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Abstract—Analysis of dynamic object deformations such as cardiac motion is of great importance, especially when there is a ne-
cessity to visualize and compare the deformation behavior across subjects. However, there is a lack of effective techniques for
comparative visualization and assessment of a collection of motion data due to its 4-dimensional nature, i.e., timely varying three-
dimensional shapes. From the geometric point of view, the motion change can be considered as a function defined on the 2D manifold
of the surface. This paper presents a novel classification and visualization method based on a medial surface shape space, in which
two novel shape descriptors are defined, for discriminating normal and abnormal human heart deformations as well as localizing the
abnormal motion regions. In our medial surface shape space, the geodesic distance connecting two points in the space measures
the similarity between their corresponding medial surfaces, which can quantify the similarity and disparity of the 3D heart motions.
Furthermore, the novel descriptors can effectively localize the inconsistently deforming myopathic regions on the left ventricle. An
easy visualization of heart motion sequences on the projected space allows users to distinguish the deformation differences. Our
experimental results on both synthetic and real imaging data show that this method can automatically classify the healthy and myo-
pathic subjects and accurately detect myopathic regions on the left ventricle, which outperforms other conventional cardiac diagnostic
methods.

Index Terms—Medial surface, shape space, comparative visualization, left ventricle diagnosis

1 INTRODUCTION

Generally, analysis of dynamic three-dimensional object deformations
such as cardiac motion, face expressions, and gestures is of great im-
portance, especially when there is a necessity to visualize and compare
the deformation behavior across subjects. Physical based approaches
such as deformable models assume the deformation is governed by
some physical principles, and estimate the deformation by minimizing
an appropriate energy functional subject to deformation smoothness,
which is achieved through finite element analysis. In geometric based
approaches, a higher level of shape abstraction and information reduc-
tion is necessary to support efficient characterization of shape motions.
In machine vision techniques, a shape descriptor extracts local/global
geometric features from the shape [41, 8, 42], and then, an energy
functional based on the shape descriptor is minimized to classify the
shapes. The modern geometry introduces shape space, where coor-
dinates of points in the space represent some generalized properties
related to various geometrical structures [4, 5].

In information visualization, the motion typology was used to
achieve a perceptual grouping effect on information analysis [3], in
which the users are more concern about how the data evolves. How-
ever, due to the large amount of spatial and temporal data, it is diffi-
cult for the human to perceive and interact with the information [37].
Elmqvist et al. proposed a technique, called Growing Polygons, which
provides a graphical representation such as colors, textures, and ani-
mation, for better understanding of the information flow [11]. Ji et
al. [18] combined the static and dynamic view selection methods so
that the user can perceive the maximum amount of information from
time-varying data. Moere [26] employed the information flocking con-
cept to generate dynamic patterns in time-varying data based upon
long-term as well as short-term temporal similarities. In this work, we
analyze the shape variability of dynamic objects by encoding and com-
pressing them in shape space. In other words, each group of shapes re-
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lates to the points in the shape space manifold, which is used to model
the shape variability. The shape variability analysis can be used to
capture the deformation of the dynamic objects and lower complexity
of analyzing the deformations in a high dimensional Euclidean space.

One major area where the dynamic shape analysis and visualization
can be immensely helpful is medical imaging analysis. Analysis of dy-
namic organs, such as cardiac motion, always requires high expertise
in order to achieve accurate early clinical diagnosis. This paper aims at
classification of normal and abnormal left ventricle (LV) deformations
by statistical analysis of the LV variability in shape space. Cardiomy-
opathy is one of major cardiac disease, especially in children, which
affects the myocardium such that the left ventricle cannot be filled as
in a normal left ventricle [29]. The traditional cardiac diagnosis meth-
ods are mainly based on general global volumetric measures such as
left ventricular volume, left ventricular mass, ejection fraction, and
cardiac output. However, certain local shape descriptors such as strain
analysis, mean and Gaussian curvature, shape index, shape spectrum,
and wall thickness can provide much richer information for the car-
diac analysis [15]. As cardiomyopathy affects the wall thickness of
the left ventricle such that in the myopathic regions, the wall thick-
ness changes less than the healthy regions, we can compare the wall
motion and its thickness change to visualize, classify and localize the
myopathic regions on the left ventricle.

In this paper, we embed a sequence of poses, i.e., shapes, of the
left ventricle motion during one heart cycle as the points on the shape
space manifold, and define the similarity between each pair of poses by
measuring the geodesic distance between their corresponding points
on the shape space manifold. Therefore, each deformation can be rep-
resented by a high-dimensional curve on the non-linear shape space
manifold, and the deformation classification problem is converted to
the high-dimensional curve classification problem.

1.1 Related Work
In many cardiac analysis approaches, Wall Thickness (WT) is used
as a sensitive indicator of abnormal cardiac contraction and expan-
sion [2]. WT is mainly computed by drawing line segments perpendic-
ular to the centerline of the endocardial and epicardial contours at each
slice [31]. As a 3D extension of this method, the center-surface model
provides a viable framework to describe shape parameters such as WT
and bending which do not belong to the linear Euclidean space [15, 7].
Therefore, the linear shape analysis techniques do not apply to these
parameters. The medial surface of a 3D object consists of the centers
of all spheres that are interior to the object and tangent to the object’s
boundary at two or more points.
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Medial representation (m-Reps) [27, 10] and continuous medial
representations (cm-Reps) [40, 39] are deformable parametric repre-
sentations of the boundary-medial relationship, which are deformed
to fit the interiors of objects to the model structure. Terriberry et al.
presented a 3D medial surface based on subdivision surfaces, which is
parameterized over a fixed domain and can support the complex me-
dial surface with more than one medial surface [36]. Sun et al. applied
the medial model to the right and left ventricle deformations and con-
cluded that the medial model can capture the deformation of the left
and right ventricles along with the changes of their wall thickness over
time [33, 34].

Fletcher et al. [13] presented principal geodesic analysis (PGA) as
a generalization of principal component analysis (PCA) to compute
the variability of data on a manifold. The method considers the in-
trinsic properties of the manifold such as geodesic curves and distance
for calculation of shape variability. They used Riemannian log map
to project the points of the non-linear shape space manifold onto the
linear tangent space, which is distance preserving map, whereas the
orthogonal map is not [20, 21]. They tested PGA by computing the
shape variability on a hippocampus data set. In addition, the points on
the tangent space can be projected back to the shape space manifold
using the Riemannian exponential map.

This paper aims to differentiate motions across subjects, in partic-
ular, the healthy and myopathic left ventricles based on the changes
of the LV wall thickness. Towards this end, a non-linear shape space
framework based on m-Reps is introduced, which can capture the char-
acteristics of the LV deformation, using two new shape descriptors.
Consequently, the log map can be employed to project the non-linear
space onto a linear one and measure the similarity between different
medial surface deformations. Our contributions in this paper can be
summarized as follows,

• A new shape space based on the medial surface and thickness
function is introduced, where the geodesic distance between two
embedding points measures the similarity of the corresponding
deforming shapes;

• Two novel shape descriptors are defined in the shape space,
which can discriminate different deformations and detect their
differences;

• The effectiveness of the medial surface shape space is demon-
strated for visualization and classification of the left ventricle
deformations.

The remainder of this paper is organized as follows. The shape
space theoretical background is reviewed in Section 2; the medial sur-
face shape space and the classification framework are introduced in
Section 3; the experimental results on the synthetic and real left ven-
tricle datasets are illustrated in Section 4 and Section 5, followed by
Conclusions in Section 6.

2 SHAPE SPACE THEORY

Let X be a topological space and ∼ be an equivalence relation. The
equivalence class of y is defined as,

[y] = {x ∈ X|y ∼ x} .

The set of all equivalence classes in X w.r.t. to ∼ is called quotient
space of X by ∼, i.e. X/ ∼= {[x] : x ∈ X}. Each equivalence
class has a projection map π which maps each element of X to its
equivalence class,

π : X → X/ ∼, [x] = π (x) .

Assume a high dimensional space N in which each point character-
izes one shape, e.g., the space all immersions of a fixed connectivity
in which each point is a vector in R3 and contains the coordinates of
k landmarks, k-ad, selected from the shape. One can determine the
equivalence class of each point on this space, that is, the set of points

in this space which can be mapped to each other by a certain trans-
formation G. This yields a non-linear Riemannian space M, shape
space, which is the quotient space of the space N by the action of
the transformation G, i.e. M = N/G. For example, the centered and
scaled shapes in the k-ad space construct a preshape space Skm in
which the points can be mapped to each other by the orthogonal group
SO(m), i.e. rotation. Thus, shape space is a quotient space, that’s,
σkm = Skm/SO(m) [6].

In general, the choice of transformation depends on the geometric
property to which the shapes are invariant. The invariance properties
can be integrated either into shape space design such that the shape
representation is independent of some properties, or into metrics which
do not consider certain transformations [16]. In this paper, we pursue
the first approach by introducing two shape descriptors which can cap-
ture the geometrical differences between healthy and myopathic left
ventricle deformations. Our shape space is constructed and equipped
with a novel metric in order to measure the distance, therefore, facili-
tating statistical analysis in shape space to model the shape variability
during given deformations. We compare shape deformations by mod-
eling the variability of the intermediate poses over the course of defor-
mation, and compare the spread of these populations in shape space. In
general, the means and variations (extrinsic or intrinsic) are adequate
for classification in most practical problems [4]. As shape space is a
non-linear space, the linear statistical analysis does not induce well-
defined shape variabilities [35]. However, we can employ the Exp and
Log maps to project each point from non-linear shape space onto lin-
ear tangent plane, and estimate the variability on a tangent space as in
the Euclidean space using Exponential maps.

2.1 The Exponential Map

Let M be a complete Riemannian manifold. According to Corollary
1, there exists a geodesic between each pair of points on M. Let v ∈
TpM be a tangent vector, thus there exists a unique geodesic γv(t),
where γv(0) = p and γ′

v(0) = v. The exponential map Expp(v) :
TpM → γv(t) maps the vector v to a point on the geodesic γv(t).
The exponential map preserves the distance from the initial point p,
i.e., d(p,Expp(v)) = ∥v∥. Its inverse on the Riemannian manifold is
called Log map, Logx. Let p, q ∈ M be two points in a neighborhood
on M, then the geodesic between p and q is d(p, q) = ∥Logp(q)∥.

2.2 The Exponential map on S2

For the sphere S2 with the base of p = (0, 0, 1), the Exponential map
on S2 is,

Expp(v) =

(
v1 ·

sin ∥v∥
∥v∥ , v2 ·

sin ∥v∥
∥v∥ , cos ∥v∥

)
, (1)

where v = (v1, v2, 0) ∈ TpS
2 is a tangent vector in the plane x-y

(Fig. 1). Inversely, the Log map the point x = (x1, x2, x3) ∈ S2 on
the tangent plane TpS

2 is,

Logp(x) =

(
x1 ·

θ

sin(θ)
, x2 ·

θ

sin(θ)

)
, (2)

where θ = arccos(x3) is the spherical distance between the point p
and x. Indeed, S2 is a symmetric space, and according to Corollary 1,
S2 is a complete space; therefore, every two points can be connected
to each other by a geodesic, which is the great circle passing through
p.

2.3 Lie Group

The intrinsic analysis on M makes use of the natural choice of the
geodesic distance, in contrast with extrinsic analysis which maps M
into the Euclidean space and computes the distance [17, 6]. The trans-
formations of a smooth manifold can be described by a Lie group G,
which in turn, is used to compute the geodesic on the Riemannian
symmetric spaces [23].
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Fig. 1. The exponential map of the tangent vector v on the sphere S2.

Definition: A Lie group is a group G that is a smooth manifold in
which the multiplication (µ) and inversion (i) maps are smooth, i.e.,

µ : G×G → G, (g, h) → gh (3)

i : G → G, g → g−1 (4)

where {g, h} ∈ G.
Corollary 1: Every symmetric space is geodesically complete, i.e.,

any two points in the same path component of the space can be con-
nected by a geodesic [19].

Rotations, and affine transformations are some Lie groups acting on
the symmetric spaces such as Euclidean space, Rn, and spheres, Sn.

3 THE MEDIAL SURFACE SHAPE SPACE AND ITS METRICS

In this section, we will describe in detail the medial surface shape
space and its metrics which can be used to quantify the radial motions
of the human heart. The framework can be extended to other motion
types as long as there exist shape descriptors which can characterize
the particular shape motions.

3.1 Cardiomyopathy

This work aims to classify the normal and abnormal left ventricle (LV)
deformations based on the changes in the Wall Thickening (WT) of
LV. Cardiomyopathy is the main cardiac disease which affects the wall
thickness and its functionality, and is a well-known cause of heart fail-
ure or sudden cardiac death in children [25]. In this disease, the normal
alignment of muscle cells is disrupted, which obstructs the outflow of
blood from the left ventricle. There are three types of Cardiomyopathy
(Fig. 2):

• Dilated CardioMyopathy (DCM): A portion of the myocardium
is dilated, often without any obvious cause. In this condition, the
heart becomes weakened and enlarged and cannot pump blood
efficiently [12].

• Hypertrophic CardioMyopathy (HCM): A portion of the my-
ocardium thickened without any obvious cause [29].

• Restrictive CardioMyopathy (RCM): The walls are rigid, and the
heart is restricted from stretching and filling with blood prop-
erly [24].

In prior research work, the WT is usually computed from the cen-
terline method. In this work, the medial surface is computed, and
its features are extracted during one heart cycle for each kind of car-
diomyopathy.

(a)

(b) (c) (d)

Fig. 2. (a) The diagram of a normal heart with the left ventricle high-
lighted in blue. The left ventricle with (b) Dilated CardioMyopathy
(DCM), (c) Hypertrophic CardioMyopathy (HCM), or (d) Restrictive Car-
dioMyopathy (RCM). The rigid portion of LV with RCM is highlighted in
brown.

3.2 Medial Representation
In the medial representation framework, the medial surface (M) con-
sists of some atoms. Each atom (m) contains the center of an inscribed
sphere (x), the sphere radius (r), and two or three vectors, called
spokes (Si), from the sphere centers to the two or three tangent points
on the boundary points yi (Fig. 3), i.e., m = {x, r, S1, S2} ∈ M. The
atoms can be considered as control points on a continuous medial sur-
face [13]. An end atom is an atom with three spokes located on the
boundary of the medial surface. To simplify the calculations, we do
not consider the end atoms in this work.

Let r(t1) and r(t2) be the radius elements of an atom m at two
sequential time points t1 and t2, respectively. We can estimate the
changes of WT at atom m as r(t2)/r(t1), called Proportion of Thick-

(a) (b)

Fig. 3. (a) The LV medial surface contains the centers of inscribed
spheres, (b) A non-boundary atom m contains a position (x), a radius
(r), and two spoke directions (S0, S1), where its corresponding bound-
ary points y0 and y1 can be achieved as, y0 = x+rS0 and y1 = x+rS1,
respectively.
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ness (PT ). Since cardiomyopathy affects the myocardium such that
the left ventricle cannot contract or expand normally during systolic
and diastolic periods of one heart cycle, the changes of wall thick-
ness in myopathic areas are not as healthy areas. Table 1 illustrates
the mean and standard deviation of the PT values of the atoms in
myopathic and healthy regions of all the subjects. Our observations
confirms that PT values of atoms in myopathic regions are close to
1 during one heart cycle, which shows these regions cannot contract
or expand as the atoms in healthy subjects whose PT values are < 1
in diastole and > 1 in systole. This makes PT a good candidate to
differentiate healthy and myopathic LV’s, and localize myopathic re-
gions.

However, due to the existence of noise in the acquired images, as
well as the lack of accuracy in the extracted medial surface, PT values
of some atoms in healthy subjects might also be close to one, which
lowers the accuracy of PT as a reliable measure. To tackle this prob-
lem, two additional measures are introduced, which can correct and
enhance the accuracy of PT.

3.3 Average of Normal vectors (AoN)

During one heart cycle, the medial surface and wall thickness change
according to the left ventricle contraction and expansion. However,
in myopathic subjects, one portion of the left ventricle cannot deform
consistent with other parts, which in turn affects medial surface and
wall thickness. Let M̂ be the set of all atoms whose PT ≈ 1, N be
normal vector of each atom in M̂, and Navg be the Average of these
Normal vectors (AoN). Fig. 4.a shows the medial surface of a myo-
pathic LV at three sequential time points along with the normal vec-
tors of atoms in M̂. Since the atoms of a myopathic region construct
a patch-shape on LV, the direction of AoN does not change noticeably
during one heart cycle (Fig. 4.c).

As aforementioned, some atoms of a healthy LV might belong to
M̂, i.e., PT ≈ 1, but since there is no myopathic region on a healthy
LV, the M̂ atoms in a healthy LV are distributed all over the medial
surface and this distribution might change during one heart cycle at
sequential time points (Fig. 4.b). As a result, the direction of AoN
changes considerably during one heart cycle, and also during different
cycles (Fig. 4.d).

3.4 Mean of Centers (MoC)

Let x be the center of each atom in M̂ and x̄ be the Mean of the Centers
(MoC). In a myopathic LV, the M̂ atoms are concentrated around the
myopathic region, thus MoC is close to the medial surface during one
heart cycle (Fig. 5.a). In contrast, the M̂ atoms distributed all over the
medial surface in a healthy LV, and the corresponding MoC is located
inside the medial surface at different time points (Fig. 5.b). Therefore,
we can easily calculate MoC of atoms in M̂ and compare its closeness
to the medial surface in different subjects to determine abnormalities.

3.5 The Medial Surface Shape Space

In order to quantify and measure the similarity of the LV deformations
reflected by M̂, we embed the deforming shapes into a medial surface
shape space, where each point corresponds to a certain LV medial sur-
face rather than one atom. Let L be the medial surface shape space
manifold and l ∈ L be a point corresponding to one medial surface.
Based on the shape descriptors and characteristics described before,

Table 1. The Mean and Standard Deviation (Mean±SD) of PT Values
in Myopathic and Healthy Regions during Systolic and Diastolic Phases

Systole (Con-
traction)

Diastole (Ex-
pansion)

Healthy Region 1.38± 0.61 0.62± 0.31
Myopathic Region 1.12± 0.53 0.93± 0.42

(a)

(b)

(c) (d)

Fig. 4. The medial surface of (a) a myopathic LV and (b) a healthy LV
at three time points. Different PT values are represented with different
colors along with the normal vectors of atoms in M̂. (c) The Average
of the Normal vectors (AoN) of the atoms in M̂ have roughly the same
direction at three time points in the myopathic LV, but (d) AoN of the
atoms in M̂ have considerably different directions in the healthy LV.

we can define the unique shape space as,

l = (x̄, r̂ρ,Navg) ∈
{
R3 × R+ × S2} ,

where x̄ and Navg are the MoC and AoN of M̂ of l,

r̂ =
∏
i∈M̂

(
ri(t2)

ri(t1)

)
,

is the multiplication of PT values over all atoms in M̂, and ρ is a con-
stant measuring the average of the log map distance between the nor-
mal vector N and the corresponding spoke vector S at all the atoms in
M̂. Basically, the introduced shape descriptor uses the normal vectors
of the medial surface to confirm the accuracy of PT values in different
subjects. However, the medial surface as mentioned before contains
spokes which are the normal vectors of the boundary, not of the me-
dial surface (Fig. 6).

To take this difference into account, the distance between each
spoke and the corresponding normal vector is measured by the log
map as in Eq.2,

LogN(S) =
(
s1 ·

θ

sin(θ)
, s2 ·

θ

sin(θ)

)
,

where N is the normal vector of the medial surface, and S =
(s1, s2, s3) is the spoke. The average of log map distance between
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(a)

(b)

Fig. 5. (a) MoC of a myopathic LV is located in the medial surface, (b) In
a healthy LV, the mean is inside the medial surface.

the normal vector N and the corresponding spoke S over all the atoms
in M̂ is,

ρ =

∑
M̂ LogN(S)
|M̂|

.

In the following, we prove that the introduced left ventricle medial
surface space L is a diffeomorphic to the quotient space.

Let L =
{
R3 × R+ × S2

}
be the symmetric space of the medial

surfaces, and the group G =
{
R3 × R+ × SO(3)

}
act on it smoothly

as,

G × L → L : g · l = (v, s,R) · (x, r, S)
= (x + t, r · s,R · S) .

where t is the translation, s is the scaling factor, and R is the rotation
matrix. R3 is a Lie group under vector addition, R+ is an element

Fig. 6. The extract medial surface contains two spokes which are per-
pendicular to the boundary at y and y′, yet the proposed shape descrip-
tor makes use of the normal vectors, N and N′, of the medial surface.

of the multiplicative Lie group of positive real numbers, and SO(3)
is a Lie group under the composition of rotations. Therefore, G as a
product of three Lie groups is also a Lie group [14].

Definition: The isotropy subgroup of the base point b ∈ L is the
subgroup of G which leaves b fixed, i.e., Gb = {g ∈ G : g · b = b}.

Theorem 1: Let L be a symmetric space and let the isometry group
G act transitively on L. Then the map,

φ : G/Gb → L,

is a diffeomorphism [32].
If p = [(0, 0, 0), (1), p] ∈

{
R3 × R+ × S2

}
is the base point,

where p = (0, 0, 1), then the isotropy subgroup Gp is,

{(0, 0, 0)× (1)× SO(2)} .

According to Theorem 1, the medial surface space L is diffeomorphic
to the quotient space,

G/Gp =
{
R3 × R+ × SO(3)/SO(2)

}
.

3.6 Distance Metric
In our defined medial surface shape space, the geodesic distance con-
necting two points on the shape space manifold measures the similarity
between their corresponding medial surfaces. To measure the distance
between two points corresponding to two poses in the space L, we use
the log map distance.

Let l1 = (x̄1, r̂
ρ
1 ,Navg

1 ) and l2 = (x̄2, r̂
ρ
2 ,Navg

2 ) be two LV me-
dial surfaces in L, and u1 be the tangent vector of L at point l1. We
project the non-linear shape space onto the linear tangent space using
the log map, which preserves the geodesic distance, i.e., dg(l1, l2) =
∥Logl1(l2)∥, where dg is the geodesic distance between l1 and l2 on
the shape space manifold and Logl1(l2) is their log map. Further, ac-
cording to the log map definition, ∥Logl1(l2)∥ = ∥u1∥; therefore,

∥Logl1(l2)∥ = ∥u1∥ = ⟨u1, u1⟩
1
2 ,

which is a Riemannian metric.
Let g = (v, s,R) be an element of the group G of isometries acting

on L, where v is the translation vector, s is the scaling factor, and R is
the rotation matrix; therefore, it acts on l1 as,

g · l1 = (v + x̄1, s · r̂ρ1 ,R · Navg
1 ) ,

since g belongs to the group of isometries,

d(l1, l2) = d(g · l1, g · l2).

In addition, let p = [(0, 0, 0), (1), p0] ∈
{
R3 × R+ × S2

}
be the

base point, where p0 = (0, 0, 1), and ḡ ∈ G maps l1 to p, i.e., p =
ḡ · l1, since ḡ is an isometry, d(l1, l2) = d(ḡ · l1, ḡ · l2) = d(p, ḡ · l2),
and

ḡ · l2 = (x̄2 − x̄1,
r̂ρ2
r̂ρ1

,T · Navg
2 ),

where T is a rotation matrix, such that T · Navg
1 = p0.

Now, we define the Exponential and Log maps of the LV medial
surface shape space as follows,

Expp(ḡ · l2) = (x̄2 − x̄1, exp(
r̂ρ2
r̂ρ1

), Expp(T · Navg
2 )), (5)

where, exp(.) is a regular exponential function and Expp(T ·Navg
2 ) is

the spherical exponential map (Eq.1), and

Logp(ḡ · l2) = (x̄2 − x̄1, log(
r̂ρ2
r̂ρ1

), Logp(T · Navg
2 )), (6)

where, log(.) is a regular log function and Logp(T·Navg
2 ) is the spher-

ical exponential map (Eq.2).
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Based on the defined Log map on the LV shape space, we can define
the intended shape space metric. Since the log map projects the points
on the linear tangent plane, the magnitude of the log map is defined
using the linear Euclidean distance measure as,

d(p, ḡ · l2) = ∥Logp(ḡ · l2)∥
=

[
∥x̄2 − x̄1∥2 + ∥ρ2 · log(r̂2)− ρ1 · log(r̂1)∥2

+ ∥Logp(T · Navg
2 )∥2

] 1
2
, (7)

in which, ∥Logp(T · Navg
2 )∥ =

∥∥∥LogNavg
1

(Navg
2 )

∥∥∥, which is the

spherical log map between Navg
1 and Navg

2 . As d(l1, l2) = d(p, ḡ · l2);
therefore,

d(l1, l2) = ∥Logl1(l2)∥

=
[
∥x̄2 − x̄1∥2 + ∥log(r̂ρ22 )− log(r̂ρ11 )∥2

+
∥∥∥LogNavg

1
(Navg

2 )
∥∥∥2

] 1
2

. (8)

3.7 Deformation Classification
Let l1, ..., ln ∈ L be n points in shape space corresponding to n poses
of the LV during one heart cycle. As mentioned in Section 3.3 and
Section 3.4, the variations of AoN and MoC of a myopathic LV is
smaller than those of a healthy LV. As a result, the points li are closer
to each other in a myopathic LV than in a healthy LV. Therefore, the
variance of the points which reveals the closeness of the points li, can
be used to classify healthy and myopathic LV’s.

Since the points li’s are located on a non-linear shape space mani-
fold, we calculate the intrinsic variance of li’s for each LV rather than
the ordinary variance. First, the intrinsic mean of the points li’s is
computed based on the proposed metric as following [13],

Algorithm 1 Intrinsic Mean
Require: l1, ..., ln ∈ L
Ensure: µ ∈ L

1: µ0 = l1
2: repeat
3: ∆µ = 1

n
· Σn

i=1dg(µj , li) = 1
n
· Σn

i=1

∥∥Logµj (li)
∥∥

4: µj+1 = Expµj (∆µ)
5: until ∥∆µ∥ > ϵ

where Expµj (∆µ) is the exponential map (Eq.5), determining the
changes of the intrinsic mean on the shape space manifold, and ϵ is the
convergence threshold.

Next, the intrinsic variance σ2 is calculated as,

σ2 =
1

n− 1
· Σn

i=1d
2
g(µ, li) =

1

n− 1
· Σn

i=1 ∥Logµ(li)∥2 ,

where µ is the intrinsic mean of li’s, and ∥Logµ(li)∥ is the geodesic
distance between µ and li based on the proposed metric.

4 EXPERIMENTAL RESULTS ON SYNTHETIC DATA

Some genus zero surfaces with one boundary are generated to sim-
ulate the LV medial surface and the wall thickness is simulated as a
function on the surfaces. Then, the surfaces and their thickness func-
tions are changed in accordance with the LV deformation. As the point
correspondences are known, there is no need for the surface registra-
tion. The end atoms located on the boundary cause instability in the
analysis, thus we avoid such instability by removing all the end atoms.

After calculation of AoN and MoC values, the location of each in-
termediate pose is determined in shape space; and then, the intrinsic
variance of the corresponding points of each deformation is computed
accordingly. The synthetic datasets simulating myopathic LV’s show
noticeably less variances than the other datasets.

Table 2. Performance of the Algorithm Against Noisy Datasets with Dif-
ferent Percentages of Additive Noise Variance

Variance of Medial
Surface Noise

Uniform Noise Gaussian Noise

1% 97.3% 96.5%
2.5% 94.9% 93.8%
5% 91.6% 90.1%

Variance of Wall
Thickness Noise

Uniform Noise Gaussian Noise

1% 98.1% 97.4%
2.5% 96.8% 95.2%
5% 92.2% 90.3%

4.1 Noise Resistance

Due to inaccuracy in the medial surface extraction and also due to ex-
istence of noise in the acquired images, the medial surface may not be
extract accurately. To evaluate the performance of the method against
these inaccuracies, some uniform and Gaussian noises are added to
the medial surface at the first step. Table 2 shows the percentage of
misclassified deformations with different noise distributions. The per-
formance is robust to the additive noise.

Furthermore, the inaccuracy in the extracted medial surface incurs
the inaccurate wall thickness. Thus, some noises are added to the 2D
thickness function under the condition that the error does not over-
whelm the motion characteristics. As shown in Table 2, this method is
also resistance against inaccurate wall thickness.

4.2 Myopathic Region Size

Measuring the myopathic region size can reveal the severity of the
disease. Towards this end, some 2D functions simulating different
sizes of the myopathic regions are generated as the thickness functions
along with some additive noises (Fig. 7). As the myopathic region size
can reveal the severity of the disease, some 2D functions simulating
different sizes of the myopathic regions were generated as the thick-
ness functions, and contaminated with some additive noises. Table 3
illustrates the mean and standard deviation of the spherical log map
distance between AoN vectors at different time points in each dataset,
and the normalized distance between MoC and the center of the medial
surface, i.e. the average of all the atoms in the medial surface, in all the
datasets with various myopathic region sizes. The experiments reveal
that as the myopathic region grows, its MoC moves towards inside the
medial surface, yet its AoN vectors at different time points are still co-
herent. On the contrary, as the myopathic region becomes smaller, its
AoN vectors become more diverged, yet its MoC is still on the medial
surface. This means that the method is capable to detect myopathic
regions of different sizes. Especially, the capability of detecting tiny
myopathic regions can lead to the early diagnosis.

Fig. 7. The medial surface classification is affected by the abnormality
size. If the abnormality is large (Left), MoC of the patch is inside the
surface; on contrary, if it is small (Right), AoN might diverge away from
each other.
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Table 3. The Changes of AoN and MoC for Different Myopathic Sizes,
C1: The Proportion of the Myopathic Region to the Total Medial Sur-
face, C2: The Mean and Standard Deviation of the Spherical Log Map
Distance Between AoN Vectors at Sequential Time Points, C3: The Nor-
malized Distance Between MoC and the Center of the Medial Surface
at Sequential Time Points

C1 C2 C3

10% 0.32± 0.27 0.95± 0.04
20% 0.21± 0.20 0.88± 0.07
40% 0.15± 0.17 0.81± 0.11

5 EXPERIMENTAL RESULTS ON REAL IMAGING DATA

The CT and gated images of the left ventricle during one heart cy-
cle were acquired from 19 control subjects and 25 myopathic sub-
jects whose cardiac abnormalities were verified by cardiologists. Each
dataset contains eight time points during one heart cycle. First, the
medial surfaces of sequential poses were extracted with 400 atoms at
each pose using the method in [33] as follows,

1. An initial left ventricle segmented from the CT images is used as
template.

2. We use qhull (www.qhull.org) to compute the Voronoi Skeleton
of the segmented template and prune the medial surface.

3. We use an extrinsic registration method based on Thin-Plate
Splines (TPS) [30, 43] which uses the intensity information
along with some landmarks selected on apex, epicardium and
endocardium surfaces, and register the LV to the template.

4. We warp the segmentation image and the medial surface using
the deformation field estimated by TPS.

Note that, in our framework, any other non-rigid registration method
can be utilized, such as Advanced Normalization Tools (ANTS) [1,
22]. Furthermore, we can use multiple templates and fuse the results
of segmentation using the majority voting or STAPLE [38] methods
in order to achieve more accurate medial surface. Finally, the location
of each pose embedded in the medial surface shape space is calculated
along with the intrinsic variance for each subject (Fig. 8).

Fig. 10 shows the automatic classification pipeline along with the
automatic processing steps. Table 4 illustrates the sensitivity and
specificity of our method using σ2 = 0.1. The appropriate thresh-
old was determined by calibration across a retrospective set of myo-
pathic and healthy subjects by drawing the histogram of the intrinsic
variances for all the subjects (Fig 9). As seen, σ2 = 0.1 can split
two healthy and myopathic groups. The method outperforms other
methods based on the LV cavity, mean radial displacement and mean
radial velocity [28]. In fact, this indicator is very sensitive in detecting
myopathic regions.

To better visualize dis/similarity of the deformations, the corre-
sponding medial surface points on the shape space manifold are pro-
jected on a 2D plane using the MultiDimensional Scaling method
(MDS) [9] and based on the proposed metric. Let L = {l1, . . . , ln}
be n intermediate medial surface. We define the similarity matrix D,
where di,j = d(li, lj) is the similarity between medial surfaces i and j
as in Eq 8. We minimize the difference between pair-wise distances in
the medial surface shape space, e.g. d(li, lj), and the distance between
their corresponding points on the 2D space, e.g. ∥xi − xj∥, that’s,

Table 4. Sensitivity and Specificity of the Proposed Method for σ2 = 0.1

Sensitivity Specificity

Our Proposed Method 92.0% 89.5%
Mean Systolic Radial 79.4% 54.9%
Mean Radial Displacement 76.2% 70.9%

min
x1,...,xn

∑
i<j

(∥xi − xj∥ − di,j)
2 (9)

For clear illustration, Fig. 11 only shows the points corresponding
to two randomly selected myopathic subjects and two randomly se-
lected healthy subjects after projection on the 2D plane. In the myo-
pathic subjects, since MoC’s and AoN’s do not change in sequential
poses, their corresponding embedded points are located close to each
other on the shape space manifold, so are their corresponding points
on the 2D plane after the MDS projection as shown in Fig. 11. Our
prototype comparative visualization and classification system allows
domain users to select any of the point in the projected shape space to
identify a corresponding pose of the left ventricle of the human sub-
ject. For a cardiomyopathic human subject, the myopathic region can
be automatically localized and visualized. The system is a stone alone
program. The input data was the standard format of DICOM (Digi-
tal Imaging and Communications in Medicine) which is a standard for
storing and transmitting information in medical imaging. After seg-
mentation and normalization of the left ventricle, the medial surface
was extracted, and the suspicious myopathic areas were calculated us-
ing our approach and marked on the 3D left ventricle surface using
VTK(Visualization Toolkit) libraries. Three junior and two senior car-
diologists from our institution have evaluated our system, each tested
4 ∼ 5 normal and 5 abnormal subjects. After loading the DICOM
images, the cardiologists navigate through the DICOM slices and vi-
sually inspect the wall thickness in the left ventricle which usually
take 10 ∼ 20min for each subject, and investigate the location of my-
opathic region, and then, compare it with our results for efficacy test.
The prototype system has been commended by all five cardiologists,
who have tested it, for its ease of use, accuracy of classification and
clear visualization in the diagnosis of cardiomyopathy.

(a) (b)

(c) (d)

Fig. 8. The left ventricle from (a) the axial view, and (c) the short axis
view. As highlighted in (b) and (d), the left ventricle can be easily seg-
mented from low intensity air in lungs and the high intensity contrast
agent inside.
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Fig. 9. The histogram of the intrinsic variances for all the subjects where
the blue bins illustrate the variances of the healthy subjects, whereas the
red bins show those of the myopathic subjects.

6 CONCLUSIONS

This paper has presented a novel comparative visualization and classi-
fication method based on medial surface shape space, which can quan-
tify shape motions and localize the inconsistently deforming regions
across subjects. In order to determine the similarity between two me-
dial representations, we introduce a new metric which measures the
geodesic distance between two points corresponding to two medial
representations on the shape space manifold. This metric reconciles to
the non-linearity of the shape motion path on shape space.

We have applied to the classification and comparison of the left
ventricle motions. In particular, we have employed PT values of each
LV to detect the candidate myopathic locations. To improve the per-
formance of the PT values, two additional novel shape descriptors,
AoN and MoC, are introduced to capture the non-linearity of the LV
deformation for diagnosis of the cardiomyopathy disease. Our exper-
iments have shown that it is of great use to diagnose the myopathic
left ventricles in which myopathic regions do not work normally and
the wall thickness during heart motion is affected accordingly. The ex-
perimental results show that this method can automatically classify the
healthy and myopathic subjects as well as detect myopathic regions on
the left ventricle well. This method shows remarkable sensitivity and
specificity, which outperforms other conventional cardiac diagnostic
methods.

The choice of number atoms to capture the deformation of the left
ventricle might lead to incorrect sampling. Sun et al. [33] employ
around 200 atoms, whereas we use 400 atoms for the medial surface
extraction which has more sensitivity. However, we can use a multi-
resolution framework to extract a low-resolution medial surface in the
coarsest resolution, increase the sampling in the areas which are more
likely to be myopathic, i.e. the areas with PT values close to 1, and
then, investigate their spatial distribution from coarsest to finest reso-
lution. This issue will be investigated further in the future work.

Fig. 10. The motion image processing and classification pipeline.

(a)

(b)

Fig. 11. The projection of two healthy and two myopathic LV motions
(each containing 8 motion snapshots) onto the 2D plane illustrates that
the points corresponding to the healthy LV are scattered all over the 2D
plane, but those of the myopathic LV are concentrated on the same part
of the 2D plane.
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