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Abstract We propose a novel method to analyze a set
of poses of 3D models that are represented with trian-
gle meshes and unregistered. Different shapes of poses are
transformed from the 3D spatial domain to a geometry spec-
trum domain that is defined by Laplace–Beltrami opera-
tor. During this space-spectrum transform, all near-isometric
deformations, mesh triangulations and Euclidean transfor-
mations are filtered away. The different spatial poses from
a 3D model are represented with near-isometric deforma-
tions; therefore, they have similar behaviors in the spec-
tral domain. Semantic parts of that model are then deter-
mined based on the computed geometric properties of all the
mapped vertices in the geometry spectrum domain. Seman-
tic skeleton can be automatically built with joints detected
as well. The Laplace–Beltrami operator is proved to be in-
variant to isometric deformations and Euclidean transforma-
tions such as translation and rotation. It also can be invariant
to scaling with normalization. The discrete implementation
also makes the Laplace–Beltrami operator straightforward
to be applied on triangle meshes despite triangulations. Our
method turns a rather difficult spatial problem into a spectral
problem that is much easier to solve. The applications show
that our 3D pose analysis method leads to a registration-free
pose analysis and a high-level semantic part understanding
of 3D shapes.
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1 Introduction

Shape deformation is one of the major research topics in
computer graphics. Recently there have been extensive lit-
eratures on this topic. There are two major categories of re-
searches on this topic. One is surface-based and the other
one is skeleton-driven method. Shape interpolation [2, 9, 11]
is a surface-based approach. The basic idea is that given two
key frames of a shape, the intermediate deformation can be
generated with interpolation and further deformations can be
predicted with extrapolation. It can also blend among sev-
eral shapes. Shape interpolation is convenient for animation
generation but is not flexible enough for shape editing due
to the lack of local control. The surface-based editing [1, 8]
is proposed to bridge this gap. It allows users to control the
deformations of a shape with several control points.

Skeleton-driven deformation [3, 13] is another kind of
approach. A shape is deformed under the control of an ar-
ticulated structure, which is more intuitive to human under-
standing. Skeleton technique is both effective and mature,
and widely adopted in industry. He et al. [6] introduced har-
monic function to skeleton generation. Users can generate a
skeleton of a shape by picking only one or a few reference
points manually. De Aguiar et al. [4] constructed skeleton
from an animation sequence, in which each frame is repre-
sented with a triangle mesh having the same connectivity.

These two categories of methods are not isolated from
each other. The surface-based approaches can borrow the
skeleton concept as a constraint to guide smooth and realis-
tic deformation [2, 8, 28]; on the other hand, skeleton-driven
deformation also uses surface geometry to refine the skele-
tons [6]. Based on the current state-of-art techniques, there
are two major challenges for shape deformation. In most of
these techniques, the source data must have the same vertex
connectivity. The skeleton generation usually requires users’
supervision to achieve a semantic result.
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Fig. 1 The procedure of our pose analysis method. Given several
unregistered poses of a model which are unregistered and have dif-
ferent triangulations (shown in the left pane), a re-embedding from
the spatial domain to a geometry spectrum domain is built as shown
in the middle. The poses are analyzed in the geometry spectrum do-
main. The geometric behavior of each point on the pose surface is

classified. Then, semantic parts on any poses from the same model can
be determined. Colder color in the middle figure indicates rigid part
on the surface, while warmer color denotes articulated part. With the
graph- and skeleton-driven algorithms, the static 3D surface turns into
a semantically articulated model which can cast animation

Instead of analyzing shapes in the spatial domain, our
method performs a shape pose (motion) analysis in a shape
spectral domain induced by Laplace–Beltrami operator on
the surface [12, 18, 20]. It is invariant to Euclidean spatial
transforms, isometric deformation and different triangula-
tions. It can also be calculated on triangle mesh directly.
By calculating the eigenvalues and eigenfunctions of each
shape, each point can be transformed into a spectral domain
defined by those eigenvalues and eigenfunctions. Thus, our
method can study the “pure” geometric information behind
those spatial factors. Semantic parts of that model are then
determined based on the computed geometric properties of
all the mapped vertices in the geometry spectrum domain.
Semantic skeleton can be automatically built with joints de-
tected as well. Our method turns a rather difficult spatial
problem into a spectral problem that is much easier to solve.
Figure 1 briefly illustrates the procedure of our pose analysis
method.

Our contributions in this paper are summarized as fol-
lows:

– Registration-free pose analysis. We propose a registration-
free shape motion analysis method based on Laplace–
Beltrami spectral domain. That is to say, the registration
between different poses of a model is not required. Af-
ter the transformation from spatial domain to the spectral
domain, all Euclidean transformations, near-isometric de-
formations, and different mesh triangulations are filtered
away, while only “pure” geometric information is left.
The pose analysis is conducted in the geometry spectrum
domain.

– Semantic surface analysis. Surface mesh vertexes belong-
ing to the same semantic part on different pose surfaces
will be mapped to the same coordinates in the geometry
spectrum domain, while they carry different spatial prop-
erties under different poses. The analysis of the spatial
property variation in the geometry spectrum domain will
quantify the geometric behaviors of every point during
the poses changes, consequently classifying a point to a

rigid part or an articulated part in the spectrum domain.
The shape is then decomposed into parts with different
geometric semantics.

– Automatic semantic skeleton generation with joints iden-
tified. The skeleton is generated based on eigenfunctions
of the shape. The procedure is automatic without any user
interaction. The behavior of the skeleton are constrained
by the surface properties and classified surface semantics,
which also represents the semantics of that skeleton.

2 Related works

Shape animation and deformation often rely on shape in-
terpolation of two or more key frames of a shape. Certain
constrains are considered to make the interpolation as nat-
ural as possible while avoiding some artifacts such as local
shrinking or collapse. Kilian et al. [11] treated each pose of
shapes as a point in a shape space. James and Twigg [9] and
Chu and Lee [2] employed mean shift clustering to learn the
near-rigid parts of surface from a sequence of poses to guide
the interpolation. This kind of methods usually requires one-
to-one vertex–face correspondence, either pre-given or ob-
tained by other registration algorithms. The correspondence
requirement limits the capabilities of these methods since
registration itself is another challenging problem. Skeleton-
driven mesh deformation is another popular kind of shape
approaches. A shape is deformed under the control of an
articulated structure, which is more natural to human un-
derstanding [3]. It can provide local control and free defor-
mation. Yan et al. [27] employed simplex transformations
to make the skeletons drive the surfaces instead of vertices.
Weber et al. [25] used geometric information to guild the
skeleton to preserve local details. This kind of approaches
usually requires the skeletons to be manually designed to
reach a better result. He et al. [6] introduced harmonic func-
tion on the surface to build Reeb graph [16, 21] as the skele-
ton. They reduced the manual operation to picking only one
or a few reference points on the surface.
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All aforementioned works is from a perspective of spa-
tial analysis. They have to overcome many Euclidean fac-
tors such as translation, rotation, and scaling before they
analyze the pure geometric properties. Recent research
shows that 3D surfaces can also have spectral properties to
which the Euclidean factors are not significant. Karni and
Gotsman [10] defined mesh Laplacian on polygon meshes
based on the adjacent matrix. Reuter et al. [18] introduced
Laplace–Beltrami operator to Riemann manifolds repre-
sented with surfaces in 3D Euclidean space. The operator is
invariant to Euclidean transformations and isometric defor-
mations. The eigenvalues can be used as shape descriptors
which is not only invariant but also distinctive. The eigen-
values also contain much information such as the area of the
surface, topology, and boundary length. Lévy [12] focused
more on the eigenfunctions of the Laplacian equation. The
eigenfunctions form a orthogonal basis for the functions de-
fined on the Riemann manifold and can “understand the ge-
ometry.” A lot of applications can be achieved, such as signal
processing on surfaces, geometry processing, pose trans-
fer and parameterization. Rustamov [20] defined a Global
Shape Descriptor (GPS) embedding based both on eigen-
values and eigenfunctions and gave a G2 distribution based
on the GPS, which can be used as a global shape descriptor
stable to topology changes. Hu and Hua [7] analyzed shapes
with salient features extracted from the shape spectra.

Our work starts from the perspective of spectral geom-
etry. Therefore, it may extract the pure geometric informa-
tion behind variant Euclidean factors. The discrete setting
makes the Laplace–Beltrami operator can be applied on tri-
angle mesh directly. This saves preprocessing and handles
more types of data.

3 Laplacian shape spectrum

In this section, we will briefly review the theory of Lapla-
cian spectrum and describe how to compute it on a triangle
mesh. Furthermore, we also discuss the problems based on
the spectrum of the real data.

Let f ∈ C2 be a real function defined on a Riemannian
manifold M . Consider the Laplacian eigenvalue equation

�f = −λf, (1)

where � is the Laplace–Beltrami operator and λ is a real
scalar. The spectrum is defined to be the eigenvalues ar-
ranged increasingly as 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ +∞. The
corresponding eigenvectors offer an orthogonal basis on the
manifold. There are more nice properties as follows [18]:

– The operator relies only on the local gradient and diver-
gence on the Riemannian manifold. It is invariant to iso-
metric deformation, Euclidean translation and rotation.

– A scaling factor α applied on the n dimensional manifold
will result in that eigenvalues are scaled by 1/α. The scal-
ing can also be filtered away in the spectrum domain.

– The family of eigenvalues is a descriptor of the manifold.
Although there exist two non-isometric shapes which
have the same family of eigenvalues, the descriptor can
be considered as “unique” in practice.

– The eigenfunctions define an orthogonal basis on the
manifold. The larger the eigenvalue is, the higher fre-
quency the corresponding eigenfunction represents. Any
function defined on the manifold can be projected to the
basis and then transformed into the frequency domain.

Reuter et al. presented a method [18] to solve Eq. (1)
with the finite element method. Karni and Gotsman [10] em-
ployed graph Laplacian to analyze mesh polygon meshes
based on the adjacent matrix. This method relies much on
the triangulations. Xu [26], Lévy [12], Rustamov [20] and
Vallet and Lévy [24] all used the discrete Laplace–Beltrami
operator introduced by Meyer et al. [14]. The operator con-
siders the mesh edge length and triangle surface area as
weights, so it is affected much less by the irregular trian-
gulations. Our method also follows this discrete Laplace–
Beltrami operator.

The Laplace–Beltrami operator K on discrete triangle
meshes is defined as

K(pi) = 1

2Ai

∑

pj ∈N1(pi)

(cotαij + cotβij )(pi − pj ), (2)

where N1 denotes one ring neighbor operator; pi and pj

are vertices with indices i and j ; αij and βij are the two
angles opposite to the edge in the two triangles sharing the
edges i, j ; Ai is the Voronoi region area of pi . K is also
called mean curvature normal operator because the length
of K(pi) is the mean curvature of pi and its direction is
the direction of the vertex normal of pi . For all the vertices
of a triangle mesh, a Laplace–Beltrami matrix can be con-
structed as

Lij =

⎧
⎪⎨

⎪⎩

− cotαij +cotβij

2Ai
if i, j are adjacent,

∑
k

cotαik+cotβik

2Ai
if i = j ,

0 otherwise,

(3)

where αij , βij , and Ai are those in Eq. (2) for some i and j .
Then, the spectrum problem equation (1) turns into the fol-
lowing eigenvalue problem:

L�v = λ�v, (4)

where �v is an n-dimensional vector. Each entry of �v repre-
sents the function value at one of n vertices on the mesh.
It can be regarded as a finite sampling of the eigenfunction
at each vertex on the surface. Thus, in this paper, eigenvec-
tor and eigenfunction are the same concept. In the following
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sections, we also call an eigenvector an eigenfunction. Equa-
tion (4) is not easy to solve directly because L is not sym-
metric. Fortunately, the above equation can be represented
as a generalized eigenvalue problem which is much easier
to solve numerically by constructing a sparse matrix M and
a diagonal matrix S such that

Mij =

⎧
⎪⎨

⎪⎩

− cotαij +cotβij

2 if i, j are adjacent,
∑

k
cotαik+cotβik

2 if i = j ,

0 otherwise,

and Sii = Ai . Thus, the Laplace matrix L is decomposed as
L = S−1M and the generalized eigenvalue problem is pre-
sented as

M �v = λS�v. (5)

As defined above, M is symmetric. S is diagonal and sym-
metric positive-defined. All the eigenvalues and eigenvec-
tors are real, and the eigenvectors corresponding to different
eigenvalues are orthogonal in terms of S dot product:

〈�u, �w〉S = �uTS �w (6)

where �u and �w are eigenvectors of Eq. (5). The orthogonal-
ity is represented with

〈�vi, �vj 〉S = 0, i �= j. (7)

Under this setting, the spectrum {0, λ1, λ2, λ3, . . . , λn−1}
is the family of eigenvalues of the generalized eigenvalue
problem defined above. The eigenvectors �v0, �v1, �v3, . . . ,

�vn−1 represent the eigenfunctions on the mesh. As it can
be seen, the number of eigenvalues and eigenfunctions is re-
duced from infinite to n, because a triangle mesh is a finite
discrete sampling of a continuous surface. It is similar to the
discrete Fourier transform and the continuous one. In prac-
tice, infinite eigenvalues and eigenfunctions are not neces-
sary. Only first a few of eigenvalues and eigenfunctions are
employed to build the geometry spectrum domain.

Figure 2 illuminates the 3rd, 5th and 10th eigenfunctions
on different poses. Note that the Laplace–Beltrami operator
is defined on continuous manifold, so the triangle meshes
are required to be manifolds. They could be either closed
manifolds or those with open boundaries, with the same
topology. The color turns from cold to warm while the func-
tion value grows from a small one to a big one. The eigen-
functions always change along the surface geometry. The
three poses are quite different from the spatial view, but the
eigenfunctions stay stable on the surfaces. The eigenfunc-
tions rely only on the surface geometry. The shapes are not
only different from each other with poses, but also the tri-
angulations. The pose in the first column has about 2000
vertices; the one in the second column has about 10,000;

Fig. 2 The 3rd, 5th, and 10th eigenvectors of discrete Laplace matri-
ces in three different poses. Each column demonstrates a pose while
each row shows the 3rd, 5th, and 10th eigenvectors from the top to the
bottom. The color from blue to green and then to red demonstrates the
value changes from small to large. Each eigenvector shows some mean-
ing of the surface. Within a pose, a higher-order eigenvector shows a
higher frequency. Note that the pose surfaces in the first column have
about 2000 vertices; the ones in the second column have about 10,000
vertices; and the ones in the last column have about 20,000 vertices.
The eigenvectors are not only meaningful but also stable to poses and
triangulations

the one in the last column has about 20,000. As it was dis-
cussed above, the eigenfunction is also invariant to triangu-
lations. These properties guarantee that the geometry spec-
trum embedding is invariant to pose deformations and mesh
triangulations. In other words, vertices from different poses
but at the same position in terms of surface geometry will
be embedded together in the geometry spectrum domain, no
matter how the poses are deformed or how different the sam-
plings and triangulations are.

The spectrum can describe the intrinsic geometry within
the original shape. Theoretically, the shape spectrum is in-
variant to isometric deformations. However, problems arise
when dealing with the real data. Different poses casted by
an object are usually near-isometric to each other. The de-
formations near the joints break the isometric constraint.
The computations also bring numerical errors. Dey et al. [5]
studied the spectral stabilities under near-isometric defor-
mation. Their results show that the spectra achieved with
the cotangent scheme, including the discrete operator in our
method, are stable in terms of eigenvalues. Our method pro-
duces similar results. Figure 3 lists five shapes represented
with triangle meshes while Table 1 lists their first few eigen-
values. The eigenvalues are normalized with the first non-
zero eigenvalue to filter away the global scaling according
to [18]. Because the first three poses are casted by a same
armadillo model, they are considered to be near-isometric to
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Table 1 Normalized eigenvalues of different shapes in Fig. 3

Shape λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7

Armadillo (a) 0 1 1.23 1.64 2.90 4.37 6.32 8.83

Armadillo (b) 0 1 1.36 1.81 3.20 4.52 6.48 8.51

Armadillo (c) 0 1 1.25 1.33 2.28 4.83 6.76 8.68

Elephant (d) 0 1 2.44 3.07 3.51 3.98 4.24 4.70

Lion (e) 0 1 1.51 2.57 2.66 2.71 4.69 7.92

Fig. 3 Five different shapes in the database. The first three shapes are
different poses from a same armadillo model. According to Table 1, the
three armadillo poses have similar eigenvalues, while the eigenvalues
of the elephant and the lion are quite different

each other. This fact is demonstrated by the similar eigen-
values. When the models are different, eigenvalues are dra-
matically different too, as shown in Table 1. The eigenvalues
have enough power to distinguish models and shapes glob-
ally. In addition, there are some other potential problems of
eigenvectors/eigenfunctions as discussed below which may
affect our algorithm. Reuter also discussed these problems
in [17]:

– Sign flips occur. If �v is an eigenvector, −�v is also one
according to the definition. Reuter [17] admitted that sign
flips cannot be detected intrinsically on an almost perfect
intrinsic symmetric shape. We employ the absolute value
to avoid the sign flip problem.

– Eigenvectors switch. The neighbor eigenvalues may
switch due to the perturbations of the deformations and
numerical computations. So are the corresponding eigen-
vectors. It happens nearly on every mesh. Reuter [17]
gave a solution to reorder the eigenvectors based on the
Morse–Smale graph. We use the same scheme. Without
further notation, all the eigenvectors, in the rest of the
paper, refer to the reordered ones.

– Higher dimensional eigenspaces can theoretically occur.
However, they rarely happen in practical data. We have
not found any example in our results so far.

– Duplicated eigenvalues may exist. A highly symmetric
shape, e.g. sphere or cube, has duplicated eigenvalues.
The linear combinations of the corresponding eigenvec-
tors are also eigenvectors. Nevertheless, practically used
animation models do not have such high symmetry. That
is to say that duplicated eigenvalues rarely happen practi-
cally in our application.

– Low frequency eigenvectors are stable under near-isomet-
ric deformation. Reuter [17] had a detailed discussion
about the stabilities of the shape spectrum with respect to
near-isometric deformations and noises, and used direct
spectral embedding for the semantic shape segmentation.
Our experiments also show that the low-frequency eigen-
vectors are quite stable. The third row of Fig. 2 demon-
strates the stability of the 10th eigenvector for different
poses. Although the spectra are stable globally, the lo-
cal values of eigenvector may shift. This usually happens
when there is a twisting deformation. The shifting will af-
fect the registration accuracy under this single frequency.
However, with multi-frequency embedding and multiple
shape data, the accuracy will be corrected by other values
that are stable.

The above discussion shows the near-isometric shapes will
have similar behavior in the spectral spaces.

4 Geometry spectrum domain embedding

The Laplace–Beltrami operator defines a family of eigenval-
ues and a family of eigenfunctions. The eigenvalues can be
used as shape descriptors which are stable and distinctive. It
also contains “frequency” information. The smaller eigen-
values denote lower frequencies. The eigenvectors form an
orthogonal basis on the manifold. Any functions can be pro-
jected to the basis and reconstructed with the linear combi-
nation of these eigenfunctions. All of these are global anal-
ysis in the spectrum domain. However, the main goal here
is to study the local behaviors of the surfaces. It is obvious
that each eigenfunction φk is assigned a real value at every
surface point p as φk(p). With respect to each point, there
exists a mapping from a point on the surface in 3D spatial
space to an infinite geometry spectrum space as:

GS(p) =
(

φ1(p)√
λ1

,
φ2(p)√

λ2
,
φ3(p)√

λ3
, . . .

)
, (8)

where p is a point on a surface S and φk is the kth eigen-
function corresponding to the kth eigenvalue λk of S. Each
eigenvector is normalized by

〈�vi, �vj 〉S = 1, i = 1,2,3, . . . , (9)
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on surface S. As we work on the poses casted by the same
object, the scales of each surface can be normalized. Thus,
the scales of the values in eigenfunctions represent the ge-
ometries of the shapes. We summarize some major advan-
tages of this geometry spectrum domain embedding as fol-
lows:

– If the surface in 3D space has no self-intersections, the
embedding has no self-intersections in the infinite domain
either. That means GS(pi) = GS(pj ) if and only if pi =
pj on S.

– The embedding is based only on eigenfunctions on the
manifold. It relies only on the manifold metric and is in-
variant to the Euclidean embedding in 3D space of S. The
embedding mapping filters away the Euclidean transfor-
mations and near-isometric deformations.

– The embedding is invariant to different triangulations be-
cause of the implementations of discrete Laplacian.

With this embedding, our method does not require any pre-
processing such as normalization, remeshing or registration.
All these spatial factors do not mater in the geometry spec-
trum domain. With the same surface, there is only one basis
set for the embedding. Nevertheless, it may not be true for
different poses. The eigenfunctions of the manifold satisfies
Eq. (1). If a certain function φk is a normalized eigenfunc-
tion corresponding to some eigenvalue λk , then, according
to this equation, −φk is also a normalized eigenfunction.
The experiments also show that eigenfunctions from dif-
ferent poses can flip with sign corresponding to the same
eigenvalue. In order to overcome this flipping problem, the
mapping is restricted as an absolute one as:

AGS(p) =
(∥∥∥∥

φ1(p)√
λ1

∥∥∥∥,

∥∥∥∥
φ2(p)√

λ2

∥∥∥∥,

∥∥∥∥
φ3(p)√

λ3

∥∥∥∥, . . .

)
. (10)

The absolute mapping will break the first property about
self-intersection (see above), and the symmetric points on
the surface will be mapped together. In our framework, it
is natural to assume those parts have similar physical be-
haviors when they are symmetric on the surface. Thus, the
absolute mapping does not affect the accuracy of mapping
in terms of symmetry. For example, the left and right el-
bows have the symmetric geometry properties, the regis-
tration across each is acceptable, as we do not require the
dense mapping and registration. In theory, the embedding is
a high-dimensional space; however, in practice we choose
first a few eigenvectors. Rustamov [20] suggested first d

dimensions. Reuter [17] used first 3 to 6 eigenfunctions.
Our experiments show that the low-frequency eigenvectors
are globally stable, which is shown in Fig. 2. According to
the computation, high-frequency eigenvectors become rela-
tively unstable due to the near-isometric deformations and
numerical errors. In our experiments, we use first 3 to 10
eigenvectors for the spectral embedding.

5 Semantic shape analysis

5.1 Semantic point classification

The geometry spectrum embedding transforms each point
on the surface from the Euclidean space to an infinite ge-
ometry spectrum space. Suppose there exists a spatial sur-
face which is near-isometrically deformed along time, de-
noted by S(t). The points with the same positions relative
to the surfaces S at different times will map into the same
coordinates in the spectrum space, despite the different lo-
cations, orientations and poses of the original surfaces. Al-
though the point is fixed in the spectral domain, it can carry
varying geometric properties on S. That is to say, in the
spectral domain, the properties at a point vary while the
pose changes. For each point p in the spectral domain, we
can define a property function fp(t) which depends only on
time t . Imagine that if the properties are chosen to be in-
variant to Euclidean transformations but only sensitive to
pose changes, what can be observed in the spectrum do-
main is that properties vary on certain regions along with
pose changes while not on the other regions. The former
situation indicates articulations while the latter one indi-
cates rigid parts of the original shape. There are some well
studied features on surfaces, such as curvatures, normals,
geodesic fans, and so on. In our framework, mean curva-
tures are a straightforward choice, as the Laplacian operator
is also the mean curvature normal operator on the surface.
When the shape deformation S(t) is given, the pose behav-
iors of all the points can be classified into the articulate or
rigid.

The data in our framework is not a continuous surface
changing with time but N frames of meshes. N could range
from 2 to 10 or even more. The property functions are re-
duced to a discrete set. A triangle mesh is a discrete sam-
pling of a surface, therefore, an exact correspondence of a
vertex may not exist on another near-isometric mesh. Thus,
the property set on a vertex is built based on an approxima-
tion. Suppose fp is a feature set which is going to be built
at a vertex p on the surface S. First, the embedding of p is
calculated, the mean curvature of p is put into fp as an ele-
ment. Then, for each following frame of meshes Si , a point
pi is found as a nearest one to p in the geometry spectrum
domain base on the Euclidean distance, and the mean cur-
vature of pi is put into fp as another element. Therefore,
the element in fp can classify the geometric behaviors of p

through different poses. Figure 4 illustrates the maximum,
minimum and range distributions on the surface among dif-
ferent poses.

5.2 Property smoothing

After Eq. (5) is solved, vertices can be mapped from spatial
space into to geometry spectrum domain directly with the in-
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dices. The chosen properties can be assigned in the spectrum
domain. As mentioned above, mean curvature is chosen be-
cause the mean curvature normal vector can be obtained by
multiplying the Laplacian matrix with the vertex position
matrix. Mean curvature is also invariant to Euclidean trans-
formation. However, directly assigning the mean curvature
will cause stability problems. The embedding is applied on
each discrete vertex. A particular vertex usually cannot find
the exact matching with other vertices from other surfaces
but has to use the neighbor information in the geometry
spectrum domain. Based on the definition, mean curvatures
obtained by the mean curvature normal operator use only
one ring neighborhood on the mesh. When the mesh is con-
structed, noise could be involved during the modeling or re-
construction procedures. Thus, the direct mean curvatures
will contain a lot of local variance, which will affect the ac-
curacy and stability of the pose analysis in the spectrum do-
main. Therefore, they have to be smoothed first.

The smoothing process is done with Laplacian eigen-
functions. As it is discussed in the Laplace spectrum section,
any function f defined on the surface can be transformed

Fig. 4 Mean curvatures values in spectral pose analysis: (a) maximum
mean curvature distribution on each vertex during pose transformation;
(b) minimum mean curvature distribution; (c) mean curvature range
distribution. The values are histograms equalized for visualization

Fig. 5 Mean curvature reconstruction on eigenfunctions of the man-
ifold. From left to right, top to bottom, the first figure shows the dis-
crete mean curvatures on the surface, obtained by applying Laplace—
Beltrami operator on the Euclidean embeddings; the rest of figures are
reconstructions with the first 6, 20, 50, 100, and 130 eigenfunctions

into frequency domain by projecting it onto the eigenfunc-
tions. The coefficient family {ci} forms the frequency spec-
trum of f as its counterpart in 1D, which is well known
as Fourier transform. The smoothing is done by applying a
low-pass filler in the frequency domain then transforming
filtered coefficients back to the surface function. Figure 5 il-
lustrates the mean curvature reconstruction procedure with
different numbers of eigenfunctions. As is shown, the re-
construction with first 130 eigenfunctions is usually suffi-
cient.

6 Automatic skeleton and joint extraction

When all the points on the surface shape are classified and
clustered into semantic parts, it allows an automatic skeleton
construction with joint identification. Here we adopt Reeb
graph to achieve this goal.

6.1 Skeleton extraction

Reuter [17, 19] discussed the skeletal representation based
on the eigenfunctions. We found that in the practical data,
the intersections of different parts are not stable if the cen-
ters of Reeb graph are employed directly. They may shift
away from the semantic locations where they should be.
The experiments show that iteratively shrinking the mesh to
the center produces smoother results. Our skeleton construc-
tion is automatic with two simple steps as demonstrated in
Fig. 6.

Iso-contour shrinking. For each vertex on the mesh, the
contour with the same function value of the vertex is tra-
versed and found. Then, the vertex is moved to the geomet-
ric center of the isocontour. This results in a skeleton-like
mesh.

Skeleton construction. Applying the algorithm in [15] on
the shrunk mesh with the original eigenfunction, because
the mesh is shrunk to the skeleton shape, the spatial em-
bedding of the Reeb graph is accurate enough to become a
skeleton.

Fig. 6 Automatic skeleton generation. From left to right: the first non-trivial eigenfunction of the loin model; shrink mesh based on isocontours;
skeleton generated with Reeb graph algorithm on the shrunk shape; and the embedding of the skeleton within the original model
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Fig. 7 Mean curvature range distributions on a lion model and the
extracted semantic skeleton with joints identified based on the distri-
bution

6.2 Joint detection

Based on the changing geometric behaviors of points in the
geometry spectrum domain, we are able to automatically
spot the joints as long as the deformations around the joints
are presented in the given deformation sequence. Figure 4
demonstrates the basic ideal of the pose analysis in the ge-
ometry spectrum domain. Figure 4(a) is the distribution of
the mean curvature maxima on the surface. The larger the
value is, the more the surface on that point can bend along
relative to the negative direction of the normal at that point.
Figure 4(b) is the distribution of mean curvature minima.
It predicts the behavior that surface bends along the posi-
tive normal direction. Note that the values on the surface
are histogram equalized. The same color does not mean the
same value across different surfaces. Ideally, if a part is al-
ways rigid during pose transformation, the geometric shape
will never change. A point on that part has the exact con-
stant mean curvature all the time. Thus, the minimum and
maximum of mean curvature are equal to each other. On the
contrary, if a part varies, the minima and maxima will fall
away from each other. This mean curvature change range is a
measurement describing how “rigid” the point and its neigh-
borhood is, which is shown in Fig. 4(c). The result is very
natural. The articulations like neck have different forms un-
der different poses. The parts like nose will not change too
much during different poses. Figure 7 shows the complete
example.

7 Experiments and applications

In this section, we show some experiment results of skele-
ton and joint extraction as well as some further applications
based on the semantic skeletons. Note that the pose shapes
are represented with triangle meshes. In our experiments, we
use mesh data sets from SHREC07 and the one Sumner and
Popović [22] used.

Fig. 8 Mean curvature range distributions on armadillo models. The
chest and back shell usually stay rigid while the neck, elbows, and
waist vary during pose changes.

Fig. 9 Mean curvature range distributions on an elephant model and
the extracted semantic skeleton with joints identified based on the dis-
tribution

7.1 Skeleton and joint extraction

Figure 8 gives an example of the armadillo shape. The main
body, especially the chest and the back shell, will not have
much variance when it casts different poses. Instead, when
the armadillo often changes its postures of head, arms or
legs, the neck, shoulder, and waist follow the pose changes.
The mean curvature ranges on the surface lead to a segmen-
tation directly, which segments the rigid parts and articu-
lations apart. With the help of the mean curvature ranges,
hierarchy graphs can be built as is described in [2]. Figure 9
shows another example.

7.2 Animation

Skeleton-driven deformation has been extensively studied. It
is intuitive to human understanding. Most of poses of crea-
tures are controlled by bones and muscles and then repre-
sented by the skin surfaces. The technique of the skeleton-
driven deformation and animation is widely used in the ani-
mation and gaming industry. The classical pipeline is as fol-
lowing: first, manually design a skeleton of a mesh surface;
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Fig. 10 Animation sequence. With the automatically extracted seman-
tic skeleton, user can edit the pose freely. The animation sequence can
be generated among the edited key frames

Fig. 11 Motion transformation from a lion model to a cat model

then, assign the vertices of that surface to semantic skele-
tal parts; then, deform the mesh along the skeleton. Fortu-
nately, our method automatically classifies semantic parts
of surfaces during pose changes, and then produces graphs
that can be treated as skeletons of meshes. The vertices of
the semantically classified surface are automatically asso-
ciated with skeletal parts with joints identified. There are
many existing algorithms that can be employed to deform
and control such a shape with skeletons. Figure 1 has al-
ready given an example. The skeletons are learnt from sev-
eral key frames, but can control the shape to cast much more
poses than that. Figure 10 also shows some other deforma-
tion sequences. These new poses are not just any ones in the
reference frames, but some potential possibilities the models
can cast based on the knowledge from existing frames.

7.3 Pose transformation

Pose transformation is another popular graphics application.
The motivation is obvious. If a pose can be transformed
from one shape to another similar shape automatically, a
lot of time can be saved by modeling one key shape in-
stead of modeling lots of different shapes. In our framework,
the poses are represented with semantic parts. Two similar
shapes will have similar semantic parts and skeletons. Graph
or skeleton matching algorithm, such as in [23] can find the
correspondence between two similar skeletons. After that, a
pose driven by a skeleton can be transformed to a similar
pose with a corresponding skeleton. Figure 11 demonstrates
how running poses are transformed from a lion model to a
cat model.

8 Conclusion

Differently from the existing spatial approaches, our method
allows to understand the poses in the geometry spectrum do-
main. The geometry spectrum is based on the eigenvalues
and eigenfunctions that are defined by the Laplace–Beltrami
operator on the surface. The Laplace–Beltrami operator re-
lies only on the metric on the surface, therefore it is in-
variant to Euclidean translation, rotation and scaling. It is
also invariant to isometric deformations. Thus, the eigen-
values, eigenfunctions, and the geometry spectrum domain
share the invariance. Ideally, every point on a spatial sur-
face should be embedded in the geometry spectrum domain
only by its geometric meaning. As long as the poses casted
by one model are near-isometric to each other, they will be
re-embedded to a uniform surface in the infinite geometry
spectrum. In practice, the shape spectrum is stable under the
near-isometric deformations. For example, the points on the
elbow of the model will always be embedded around a com-
mon location in the spectrum domain, no matter how the
model’s pose changes. The spectrum reflects the intrinsic
characteristics of a surface despite varying Euclidean space
embeddings.

The discrete setting makes it possible and easy to ap-
ply the Laplace–Beltrami operator directly on the surfaces
represented by triangle meshes. The continuous Laplacian
equation turns into a symmetric generalized sparse matrix
eigenproblem. The eigenvalues are kept the same within a fi-
nite number, and eigenfunctions are represented with eigen-
vectors as area-weighted samplings. This also makes the
spectrum domain invariant to different sampling rates and
triangulations.

Our method analyzes data without preprocesses like
remeshing or registration. It first transforms spatial sur-
faces into geometry spectrum domain. Each point is mapped
along with its spatial geometry properties. The properties
are smoothed with a low-pass filter defined on the basis of
eigenfunctions. In the spectrum domain, each point carries a
set of properties during the pose variations. It is efficient to
classify points on the surface into rigid parts and articulated
parts by analyzing the geometric property changes on those
points mapped in the geometry spectrum domain. The eigen-
function can also provide rich geometric meaning, which
leads to an automatic semantic skeleton with joints identi-
fied. The experimental results show that the filtered mean
curvature range can predict different semantics of parts on
the original surface. It may be very useful in motion analysis
in computer vision and pattern-recognition tasks as well.
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