can be regarded as an auto-encoder procedure to
enhance the latent capsule for the pose regression. The
latent capsule is clustered by the routing mechanism, which
can be seen as an encoding process of the shape features.
Correspondingly, a decoder is designed symmetrically. It
firstly replicates the latent capsules N/32 times and attaches
a unique random 2D grid to each replica to promote the
diversity. Then, we use (multilayer perceptrons) MLPs (18-
32-64-128-256-512) for each patch to further extract the
features and paste the output patches together, in order to
obtain the final feature vectors with the same number of
groups as the input descriptors.

In fact, by assigning capsules to individual parts of the
object, our SORCNet treats this learning task as a classi-
fication problem for each capsule, which greatly improves
the convergence rate and accuracy of the model. In order
to extract point features from more expressive descriptors,
our SORCNet integrates the OptResBlock and shared Desc-
CapsNet, and shows better performance and generalization
on shape correspondence task.

4.4 Spectral loss function

Different from the most correspondence losses that calcu-
lating a pairwise distortion relying on expensive geodesic
distance matrix and point-wise map computation, given the
domain mapping matrix C as the functional map, we define
the Cgt based on the ground-truth point-wise correspon-
dence:

Cgt = (Φ†PgtΨ )� (19)

where Pgt ∈ {0, 1} is the ground-truth point-to-point cor-
respondence between the shape pair, which expressed as an
N × N diagonal matrix with elements of 1. Φ† = Φ�W,
W is a diagonal matrix of vertex area elements that has
Φ�WΦ = I. Φ is the matrix representation of {φi }, while
Ψ is the matrix representation of {ψi }.

According to the works in [4], a point-to-point map retains
the local area if and only if the functional map C is orthonor-
mal. Thus, the spectral loss function L is defined as:

L = ‖Cgt − C‖2 + ‖C�C − I‖2 (20)

Compared with calculating the geodesic distance loss func-
tion from the point-by-point ground-truth correspondence,
spectral loss can be calculated with less effort by restoring a
sufficiently accurate functional mapping and making the loss
effective. Considering the orthogonality of the ideal domain
mapping matrix C, the addition of the regular term increases
the constraint on the functional correspondence.

5 Experiments and implementation

A wide range of experiments is performed on different
datasets to demonstrate the efficacy of our method. We
evaluate our approach with several evaluation criteria by
comparing to other methods with the same training dataset on
four different shape datasets. We use training set of FAUST
[48] (the first 80 meshes) with the ground-truth correspon-
dences to train our models and other compared methods. In
our experiments, for designing the OptResBlock by formula
12, we let α = 1.5, wk = 0.5. Our network is implemented in
TensorFlow [49] using the ADAM [50] stochastic optimiza-
tion algorithm with β1 = 0.9, β2 = 0.999 and ε = 10−8. It
sets the adjustment of learning rate using a polynomial decay
with the start learning rate lr = 10−3 and the end learning
rate lr = 10−5. We train our model on a GeForce GTX
1080Ti GPU. When batch size becomes 2, it takes about 1.2s
around to complete each iteration for our SORCNet. In this
section, we provide qualitative and quantitative results of our
experiments.

5.1 Datasets

We use the 352-d SHOT descriptor [15] (i.e., 352-d vector
per point), which calculates the features of all vertices of
two shapes, and k = 120 eigenfunctions of the shapes as
the input of the network. Our experiments are carried out on
FAUST [48], SCAPE [51], TOSCA [52] and KIDS [26] non-
rigid shape datasets. In our work, we conduct experiments
on FAUST testing dataset (the last 20 meshes) with both
4096 points and 6890 points, while for other datasets we
sample them all to 4096 points to make the experiments more
convenient.

FAUST dataset This dataset contains 100 meshes of 10
scanned subjects, each with 10 different poses. The prior
methods have evaluated on pairs of scans of the same subject
in different poses (intra-subject pairs) and on pairs of scans
of different subjects (inter-subject pairs). The shapes in the
dataset have strong non-isometric deformations, and vertex-
wise ground-truth correspondence is known between all the
shapes.

SCAPE dataset It is a digitally generated artificial human
shape dataset, which has completely different properties from
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the FAUST dataset in terms of geometric entities, propor-
tions, ratios, etc.

TOSCA dataset This dataset consists of objects from dif-
ferent domains as animals and humans with different poses.
In our work, we choose eight object categories from it to
conduct the evaluation experiments.

KIDS dataset We also test our method on the highly non-
isometric KIDS dataset. It is a small dataset containing two
child subjects with 15 poses, respectively.

5.2 Iterative efficiency

We first conduct experiments on the FAUST testing dataset
using our SORCNet. And then, the SORCNet without our
proposed OptResBlock is trained to evaluate the optimized
network structure. Thus, the iterative efficiency of our net-
works can be revealed compared with FMNet [14] using our
loss function. As shown in Fig. 4, it demonstrates that our
proposed shared Des-CapsNet has a obviously faster iterative
decline rate than FMNet, while FMNet has not yet completed
convergence after iterating 10,000 times. And the SORCNet
only needs about 2000 iterations to converge, which means
the OptResBlock also has the effect of improving accuracy,
and stabilize the convergence faster.

5.3 Evaluationmetric

In our experiments, we measure correspondence quality
according to the Princeton benchmark protocol [3]. To eval-
uate our method more intuitively and comprehensively, we
calculate the average error and the cumulative geodesic error
to estimate the accuracy of the shape correspondence. Given
the registration mapping T : A → B and the ground-truth
match Ttrue : A → B between two 3D shapes A and B,

Fig. 4 The loss comparison of FMNet using our loss function, our
SORCNet and SORCNet without OptResBlock in 5000 iterations when
batch size is set to 2

for each point a ∈ A on shape A, the matching error is
geodesic distance dB (T (a), Ttrue(a)) between the predicted
value T (a) of point a on shape B and the ground-truth value
Ttrue(a).

Average error computes the average per-vertex error,
which evaluates the geodesic error between a predicted cor-
respondence vertex and its ground-truth. It can be calculated
by:

ae = 1

N

∑
dB(T (a), Ttrue(a)) (21)

where N is the number of vertices.
Cumulative geodesic error measures matching quality

plotting the percent of matches that have error smaller than
a variable threshold. The geodesic error can be expressed as:

err(a) = dB(T (a), Ttrue(a))

Area(B)1/2 (22)

where Area(B) is approximate to the sum of the triangle
areas of shape B, used to normalize geodesic errors to elimi-
nate the effects of shape scale transformations. The accuracy
of the shape correspondence is defined as the proportion of
points of which the matching geodetic distance error is below
err(a).

5.4 Accuracy

For the input pair of shapes, the output of the network
expresses the soft correspondence as an N × N matrix that
represents the point correspondence probability. Then, by
taking the maximum value for each column of it, we can get
an N-d vector which indicates the registration information
between the two shapes. To evaluate our method qualita-
tively, the different torso parts of a person are represented by
different colors on the models. Figure 5 visualizes some typ-

Fig. 5 Some examples of shape matching using our SORCNet method
on FAUST dataset. Left four columns: intra-subject pairs; right four
columns: inter-subject pairs. In all pairs: left mesh is colored using a
predefined color map; right mesh is colored according to our computed
correspondence
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Table 1 3D shape correspondence error results

Method intra AE inter AE

RF [26] 15.04 17.05

3D-CODED [53] 1.98 2.88

FARM [54] 2.81 4.12

FMNet [14] 2.44 4.83

Halimi et al. [55] 2.82 3.40

Cyclic-FM [13] 2.12 4.07

SP [56] 1.57 3.13

Chen et al. [57] 4.86 8.30

SURFMNet [33] 1.73 3.63

Ours without OptResBlock 1.96 2.47

Ours 1.89 2.28

Comparison of the several existing methods and our proposed method
using the average error as an indicator on the intra-FAUST and inter-
FAUST datasets with 6890 vertices. Error is measured as the distance
between mapped points and the ground-truth (cm)

ical correspondence results of our SORCNet between shape
pairs on intra-FAUST and inter-FAUST.

To evaluate the accuracy of our method in a quantitative
way, Table 1 shows the average error on the state-of-the-
art methods and our approach with intra-FAUST and inter-
FAUST datasets. The bold represents the minimum value in
each column. It shows that our method has the best results
on inter-FAUST, and also performs well on intra-FAUST.

According to Eq. (22), we plot the cumulative curve
to demonstrate the percentage of matches, which has the
geodesic error smaller than a variable threshold. Figure 6
shows performance of our proposed networks compared
with other shape correspondence methods on intra-FAUST
and inter-FAUST datasets with 4096 vertices and 6890 ver-
tices, respectively. As the threshold of geodesic distance
error increases, the number of successfully matched points
increases. It means that the faster the curve rises, the better
the corresponding effect. It can be seen that when testing

Fig. 7 Visualization of geodesic errors of different methods tested on
FAUST dataset. Hot colors correspond to large errors

models on the remeshed FAUST with 4096 vertices, our
method shows obviously better performance than other meth-
ods, which denotes that our model is very robust to different
discretizations. But in the original test dataset, our method
improves less compared with other methods, and the effect
is even not the best on intra-FAUST. This indicates that the
descriptor we learned is more robust and has a significant
effect on different grid resolutions, while the accuracy of the
state-of-the-art methods have achieved good results on the
original dataset. The OptResBlock has a slight improvement
on the basis of our shared Desc-CapsNet on the remeshed
FAUST with 4096 vertices, while even minimal promotion
on the original FAUST.

Figure 7 visualizes the geodesic error results of some
methods on the original FAUST testing dataset. The geode-
tic error corresponding to the target shape is displayed with a

Fig. 6 Quantitative performance of point-to-point correspondences of
different methods on the FAUST dataset. a and b The evaluation on the
resampled intra-FAUST dataset with 4096 vertices and 6890 vertices,

respectively. c and d The evaluation on the resampled inter-FAUST
dataset with 4096 vertices and 6890 vertices, respectively

123



SORCNet: robust non-rigid shape correspondence...

Fig. 8 Visualization of shapes matched to the reference shown on the
left of pairs using several networks. Corresponding points should have
the same color. a and b-TOSCA. c-SCAPE. d and e-KIDS are results
on different datasets

color scale of 0 to 0.1. It shows the superiority of our method
more intuitively.

5.5 Generalization

In order to evaluate the generalization of SORCNet, we test
our network on the other non-rigid shape datasets using the
model trained on the FAUST dataset. Figure 8 visualizes
the point-to-point correspondence results on the remeshed
TOSCA, SCAPE and KIDS datasets obtained by different
networks trained on FAUST dataset. It shows that our model

achieves better performance on these examples than other
approaches.

Considering the shape correspondence accuracy of our
method on other datasets, Fig. 9 shows the cumulative
geodesic errors of our method experimented on the remeshed
TOSCA, SCAPE and KIDS datasets compared with other
approaches. In Table 2, we show the comparison of the
mean geodesic errors experimentally obtained from TOSCA,
FAUST and SCAPE datasets by different methods. The bold
means the minimum value in each column. Figure 10 visu-
alizes point-wise geodesic error on TOSCA, SCAPE, and
KIDS datasets with a color scale of 0 to 0.4 in a more intu-
itive way. The experimental results show that our method
has a good generalization on these datasets, and outperforms
other methods using functional maps framework.

5.6 Effectiveness of the OptResBlock

In previous sections, we show that the addition of OptRes-
Block can make the network performs better. There is a
question of where to put the optimization block in the party
which has the best effect. In this section, we design experi-
ments to explore the role of OptResBlock in the structure of
the capsule network and have the higher influence on which
parts. As the OptResBlock position shown in the upper box in
Fig. 2 , We use the OptResBlock to modify the network struc-
ture before the primary capsule and the MLP after the latent
capsule. Table 3 shows the mean geodesic error compari-
son of our networks on the remeshed test datasets when the
OptResBlock is used in different parts of the Desc-CapsNet.
The bold represents the minimum error in each row. The error
is smaller when it is used before the primary capsule than
that after the latent capsule, and the results were optimized
by 5.5% and 12%, respectively, on average in both cases. It
demonstrates that the optimization effect of the optimization
building blocks on the primary capsules layer is better than
after the latent capsules. Besides, on the TOSCA dataset,
the effect of the network with OptResBlock acting after the
latent capsules is even worse. It illustrates that regarding the

Fig. 9 Quantitative performance of point-wise correspondences comparing our method and other algorithms on the TOSCA, SCAPE and KIDS
non-rigid shape dataset
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Table 2 The comparison with some methods on FAUST, SCAPE, KIDS and TOSCA datasets with eight object categories

Method TOSCA SCAPE KIDS FAUST

cat centaur david dog horse michael victoria wolf

FMNet [14] 0.3100 0.3752 0.3574 0.3745 0.3522 0.3709 0.3402 0.0360 0.3721 0.3601 0.3413

Halimi el. [55] 0.3126 0.3319 0.3466 0.3735 0.3544 0.3482 0.3439 0.0357 0.3415 0.3650 0.3362

RF [26] 0.3156 0.3800 0.3716 0.4157 0.3705 0.3713 0.3629 0.3930 0.2321 0.4106 0.1421

SURFMNet [33] 0.3572 0.4084 0.3659 0.3792 0.3496 0.3895 0.3727 0.0545 0.3485 0.3952 0.1673

Ours without

OptResBlock 0.1124 0.1362 0.0982 0.1457 0.1228 0.0971 0.0764 0.0197 0.2158 0.1470 0.0982

Ours 0.0958 0.1102 0.0845 0.1269 0.1090 0.0842 0.0675 0.0187 0.1857 0.1124 0.0768

The datasets are resampled to 4096 vertices. Metric is the mean geodesic error (cm)

Fig. 10 Visualization of geodesic errors of several methods: a-Ours,
b-FMNet, c-Halimi el., d-SURFMNet tested on remeshed shape pairs
from TOSCA, SCAPE, and KIDS datasets

Table 3 Comparison of performance in terms of the mean geodesic
errors (cm) on several remeshed datasets when the OptResBlock is
used in different parts of the Desc-CapsNet

Datasets Primary Latent Primary+Latent

FAUST 0.0886 0.0918 0.0768

TOSCA 0.0765 0.0915 0.0889

KIDS 0.1264 0.1368 0.1124

SCAPE 0.1995 0.2071 0.1857

network part before the potential capsule as an encoder and
the subsequent network as a decoder, the optimization effect
on the encoder performs better than that on the decoder.

Table 4 Comparison of performance in terms of the mean geodesic
errors (cm) on remeshed TOSCA dataset using different routing proce-
dures in capsule networks

Datasets Ours DR [20] OptimCaps [58] Xi el. [59]

wolf 0.0187 0.0194 0.0199 0.0190

victoria 0.0675 0.0678 0.0666 0.0694

michael 0.0842 0.0854 0.0856 0.0872

horse 0.1090 0.1121 0.1108 0.1118

dog 0.1269 0.1302 0.1289 0.1295

david 0.0845 0.0893 0.0893 0.0865

centaur 0.1102 0.1145 0.1186 0.1292

cat 0.0958 0.0977 0.0969 0.1003

5.7 Dynamic routing effectiveness

In Sect. 4, we modified the activation function for calcu-
lating coupling coefficients in the routing mechanism. The
experiments in this section aim to investigate whether the
advantage of CapsNet learning descriptor is affected in the
case of transform routings. We train our network with differ-
ent routing procedures on FAUST training dataset and test
the models on TOSCA dataset. The performance is reported
in Table 4. The bold means the minimum error in each row.
It can be observed that the results did not fluctuate signifi-
cantly under all routing procedures. From this experiment, we
can conclude that the routing process has little effect on Cap-
sNet’s generalization ability. Given the performance variance
for each model, the performance between different models is
relatively small. The reason behind this is that coupling coef-
ficients can be learned in transformation matrices implicitly,
and all the models possess a similar transformation process.

In summary from the last and this sections, our experi-
ments show that the high generalization ability and resolution
robustness of Desc-CapsNet cannot be attributed to the rout-
ing process, but is more related to the composition of the
primary capsules.
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6 Conclusions

In this paper, we have introduced a novel and robust net-
work for dense shape correspondence based on the functional
maps-based DNN framework, which can effectively deal
with the non-rigid deformations. Our approach is demon-
strated to be superior through the evaluations on several
challenging datasets, and can be adapted to different shape
categories. We believe that the novel fusion of descriptor
functions and deep learning is a promising direction since
it is possible to meet the requirement of relevant 3D shape
applications.

At present, local scale variation and topological changes
still affect adaptability of the model. For many functional
maps-based works, recovering the matrixC from the spectral
representation of the descriptor has a relatively large chal-
lenge. So in the future study, we will extend function maps
to the partial setting and search for additional descriptors with
enhanced attributes. Another inspiration for future work is to
suggest optimizing the derivation of the routing in the cap-
sule network. The aggregation of the dynamic routing guided
by attention blocks with different optimization methods can
be derived according to the deduction formula, rather than a
simple combination of CapsNet and residual blocks.
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