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Abstract This paper presents an
effective framework for the recon-
struction of volumetric data from
a sequence of 2D images. The 2D
images are first aligned to generate
an initial 3D volume, followed by the
creation of a tetrahedral domain using
the Carver algorithm. The resulting
tetrahedralization preserves both
the geometry and topology of the
original dataset. Then a solid model
is reconstructed using simplex splines
with fitting and faring procedures.
The reconstructed heterogenous volu-

metric model can be quantitatively
analyzed and easily visualized. Our
experiments demonstrated that our
approach can achieve high accuracy
in the data reconstruction. The novel
techniques and algorithms proposed
in this paper can be applied to recon-
struct a heterogeneous solid model
with complex geometry and topology
from other visual data.

Keywords 3D reconstruction ·
DMS-splines · Hierarchical
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1 Introduction

The histopathological study of tissue is an important tool
in the medical field for the prognosis of disease. Although
informative in itself, histological slices are traditionally
viewed under an optical microscope to reveal only a 2D
image. One use for histology is the quantitative analysis of
periprosthetic tissue due to wear debris-induced osteoly-
sis, which is the most common cause of implant failure
after total joint replacement. Since histological analysis
cannot be applied non-invasively to humans, current diag-
nosis of aseptic loosening (AL) is still dependent on pop-
ular radiographic imaging; this method is not sufficient to
accurately evaluate the complex 3D lesion of AL. A re-
cent study by Looney et al. demonstrates that volumetric
CT technology may be used as a measurement of peripros-
thetic osteolysis [15]. MicroCT (µCT) has been utilized to
obtain 3D images for the quantitative assessment of bone
in the osteolysis model. Preliminary studies have indi-
cated that a correlation exists between 3D CT images and
periprosthetic tissue histology, but it is extremely difficult
to characterize the quantitative relation between CT-based

volume data and microscopic periprosthetic tissue profile
in order to provide accurate assessment of AL. It is of utter
importance to map 3D volumetric CT data to 3D volu-
metric histology data in order to establish a mathematical
model for the assessment of AL with non-invasive CT
imaging. In this paper, we propose a method for the recon-
struction of 2D optical histology images into a volumetric
3D histology image. This is achieved by properly trans-
forming and arranging each histology slice in a sequential
order to obtain a discretized volume. The procedure is
referred as registration or alignment. Achieving the op-
timal transformation to minimize registration error is the
biggest challenge in this procedure. Fundamentally, it re-
quires a powerful data representation and a data fitting
scheme based on the representation.

In the past few years, an unstructured volume repre-
sentation has started to emerge as a viable modeling tool,
where a tetrahedral mesh is exploited to dictate the do-
main of a volume [4, 5, 22, 25]. This type of representation
is expected to become increasingly popular as model-
ing and visualization of geometric structures plus physic-
al attributes of heterogeneous objects become common-
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place. To satisfy the modeling requirement of high-order
continuity in heterogeneous objects, volumetric modeling
based on splines, such as B-splines or NURBS [11, 12,
16, 20, 23], appears to be more appropriate. Nonetheless,
modeling with B-splines or NURBS has serious limita-
tions. Its modeling scope is extremely constrained in term
of geometric, topological, and attribute aspects.

We aim to design a representation with flexible, hier-
archical continuous simplices. In order to reconstruct
a heterogenous model of high accuracy, a unified volume
modeling and reconstruction based on hierarchical trivari-
ate DMS-splines is proposed in this paper. Our method has
the following advantages:

– It explores the intrinsic image features of a histology
section, making it a fully automatic procedure without
human intervention during the reconstruction.

– Our model makes use of a more general and flexible
tetrahedral domain, laying a foundation for both visu-
alization and modeling tasks. The unstructured volume
being modeled can be of complicated geometry and ar-
bitrary topology.

– The trivariate DMS-spline-based representation offers
a single, compact analytical representation, because it
is a piecewise polynomial of the lowest possible degree
and the highest possible continuity across the entire
tetrahedral domain.

– This trivariate DMS-spline-based representation can
also enable a strong multiresolution modeling cap-
ability through interactively subdividing any region of
interest, allocating more knots and control points ac-
cordingly. The volume can be represented at desired
resolution by extracting specific layers from the hier-
archical simplices.

– Our method can adaptively refine the domain tetrahe-
dra with hierarchical simplices, which introduces more
degrees of freedom, leading to better fitting results.

We conduct extensive experiments using histology
samples, and our empirical results demonstrate that the
proposed paradigm significantly augments the current
techniques within the medical, modeling, and visual-
ization communities. Although we focus mainly on the
volumetric reconstruction of the 3D histology image se-
quence for the biomedical domain, the applications of our
technique are diverse, including material editing and re-
construction, volume simplification, data exploration and
visualization in geological fields, and so on.

The paper is organized in the following way. Section 2
enumerates several milestones achieved by pioneers dedi-
cated to this area. Section 3 contains the condensed theor-
etical principal of the DMS-spline and volumetric simplex
splinesaswell,whichare themathematicmodelsemployed.
Section 4 illustrates the tetrahedral domain exaction pro-
cedure thatcreates tetrahedralmeshfor furtheruse inmodel-
ing and reconstruction. Section 5 exhibits 3Dvolume recon-
struction using simplex fitting and faring with hierarchical

simplices. Experiments and a discussion will be presented
in Sect. 6 followed by a conclusion in Sect. 7.

2 Previous work

Much research effort from the medical imaging commu-
nity has been devoted to establishing techniques for 3D
histology analysis and visualization. Chan et al. proposed
a methodology for making optimal registration decisions
during 3D volume reconstruction [2]. A semi-automatic
registration technique for 3D volume reconstruction from
fluorescent laser scanning confocal microscope (LSCM)
imagery was presented by Lee et al. [13]. They later pro-
posed a fusion-based approach to address the problem
of 3D volume reconstruction from depth adjacent sub-
volumes acquired using a confocal laser scanning micro-
scope (CLSM) [14]. Tan et al. presented a feature curve-
guided alignment algorithm to register microscopic slices
based on the NURBS-based optimization of the extracted
feature curves from the microscopic data [24]. Readers
may find other relevant literature in [1, 3, 21].

Volume modeling and rendering via tetrahedral mesh
has recently gained more popularity as well. Researchers
are primarily interested in constructing or using the volu-
metric tetrahedral mesh dataset to achieve better render-
ing effects. Cignoni et al. [5] proposed a multi-resolution
model for the representation and visualization of unstruc-
tured volumetric datasets based on a decomposition of the
3D domain into tetrahedra. Later, they presented a tetrahe-
dral mesh simplification approach based on accurate error
evaluation [4]. Roxborough and Nielson [22] presented
a method for the visualization of freehand collected 3D
ultrasound data based on adaptive, progressive construc-
tion of the tetrahedral mesh. A tetrahedral mesh structure
to represent anatomical structures was adopted by Yao and
Taylor [26]. They proposed an efficient and automatic al-
gorithm to construct a tetrahedral mesh from contours in
CT images. A rich body of previous work on tetrahedral
meshes suggests that a simplicial complex is potentially
promising to serve for both visualization and modeling.

Even though volume modeling using univariate splines,
such as B-splines or NURBS, has received much attention
from modeling and visualization communities in recent
years [11, 16, 20, 23], multivariate simplex splines-based
volume techniques based on a domain of simplices are less
explored. They have only been extensively investigated in
mathematical science. Motivated by an idea of Curry and
Schoenberg for a geometric interpretation of univariate
B-splines, de Boor [17] first presented a brief description
of multivariate simplex splines. Since then, their theoret-
ical perspectives have been explored extensively. From the
blossoming point of view, Dahmen et al. [6] proposed tri-
angular B-splines. Since then, Seidel and his colleagues
demonstrated the practical feasibility of bivariate DMS-
splines in graphics and shape design in [8, 19]. In sharp
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contrast to theoretical advances, the application of trivari-
ate simplex splines has been severely under-explored. Hua
et al. [9] initiated using simplex splines for heterogeneous
solid modeling and derived several theoretical formula for
fast rendering of the simplex spline volumes. Recently,
Rössl et al. [17] presented a novel approach to reconstruct
volume from structured grid data samples using trivari-
ate quadric super splines defined on a uniform tetrahedral
partition. They used Bernstein–Bézier techniques to com-
pute and evaluate the trivariate spline and its gradient.
Moreover, the exact intersection for a ray and prescribed
isovalue can be easily determined in an analytic and exact
way. The major difference between Rössl et al.’s method
and ours lies in the following:

– Our method uses arbitrary tetrahedral domains instead
of regular ones.

– Our method uses a general trivariate DMS-spline of
degree n ≥ 2, which has more degrees of freedom
(control points and knots); the continuity between ad-
jacent tetrahedra can be easily maintained because of
the optimal smoothness of DMS-splines.

– Our method uses hierarchical structures to model level-
of-details.

3 Trivariate DMS-spline volumes

First, let us review some theoretical background of the
trivariate DMS-spline volume, the mathematic model em-
ployed in our unified framework.

A degree n trivariate simplex spline, M(x|x0,
. . . , xn+3), can be defined as a function of x ∈R3 over the
half open convex hull of a point set V = [x0, . . . , xn+3),
depending on the n +4 knots xi ∈ R3, i = 0, . . . , n +3.
The trivariate simplex splines may be formulated recur-
sively, which facilitates point evaluation and its derivative
and gradient computation. When n = 0,

M(x|x0, . . . , x3) =
{

1
|Vol

R3 (x0,... ,x3)| , x ∈ [x0, . . . , x3),

0, otherwise,

and when n > 0, select four points W = {xk0, xk1, xk2, xk3}
from V, such that W is affinely independent, then

M(x|x0, . . . , xn+3) =
3∑

j=0

λj(x|W)M(x|V \ {xkj }), (1)

where
∑3

j=0 λj(x|W) = 1 and
∑3

j=0 λj(x|W)xkj = x.
The directional derivative of M(x|V) with respect to

a vector d is defined as follows:

Dd M(x|V) = n
3∑

j=0

µj(d|W)M(x|V \ {xkj }), (2)

where
∑3

j=0 µj(d|W)xkj = x and
∑3

j=0 µj(d|W) = 0.

Now let T be an arbitrary “proper”1 tetrahedralization
of the bounded domain D ⊂ R3. To each vertex t of the
tetrahedralization, we assign a knot cloud, which is a se-
quence of points [t0, t1, . . . , tn], where t0 ≡ t. For every
tetrahedron I = (p, q, r, s), we require that

– all the tetrahedra [pi, qj, rk, sl] with i + j + k + l ≤ n
are non-degenerate;

– the set

Ω = interior(
⋂

i+ j+k+l≤n

[pi, qj, rk, sl]) �=∅ (3)

is not empty;
– if I has a boundary triangle, the knots associated to the

boundary triangle must lie outside of the domain.

We then define, for each tetrahedron I and i + j +
k + l = n (in the following, we use β to denote 4-tuple
(i, j, k, l)), the knot sets

V I
β = [p0, . . . , pi, q0, . . . , qj, r0, . . . , rk, s0, . . . , sl].

(4)

The basis functions of normalized DMS-splines are then
defined as

N I
β(u) = | det(pi, qj, rk, sl)|M

(
u|V I

β

)
. (5)

Assuming Eq. 3, these basis functions can be shown to
be all non-negative and to form a partition of unity. The
trivariate DMS-spline volume is the combination of a set
of basis functions with control points cI

β:

s(u) =
∑
I∈T

∑
|β|=n

cI
β N I

β(u). (6)

The generalized control points cI
β are now (m +3) vec-

tors, including control points (px, py, pz) for the solid
geometry, and control coefficients (g1, . . . , gm) for the
attributes, where m denotes the number of attributes as-
sociated with the geometry. For the complete description
of trivariate DMS-spline volumes, readers are referred
to [6, 9, 10].

4 Tetrahedral domain construction

In our volume reconstruction algorithm, we plan to em-
ploy trivariate DMS-splines as the representation due to
its attractive properties described before. The first import-
ant step is to construct a good initial tetrahedralization
basis for the later data fitting and faring steps. When
starting with a good initial tetrahedralization, the later

1 Here, “proper” means that every pair of domain tetrahedra are disjoint, or
share exactly one vertex, one edge, or one face.
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refinement computation will be greatly reduced. Good
initial domain tetrahedralization should preserve both
geometric and attribute features of the original volume
dataset.

4.1 Initial alignment of 2D slices

Before the structure of 3D histology can be explored and
analyzed, generating a high-fidelity 3D volume is a crucial
and preliminary step in which all histology slices need to
be stacked into one volume. The grid data structure can be
employed here and we choose the Analyze 7.5 file format,
which is already a well-established industry standard.

First, 2D histology slices are scanned into the com-
puter through a digital histology film scanner. This high
resolution equipment can produce quality images with de-
tailed cell structures. In this step, necessary image pro-
cessing filters, for instance, the Gaussian smoother, will
be applied to the raw data due to the inevitable noises.
Figure 1 shows a part of a sequence of 2D images scanned
from a histology sectioning profile.

Between two neighboring histology sections, there is
no high-order discontinuity in the structure, i.e., there ex-
ists substantial similarities, which can be used to match
adjacent slices. Based on this observation, we need to min-
imize the following equation:

min DIFFden =
n−1∑
i=1

‖I(i)− T · I(i +1)‖2, (7)

Fig. 1. A part of a sequence of 2D images scanned from a histology
sectioning profile. Histology structures gradually change from slice
to slice

where I(i) indicates the density distribution of the i-th
slice. I(i +1) is subject to the affine transformation ma-
trix T . Here we select the i-th slice as the stationary one,
and apply affine transformation to the (i +1)-th slice. The
correspondent affine transformation T is a 4×4 matrix as
below:⎡
⎢⎣

x ′
y′
z′
1

⎤
⎥⎦ = T

⎡
⎢⎣

x
y
z
1

⎤
⎥⎦ , (8)

where

T =
⎡
⎢⎣

t00 t01 t02 t03
t10 t11 t12 t13
t20 t21 t22 t23
t30 t31 t32 t33

⎤
⎥⎦,

and

⎡
⎢⎣

x
y
z
1

⎤
⎥⎦ denotes the original position of a voxel and

⎡
⎢⎣

x ′
y′
z′
1

⎤
⎥⎦

denotes the transformed position. Because we use homo-
geneous coordinates here, the position vector in Eq. 8 is
extended to order 4. Here T is a combination of rotation fac-
tor and translation factor. Equation 7 is essentially a least
squares problem. Solving this system, we can obtain a set
of transformations that construct an initial alignment of all
2D histology sections.

4.2 The Carver algorithm for tetrahedralization

Constraint Delaunay tetrahedralization (CDT) [7] is the
most widely used algorithm to construct a tetrahedral
mesh. However, CDT works great only for those models
from which corresponding isosurfaces can be explicitly
extracted, i.e., those with simple geometry. To increase
the versatility of our framework, we develop another al-
gorithm for models without such well-defined isosurfaces,
e.g., histology models. The algorithm fulfills the objective
in two major steps: 1) arbitrary Delaunay tetrahedraliza-
tion, and 2) outside tetrahedra removal using the Carver al-
gorithm. The detailed steps of our algorithm are described
as follows:
1. From Sect. 4.1, what we obtain is a structured grid vol-

ume. The first step here is to down-sample the volume
to get finite discretized points, which are the later ver-
tices of the tetrahedral domain. It is intuitive that we
shall have more tetrahedra in the feature area. More
points in feature-dense areas and less points in uniform
areas are selected according to the voxels’ intensity
variation levels. Here, we simply use gradients of phys-
ical attributes as the level stated. Figure 2a shows the
discretized point sets.

2. Then we use the points selected from the initial vol-
ume as the vertices input of genus-zero Delaunay
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tetrahedralization. After arbitrary Delaunay tetrahe-
dralization, the initial genus-zero tetrahedral mesh is
retrieved with the convex hull of the vertices as its
boundary mesh. Accordingly, more tetrahedra will be
created in the feature area due to more vertices pre-
sented and vice versa. Figure 2b is the mesh created by
arbitrary Delaunay tetrahedralization.

3. Starting from one user specified tetrahedron, neigh-
boring tetrahedra will be removed recursively. Those
removed tetrahedra form another object, namely the
“OUTSIDER”, and we only need to detect the neigh-
boring tetrahedra of its boundary. The criteria for stop-
ping is that there are no additional tetrahedra to be
added to the “OUTSIDER”.

Fig. 2a–d. a Point set down-sampled as input of Delaunay tetrahedralization. b Arbitrary Delaunay tetrahedralization with a convex hull as
its boundary mesh. c The Carver algorithm removes outside tetrahedra from the tetrahedral domain. d Initial mesh after islands removal

4. The Carver algorithm yields tetrahedra of arbitrary
topology. Islands should be removed based on the fact
that histology may be of any topology, but its ge-
ometric feature is continuous anywhere. Islands are
mostly caused by inevitable noise from original data
set. Figure 2c shows the tetrahedral mesh after 2 re-
moval steps, with volume presented. Figure 2d shows
the initial mesh after islands have been removed.

5 Volume reconstruction

To model the histology attribute over the simplex spline-
based volume, it is much more desirable to have a fitting
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tool that converts the discrete volume data to continuous
splines. In this section, we propose a method for volume
reconstruction using DMS-splines.

5.1 Hierarchical DMS-spline volumes

Before we introduce the hierarchical DMS-spline volumes,
let us first review some results on a triangular B-spline.
Theorem 1 (Piecewise polynomial representation [17]).
Let F be any piecewise polynomial of degree n over
a given triangulation T , and let FI be the restriction of F
to the triangle ∆(I) and f I be the polar form of FI . Then
the following identity holds for all u:

F(u) =
∑
I∈I

∑
|β|=n

f I ( )N I
β(u). (9)

For more information about the polar form, we refer the
readers to [17, 18].

The above theorem holds for a general s(≥ 2)-variate
DMS-spline. Let I be the tetrahedron of interest in the do-
main of s(u), and we want to add more degrees of freedom
in I to model the details. There are two different ways to
solve this problem. The first is knot insertion, in which one
knot is inserted into the tetrahedron I , and I is subdivided
into four tetrahedra. Multiple knots can be inserted one by
one. The second is hierarchical structures by building a new
spline s1

I (u), whose domain is a regularly subdivided tetra-
hedra of I . The major differences between knot insertion
and hierarchical structures (see Fig. 3) are as follows:

– Hierarchical structures need the additional splines
s1

I (u), but do not change the original spline s(u), while
knot insertion does affect the spline s(u).

– Hierarchical structures need a special technique to
maintain a certain continuity between the original
spline and new spline, while knot insertion does not.

– Knot insertion might introduce poor quality tetrahedra,
while hierarchical structures do not.

Fig. 3. a Knot insertion. b Hierarchical simplices

In order to maintain certain continuity between s1
u

and su, they must have “overlays”. Unlike the tensor-
product B-splines, which usually extend the domain one
level to maintain C1-continuity between the two layers, we
use the boundary tetrahedra as the overlays, which means
the control points and knots inside these tetrahedra are
fixed. The detailed hierarchical simplices construction is
as follows:

1. Subdivide I to a user-specified level.
2. Compute all the control points in the domain I by

Eq. 9.
3. Set all the control points and knots associated to the

boundary tetrahedra to be fixed and others to be free.

Note that the refinement (1–3) produces the exact pre-
sentation of the original splines. Recall that movement of
a free control point cI

β only influences the splines on the
tetrahedron ∆(J ) and on the tetrahedra directly surround-
ing ∆(J ). Since we fix the control points and knots of the
boundary tetrahedra, any change of internal control points
will not affect the function value and gradient across the
boundary. Thus, we maintain C1-continuity between the
new spline and the original one.

For a better understanding, we illustrate the above
scheme with an example of a triangular B-spline surface.
Figure 4a is the original surface and the marked area is
the region of interest to be refined. In Fig. 4c, we con-
struct another triangular B-spline surface that represents
the marked area exactly. This new surface has refined do-
main triangulation and more control points. In Fig. 4e, we
move a free control point of the new surface and the two
surfaces still blend smoothly. Note that the surfaces in Fig-
ures 4c and 4e use the same domain.

5.2 Volume reconstruction problem statement

The problem of volume reconstruction can be stated
as follows: given a set P = {pi}m

i=1 of points pi =
(xi, yi, zi, di) ∈ R4, find a trivariate DMS-spline volume
s : R3 →R4 that approximates P.

Since we are interested only in reconstructing the data
from attributes, our trivariate DMS-spline volumes are
scalar functions, i.e., the control points cI

β ∈ R are scalar
values. Unlike the existing fitting algorithms with para-
metric representations, which usually find a one-to-one
mapping between the data points and the points in the
parametric space, our method skips this parameterization
procedure. As stated in Sect. 4, we first construct a tetrahe-
dralization parametric domain that is close to the original
geometry of the to-be-fitted dataset. We use the position
(xi, yi, zi) of the data point pi as its parametric value.
Therefore, we need to minimize the following objective
function:

min E(F) = Edist(s)+λ · Efair(s), (10)
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Fig. 4a–f. Illustration of hierarchical bivariate DMS-spline sur-
faces. a A bivariate DMS-spline surface. b Corresponding domain
triangulation of a. c Hierarchical structure of one domain triangle
of a. d Corresponding domain triangulation of c. e Moving the free
control points will not affect the continuity across the boundary.
f Corresponding domain triangulation of e

where

Edist(s) =
m∑

i=1

(di − s(xi, yi, zi))
2, (11)

and Efair(s) is a fairness function with the smoothing fac-
tor λ ≥ 0.

The most commonly-used fairness functions, such as
simplified membrane energy and thin-plate energy, require
integration, which is usually computationally intensive. In
this paper, we use a simple, yet effective, fairness function:

Efair(s) =
m∑

i=1

(ni · s(xi, yi, zi))
2, (12)

where ni is the gradient at point (xi, yi, zi). Note that these
gradients can be calculated by local least-squares fitting
to P.

5.3 Hierarchical fitting

The above volume data fitting procedure attempts to min-
imize the total squared distance of the volume data points
di to the DMS-spline s(u). For some regions with very
dense points or sharp features, it is often desirable to intro-
duce new degrees of freedom into the spline representation
in order to improve the fitting quality. Hierarchical struc-
tures are suitable for this purpose.

If the error metric inside a tetrahedron I is greater than
a user-specified value, and it contains enough points, e.g.,
8∗ Nmin in our implementation, we construct the hierarch-
ical DMS-splines s(1)

I (u) on I as follows:

1. Shrink I slightly and get a smaller tetrahedron J . De-
note I \ J the narrow band between I and J .

2. Subdivide J into 8 tetrahedra.
3. Perform tetrahedralization for the narrow band be-

tween I and J .
4. Compute the control points of s(1)

I (u) by Eq. 9.
5. Fix the control points and knots associated to the tetra-

hedra in the band I \ J and let others be free.
6. For all the data points inside I , define ei = di −

s(xi, yi, zi).
7. Solve E I

dist = ∑
(xi ,yi ,zi)∈I (ei − s1

I (u))2 with the free
control points and knots.

This refinement step is called repeatedly until the stop-
ping criteria are satisfied. Then the output of our volume
reconstruction is a series of trivariate DMS-splines; i.e., to
evaluate u ∈ ∆I , we use

s(u) = s0u+ s1
I (u)+ s2

I (u)+ . . .

The number of levels needed in the evaluation depends on
the application.

Although the base domain tetrahedron contains enough
points, the number of data points in some subdivided tetra-
hedra may be less than Nmin due to the nature of the
unstructured data. If this happens, we also fix the con-
trol points inside the small tetrahedra to avoid the under-
determined problem.

In order to improve the performance of our fitting
method, we start with a down-sampled dataset in the
coarse level and consider the whole dataset in the fine
level. For example, when fitting the rat tooth data, we use
64 572 points in level 0 to reconstruct the rough geometry
and density, and use 350 000 points in level 2 to recon-
struct the details.

Table 1. Statistics of 3D reconstruction

Sample Continuous simplices (num.) Fitting error

1 10 231 1.878×10−4

2 12 855 1.526×10−4
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6 Experiments and discussion

We implemented a prototype system on a PC with
2.8 GHz P4 CPU and 2 GB of RAM. The system is writ-
ten in VC++ and VTK 4.2. Table 1 shows the performance
statistics of our fitting algorithm on several datasets, where
the fitting error is the root-mean-square error. With the
help of hierarchical simplices, our volume reconstruction
algorithm can achieve very good results. The entire 3D re-

Fig. 5. a 3D visualization of reconstructed 3D histology volume after similarity mapping. b 3D visualization of the corresponding µCT
volume from the same viewpoint. c 3D Visualization of reconstructed 3D histology volume after global faring. d 3D visualization of
corresponding µCT volume from the same viewpoint

construction procedure from 2D histology sequences takes
a few hours to complete.

Through our framework, aseptic loosening at rat apical
root can be examined and compared by quantifying the re-
constructed 3D histology data. We also propose a scheme
to analyze the aseptic loosening region of interest by com-
paring histology data with µCT data. Bone resorption can
be measured along a time axis. Figure 5 shows an ex-
ample. Because histology and µCT are different modali-
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ties, necessary registration will be acquired before such an
analysis, to make the comparison substantial.

7 Conclusion

In this paper, we have articulated a new integral approach
for representing, modeling, and reconstructing volume
data. In particular, we employ a hierarchical trivariate sim-
plex spline model that is defined over a hierarchical and
progressive tetrahedralization of arbitrary 3D domains.
Our framework supports both structured and unstructured
data. The modeled volume can be of complicated geom-
etry and arbitrary topology. We have developed a new
paradigm to reconstruct non-discrete models from a se-
quence of 2D images. With the flexible hierarchical struc-

tures, our method can adaptively refine the domain tetra-
hedralization and introduce more degrees of freedom lo-
cally for better fitting results. The volumes can then be
re-modeled and re-edited by manipulating the control vec-
tors and/or associated knots of trivariate simplex splines
easily. Our results demonstrate that the proposed paradigm
augments the current tetrahedral representation and recon-
struction techniques with new and unique advantages that
can be applied to diverse research areas.
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