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Volume-Preserving Mapping and Registration for Collective Data
Visualization

Jiaxi Hu, Guangyu Jeff Zou and Jing Hua

Abstract—In order to visualize and analyze complex collective data, complicated geometric structure of each data is desired to
be mapped onto a canonical domain to enable map-based visual exploration. This paper proposes a novel volume-preserving
mapping and registration method which facilitates effective collective data visualization. Given two 3-manifolds with the same topology,
there exists a mapping between them to preserve each local volume element. Starting from an initial mapping, a volume restoring
diffeomorphic flow is constructed as a compressible flow based on the volume forms at the manifold. Such a flow yields equality
of each local volume element between the original manifold and the target at its final state. Furthermore, the salient features can
be used to register the manifold to a reference template by an incompressible flow guided by a divergence-free vector field within
the manifold. The process can retain the equality of local volume elements while registering the manifold to a template at the same
time. An efficient and practical algorithm is also presented to generate a volume-preserving mapping and a salient feature registration
on discrete 3D volumes which are represented with tetrahedral meshes embedded in 3D space. This method can be applied to
comparative analysis and visualization of volumetric medical imaging data across subjects. We demonstrate an example application
in multimodal neuroimaging data analysis and collective data visualization.

Index Terms—Volume-preserving mapping, data regularization, data transformation

1 INTRODUCTION

Three-dimensional imaging data is accumulated at a faster than ever
speed in science, engineering, biomedicine, and real-world sensing.
The complexity of the acquired digital data usually overwhelms the
useful information and makes it extremely difficult to derive true un-
derstanding from it. Especially for scientific imaging data, it is typi-
cally collected from individual subjects, and many consist of sophisti-
cated 3D spatial structures and other high-dimensional, heterogeneous
features. In many scientific areas, such as biomedical imaging, mate-
rial science and engineering, geology, physical simulations, etc., as-
sessment of similarity and disparity from the heterogeneous 3D imag-
ing data across subjects plays a central role in modern scientific dis-
covery. This kind of tasks poses increasing challenges in data mod-
eling and visualization. Comparative analysis and visualization on a
large number of cross-subject volume data is even more complicated,
which we refer as collective data visualization. For collective data
visualization, effectively and efficiently identifying the important in-
terplay between data samples, data types and features in the collec-
tive data is of utter most importance. Apparently, intrinsic geometric
structures and shapes extracted from 3D imaging of real-world objects
are very important in linking and indexing individual objects for fur-
ther interpretation and collective data visualization. In order to visual-
ize and analyze such complex collective data, complicated geometric
structure of each data is desired to be mapped onto a canonical do-
main to enable a map-based visual exploration. Instead of working
on the complicated geometric structure directly, all the operations are
on simpler domains, such as planes and structured grid volumes. The
mapping will help improving the efficiency of the data indexing and
processing.

However, a manifold can not be mapped to another domain without
any distortion. Thus, different mapping methods have been proposed
to preserve certain local geometries [7, 16]. In many visualization ap-
plications, such as medical data visualization, it is oftentimes impor-
tant to maintain local volume as well as their correspondence across

• Jiaxi Hu, Guangyu Jeff Zou and Jing Hua are with the Department of
Computer Science, Wayne State University, Detroit, MI, 48202. E-mail:
{jiaxihu,gzou,jinghua}@wayne.edu

subjects during the mapping procedure in order to achieve accurate
sampling and computation of volumetric measurements.

In this work, we focus on a mapping method which preserves the lo-
cal volume element. Thus, similar geometric structures across a group
of subjects can be mapped onto the same canonical domain for col-
lective data visualization. Note that, the collective data visualization
also requires the salient points or regions to be registered and aligned
as well. These demands post two challenges for an effective com-
putational and visualization method: (1) mapping between two given
manifolds with local volume elements preserved and (2) registering
salient features to achieve an alignment without breaking the shape of
the manifold and the volume-preserving constraint.

We present a general method to solve global rigorous volume-
preserving mappings among closed connected manifolds with salient
feature registration. The proposed techniques are essential for spatially
regularizing and indexing cross-subject data for efficient data access,
query and collective data visualization. The main contributions of this
paper can be summarized as follows:

• Volume-preserving mapping for general manifolds sup-
ported by a rigorous continuous theory. By introducing fluid
dynamics to manifold mapping, the evolution of volume el-
ements can be precisely quantified by the compressible flow.
Computing a volume-preserving mapping is therefore equivalent
to deriving a time-dependent vector field that corrects volume
distortions, i.e., dilation/shrinkage induced by an initial map-
ping, through a diffeomorphic flow.

• Salient feature registration without breaking the shape of
manifold or the volume-preserving constraint. With a com-
puted volume-preserving mapping, a registration process can
be derived by constructing incompressible flow. Vertices are
moving along such a field, which will not break the volume-
preserving constraint.

• Supporting for map-based collective data visualization and
extensibility to 2D or higher dimensions. The volume-
preserving mapping and registration do not focus on 3D cases
only. The theories and algorithms are general to all dimensional
cases. It can facilitate effective map-based collective data visu-
alization.

The remainder of the paper is organized as follows: Section 2 re-
views the related work. The volume-preserving mapping is presented
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in Section 3. The discrete algorithm to map a tetrahedral mesh is in-
troduced in Section 4. After that, a volume-preserving registration fol-
lows in Section 5. The performance assessment as well as a demon-
strative application to the manifold-based multimodality analytics of
brain imaging data across subjects is given in Section 6. Finally, in
Section 7, we summarize our work and conclude with a discussion
about the limitation, possible improvements as well as a few potential
future directions of this method.

2 RELATED WORK

Manifold mapping is a powerful tool to reduce the complexity of
arbitrary manifolds onto canonical domains such as unit cube or
sphere [9, 11]. Mapping general manifolds between each other will in-
troduce different kinds of distortions. In geometry processing, reduc-
ing volume distortion is a major interest. There are many approaches
for reducing the volume distortions of the mappings. One mapping
approach is called conformal method, which always provides a unique
mapping preserving local angle geometries. While preserving the an-
gles, the conformal mapping introduces large volume distortions. In
order to reduce the volume distortions, cuts are employed to improve
the final results. The local volume elements are still not exactly pre-
served due to the nature of the conformal mapping. Additionally, cuts
also break the continuous structures of the original manifold. Jin et
al. [12] proposed to search for the optimal global conformal param-
eterization in the space of Möbius transformations. As conformality
is invariant through Möbius transformations, the resulting parameteri-
zation is still conformal, which cannot completely eliminate area dis-
tortions. Based on the fact that surface parameterization is closely re-
lated to the topological constraints, delicate topological modifications
can sometimes improve the uniformity of the parameterization. To-
wards this end, Gu and Yau punctured small holes at the tip of long ap-
pendages [8]. Cone singularities were introduced with non-vanishing
Gaussian curvature in [14, 3]. Surface cuts were repeatedly augmented
according to the geometric stretches generated through the course of
tentative parameterizations [7]. Although such schemes provide excel-
lent remedies to some applications, they are generally not acceptable
to the rest. In terms of volume preservation, these methods can be con-
sidered as heuristic approaches. Rigorous volume-preserving mapping
is in general not achievable along this direction.

Another major branch is categorized as functional methods. These
methods derive a mapping by optimizing some predefined penalty
functions. The penalties can be defined with the volume distortions
so that the optimization leads to a mapping minimizing such volume
distortions. This kind of approaches rely on different parameters and
halting criteria in the optimization procedures and oftentimes suffer
from local optimum problem. In general, no quantities are exactly
preserved by the methods of this type. The functional mapping meth-
ods offer the volume distortion minimization instead of exact volume-
preserving.

Similarly, to prevent severe geometric stretches, the original model
can be decomposed into many charts which are topologically equal to
an open disk to make interior Gaussian curvature close to zero [16, 25,
27, 31]. Even distribution of intrinsic distortions [24, 27, 12, 31] are
studied to achieve uniformity metrics mapping. Based on the singular
values of the Jacobian matrix, Sander et al. [24] optimized the para-
metric location of each vertex within its 1-ring neighborhood to reduce
local stretches. Sorkine et al.’s bounded-distortion mapping [27] made
heavy use of mesh cuts to keep distortions below some preset thresh-
old. Zhang et al. [31] identified an anisotropic stretch term from a 2×2
tensor metric closely related to the one derived in [24] and applied it
to guide the vertex optimization. They considered 2D area distortion
with an energy term. The purpose is to minimize the 2D area dis-
tortion. No conclusion is drawn whether an absolute area-preserving
patch mapping can be practically achieved. Kraevoy and Sheffer also
presented a ”low distortion” optimization for cross-parameterization
and remeshing of 3D models [15]. Desbrun et al. [4] also studied min-
imizing area distortion for the intrinsic mapping of triangle meshes. In
their work, an intuitive area-preserving functional was devised. Since
the functional tried to preserve the area structure of the original 1-ring,

the optimal mapping derived was termed “Discrete Authalic Parame-
terization (DAP)”. Due to the fact that the parameterization is only a
critical point to the functional, it cannot exactly preserve areas across
the mesh.

Approaches in [1] backed by a general result from [23] guarantee
the existence of an area-preserving diffeomorphism between two sur-
faces with the same total surface area. However, the discussion was
restricted to a spherical domain. Based on the Monge-Kantorovich
theory of optimal mass transport, Haker et al. [10] developed an image
registration and warping technique. Lying at the core is a decomposi-
tion of the deformation into a divergence-free vector field plus a curl-
free one, called the polar factorization. A mass (e.g., area/volume)
preserving mapping was explicitly sought in Rn by a gradient descent
method to the Monge-Kantorovich function. Their method has been
used for area-preserving corrections on top of conformally flattened
vessel surfaces in R2, implemented on a regular Cartesian grid [32].
Recently, the technique of optimal mass transport has also been ap-
plied to texture mapping of closed genus zero surfaces [5]. Along
this direction, Zou et al. [33] presented a practical method to compute
a group of global 2D area-preserving mapping mathematically with
Lie advection, a frequently appearing concept in classical mechanics.
However, it is not clear that how it can be applied to higher dimensions
in theory and in discrete implementation. There also exist harmonic
volumetric mappings among objects [18]. Li et al. [19] aligned those
harmonic mappings with salient features. Wan et al. [30] registered
objects with polycube mapping.

Note that, the previous volume-preserving mapping techniques fo-
cused only on preserving volume/area elements on the manifold. The
registration capability is not provided in any of the work mentioned
above. Funck et al. [29] discussed vector-field based deformation al-
gorithm for volume-preserving shape editing though. In theory, their
algorithm has its root in 2D domain. The vector field kernel has only
two dimensions. The 3D applications are simple extensions by either
rotating or translating such a 2D kernel. On the contrary, HAMMER
algorithm [26], volume flow registration [13], the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) [2], and LogDemons [28]
methods can register the feature constraints without breaking local
structures, but volume distortions are inevitable. Mansi et al. proposed
iLogDemons [21] to register volumes with divergence-free whirls,
which preserve the interior local volume, but the final boundary shape
(i.e., the surface) is not considered. Achieving registration while still
preserving volume/area and the target boundary shape is extremely im-
portant. It will facilitate volume/area preserving data analysis across
aligned subjects.

Compared to exiting literature, particularly [33], this paper dis-
cusses a more general manifold mapping in Rn, in both theory and
discrete algorithms for different manifold representations, especially
for 3-manifolds. It can map a shape to any desired target domain
with exact local volume-preserving constraint for both interior and the
boundary of the volume. More importantly, volume-preserving reg-
istration is also introduced, based on incompressible flow theory. If
a manifold flows under a divergence-free velocity field, the local vol-
ume element will not change. This paper proves the existence of the
solution by constructing such a field that the divergence is guaranteed
to be zero and help salient features register to their target positions.

3 VOLUME-PRESERVING MAPPING

This section presents a rigorous volume-preserving manifold mapping,
which preserves the local volume element among manifolds. Given
two connected manifolds, there are diffeomorphisms between them.
Different mappings have different purposes. They either preserve local
geometry or minimize some deforming energy. This section shows a
solution to find a mapping to preserve the local volume.

Consider an n dimension manifold P, a local volume element is
defined on the local coordinates x1,x2, ...,xn as

τP = ρP(x)dx, (1)

where dx= dx1∧dx2∧ ...∧dxn is the wedge product along all the axes
in the n dimensional space, representing the local volume element, and
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ρP(x)> 0 is a volume density function. There exists a diffeomorphism
f which maps P to another manifold Q, f : P → Q. Without loss of
generality, the global volume of Q can be scaled to that of P, which
means

∫
P τP =

∫
Q τQ. After the mapping, the local volume element

τP deforms to τQ. Suppose there is another diffeomorphism g which
maps Q to itself, g : Q → Q. g also maps the local volume element τQ
to τ ′Q. If τP ≡ τ ′Q everywhere, g ◦ f is such a diffeomorphism, which

maps P to Q preserving the local volume.
According to Eq. (1), τP ≡ τ ′Q can be converted to ρ ′

Q ≡ ρP. g
not only maps Q to itself, but also maps the volume density back to
the original one in P. This density change in Q is described as fluid
dynamics. Suppose Q follows a velocity field V defined at itself. The
material derivative can be derived from V

Dρ
Dt

=−ρ∇ ·V. (2)

The material derivative describes the density changes along the stream
line in V . Note that, each element moves along the stream line in
V , so that the local density ρQ changes to ρP. This change can be
interpolated linearly as

ρ(t) = (1− t)ρQ + tρP, t ∈ [0,1]. (3)

Thus, V must satisfy

−ρQ +ρP =−ρ∇ ·V. (4)

In order to solve this equation of V , we introduce a scalar field ϕ(x, t)
such that

V = ∇ϕ. (5)

Then, Eq. (4) is converted into a Poisson equation of ϕ(x, t)

−ρQ +ρP =−ρΔϕ. (6)

This Poisson equation has a unique solution. Once the scalar field is
solved, the path of each element on Q is an integral curve x(t) such
that {

dx(t)
dt =V (x(t), t)

x(0) = x0,
(7)

where x0 is the initial position of the curve. If each element follows the
curve x(t) from t = 0 to t = 1, the density ρ on it changes linearly from
ρQ to ρP. Therefore, the curve x(t) yields a desired diffeomorphism
g, and g◦ f : P → Q is a diffeomorphism which maps manifold P to Q
with local volume preserved.

4 DISCRETE VOLUME-PRESERVING MAPPING ALGORITHM

The previous section showed that with a given diffeomorphism f : P→
Q there also exits a diffeomorphism from P to Q preserving each local
volume element. This section will show how to apply it to the discrete
data. We will develop an iterative algorithm handling those manifolds
with discrete representations. Manifolds in 3D can be represented with
tetrahedral volume meshes. Note that, this algorithm can also be ex-
tended to 2D or higher dimensions. The volume-preserving mapping
algorithm can be described as following. First, an initial mapping is
constructed, such as a discrete harmonic mapping. Then, the time in-
terval is divided into the discrete time steps for the iterations. At the
beginning of each iteration, the current local density is calculated on
each vertex. The Poisson equation, Eq. (6), is solved within current
time step. All the vertices move a time step, along the vector field V
guided by the solved scalar field. The iteration continues for each time
step.

Assume a 3D volume is described with a tetrahedral mesh T =
{V,E,F,C}. V = {vi} denotes the vertex set, E = {ei j} the edge set,
F = { fi jk} the face set, and C = {ci jkl} the tetrahedral cell set with
1 ≤ i, j,k, l ≤ m = |V |. Given a scalar function ϕ on the volume, its

discrete version is a vector �ϕ = [ϕ1,ϕ2, ...,ϕm]
T , defined at the ver-

tices. The volume element is represented with the voronoi volume
|Ωi| of that vertex.

Based on this representation, some basic operations have to be de-
fined in order to construct such a volume-preserving mapping, which
include Poisson equation, gradient operator, curve integration. These
key discrete operations are described in the following subsections.

4.1 Initial Mapping
We assume the target canonical domain is a unit sphere. There exists
a mapping between any two manifolds if both of them can be mapped
onto a unit sphere with registration. We use an initial mapping as a
starting point of the volume-preserving mapping. In practice, we have
chosen to use harmonic mapping as the initialization of our system
because of its robustness. The initialization has two steps: First, map-
ping the boundary of the volume to the unit sphere surface, which can
be achieved by applying an area-preserving mapping from a close sur-
face to the unit sphere [33]; Second, applying volumetric harmonic
mapping on the interior [17].

4.2 Discrete Poisson Equation and Gradient Operation
The discrete Laplace-Beltrami operator is linearly approximated at
each vertex. Suppose edge ei j is shared by n tetrahedrons, the vol-
umetric Δϕ is estimated at vi as [22]

Δϕ(vi) = ∑
j∈N(i)

wi j(ϕ(vi)−ϕ(v j)), (8)

where wi j is the volumetric edge weight defined on edge ei j and N(i)
is the one-ring neighbour of vertex i. As the scalar function ϕ is repre-
sented with a vector, the Laplace operator Δ can be represented with a
matrix. The discrete Laplace operator is defined with a weight matrix
as

Li j =

⎧⎨
⎩

∑k∈N1(i) wi j if i = j
−wi j if ei j ∈ E
0 otherwise.

(9)

It is easy to verify that the matrix L satisfies Eq. 8. Suppose an edge
ei j is shared by n tetrahedrons, the edge weight wi j is defined as [6]

wi j =
1

|Ωi| (
1

6

n

∑
q=1

lq cot(θq)), (10)

where |Ωi| is the vonoroi volume of vi, lq = lkl is the length of the
edge ekl to the opposite edge ei j , and θq = θkl is the dihedral angle on
the edge ekl . When considering all vertices of a mesh, Eq. (8) can be
written as a linear system:

Lx = b, (11)

where x = �ϕ and b = (ρQ −ρP)/ρ .
The matrix L is sparse. For this reason, Eq. (11) can be solved

efficiently in linear time, e.g., using the preconditioned bi-conjugate
gradient method. In practice, we have observed that solving the normal
equations LT Lx = LT b yields more robust numerical behavior than
directly solving Eq. (11).

By solving the discrete Poisson equation, we obtain the scalar field
ϕ on the unit sphere volume. The gradient of ϕ is computed on the
tetrahedral mesh. We consider a tetrahedral cell ci jkl with its four

corners lying at vi, v j, vk, and vl in R3. The gradient is assumed
constant inside the tetrahedral cell. The gradient vector can be easily
computed by solving a 3×3 linear system:⎡

⎣v j −vi
vk −vi
vl −vi

⎤
⎦∇ϕ =

⎡
⎣ϕ j −ϕi

ϕk −ϕi
ϕl −ϕi

⎤
⎦ , (12)

for which an analytic solution exists. To obtain a unique vector at each
vertex, ∇ϕ at vertex vi is defined as

∇ϕi =
1

∑ci jkl∈N1(i) α i
jkl

∑
ci jkl∈N1(i)

α i
jkl∇ϕ(ci jkl), (13)

that is, an average of the gradients of the adjacent cells, weighted by
the inverse of the distance α i

jkl between the central vertex vi and the

centroid of cell ci jkl .
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4.3 Pathline Integration
V (t) is not a static field but varies with time t depending on the solu-
tion of ∇ϕ(t). Therefore, an iterative integration is employed based
on each vertex. The time interval, [0,1], is divided into K steps, and
the time difference between the neighbor steps is δ t = 1/K. Suppose
the volume is uniformly distributed on the original manifold P, the
volume density of each vertex ρPi is 1 at all vertices. On Q, the den-
sity ρQi equals |ΩPi|/|ΩQi|, the ratio of the voronoi volumes of that
vertex on P and Q respectively. ρP and ρQ are constants through the
iterative integration. Similarly, the density of the kth step ρi(k) equals
|ΩPi|/|Ωi(k)|, where |Ωi(k)| is the current voronoi volume. The initial
state of the diffeomorphism g is an identity mapping, and each path-
line X starts from the original place as X(0) = x0. At the beginning of
each step k, the Laplacian matrix L is calculated based the geometry of
the current tetrahedral mesh, while b is based on the volume densities.
ϕ(k) is then solved with Eq. (11). The velocity field V (k) is repre-
sented with ∇ϕ according to Eq. (13). The time integration V (k)δ t is
applied to the current position X(k) in order to get a new X(k). Thus,
we get the iteration

X(k) = X(k−1)+
1

K
V (k−1), k = 1,2, ...,K. (14)

And the final diffeomophism g is represented with the sum of the dis-
placements of all steps, as

g(x) = x0 +
K

∑
k=1

1

K
∇ϕ(k−1). (15)

In general, a larger number of iteration steps result in more accurate
approximations. Empirically, K is set to 50, which satisfies most cases.

The movement of vertices is in principle determined by the desig-
nated volume changes. However, degenerate tetrahedrons may under-
mine the discrete computation due to inaccurate approximation of the
Laplace-Beltrami operator. At the beginning of each step, we opti-
mize the underlying tetrahedralization by performing local repairs to
the combinatorial topology for the constrained Denaulay condition.
Note that, the geometry of volumes is realized by their R3 embedding.
Throughout this procedure, the discrete sampling of the shape remains
unchanged, but is merely interpolated by a different tetrahedralization.

5 VOLUME-PRESERVING REGISTRATION

The previous sections showed an approach to find a volume-preserving
mapping guided by the compressible flow of the volume forms. This
section provides a solution to find a registration which can move fea-
ture points to their desired positions without breaking the original
volume-preserving constraint. The problem can be defined as de-
forming the volume with a velocity field, such that all the salient fea-
ture points will be registered to predefined target positions and un-
constrained part will follow to reach an alignment. Suppose there
are N salient feature points {pi} and their target positions are {p′i}.
During the deformation, each point moves along its path γi(t), such
that γi(0) = pi and γi(1) = p′i. The simplest path could be γi(t) =
pi +(p′i − pi)t, a straight line linking pi and p′i with constant speed.
These paths give the solution to the registration of the finite fea-
ture points, but breaking the volume-preservation. In order to obtain
volume-preserving registration, a velocity field s is required to deform
the whole volume domain. To accomplish the volume registration, s
must meet three criteria: First, each path γi is a pathline in s; Second,
s is divergence-free everywhere so that the volume elements are pre-
served under the deformation; Third, s on the boundary has no normal
components, where no element moves in or out the original volume
domain. Formally, the problem can be represented as finding a veloc-
ity field s defined on the volume domain M, such that⎧⎪⎪⎨

⎪⎪⎩
s(γi(t0)) =

dγi(t)
dt

∣∣∣
t=t0

, t0 ∈ [0,1]

∇ · s ≡ 0

s(x) ·n(x)≡ 0
∣∣∣
x∈∂M

,

(16)

where n is the unit normal vector on the boundary ∂M.
To solve such an s, a discretization of time and space is employed.

Each pathline γi is represented as a sequence of path points from pi
to p′i with K + 1 samples, such as {γi(

k−1
K )},k = 1,2, ...,K + 1. The

boundary is represented with a set of evenly sampled points {b j} on
it. Thus, the original problem of s is converted into

⎧⎨
⎩

s(γi(
k−1

K )) = γi(
k
K )− γi(

k−1
K ), k = 1,2, ...,K

∇ · s ≡ 0
s(b j) ·n(b j)≡ 0, b j ∈ ∂M.

(17)

The algorithm is based on the discretization above with the following
steps: First, a rigid registration is applied; Second, each pathline is
generated; Then, a divergence-free interpolation is employed; Finally,
the boundary constraint is enforced. The algorithm mainly focuses on
the 3D sphere domain, but there is no difficulty in extending it to a
lower or higher dimensional space with arbitrary shapes.

5.1 Rigid Registration
Although rigid registration is not required in the three criteria of s,
shorter paths are still desired to keep the local structure of the volume.
The rigid registration can be considered as preprocessing. The rigid
registration is a rotation matrix R such that

argminR

N

∑
i=1

‖ Rpi − p′i ‖ . (18)

This problem can be convert into

argmaxR

N

∑
i=1

p′i pT
i ·R, (19)

which can be solved with Singular Value Decomposition (SVD) of the
matrix ∑N

i=1 p′i pT
i . Once R is determined, the whole volume is rotated

by R and {pi} is replaced by {Rpi}.

5.2 Pathline Generation
In order to register pi to p′i, the pathline is not unique. Constant
straight line path is an obvious choice. In our applications, neuroimag-
ing data is often registered within a 3D unit sphere domain. Some
feature points can be near the sphere boundary or on the boundary.
In these cases, simple straight line interpolation may destroy the lo-
cal structure too much on the radial directions. To make the path as
natural as possible near the boundary, the point moves with constant
angular and radial speed towards to its target position. Such a radius
path will preserve radial local structure near the boundary. It can be
interpolated recursively with vector calculations. Consider the point
pair p1 to p2 are two vectors in space. Neither of them is the origin.
u1 and u2 are their unit and direction vectors, and u1 
= −u2. Thus,
the middle point pm on the radius path from p1 to p2 must have its
direction on (u1 +u2)/2 and norm as (‖ p1 ‖+ ‖ p2 ‖)/2. Therefore,
pm of given p1 and p2 is represented as

pm =

⎧⎨
⎩

‖p1‖+‖p2‖
4 (u1 +u2)

p1+p2

2

if ‖ p1 ‖> 0,‖ p2 ‖> 0
and u1 
=−u2

otherwise.
(20)

Once any start and end points are given, the middle point can be
interpolated. This means, the whole radius path can be interpolated
recursively from start point pi to the end points p′i up to a desired
resolution. In Fig. 1, the green pathline with circle marks is a radius
path while the red one with triangle marks is the straight path. The
feature point moves more naturally near the boundary along the radius
path. In the more interior region, especially in the case that the origin
is nearly in between of pi and p′i, radius path is not that necessary.
The straight path is more appropriate instead. Radius and straight path
work better in their own regions. A global solution is to combine them
linearly. In Fig. 1, the blue path with square marks is the combination
of the radius and straight ones with the same weight. As discussed
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Fig. 1. Pathline interpolation between two points. The path with triangle
markers is a straight line, the one with circle makers is a path with radius
interpolation, while the one with square markers is a path combined with
both straight line and radius interpolation.

above, given a feature point pi and its target p′i, the radius and straight
pathlines, γri and γsi, can be interpolated. Then, the final pathline γi is
the weighted linear combination of these two pathlines, as

γi = (1−w)γsi +wγri, (21)

where w is the combination weight and w = (‖ pi ‖+ ‖ p′i ‖)/2.

5.3 Divergence-Free Interpolation
The finite sample points are generated for N feature points pi and K
steps on each, which are represented with {xi,di}N×K

i=1 . Each of them
moves with a constant speed, from its original location to the one to
be registered. Based on this sample set, a velocity field s can be inter-
polated. Then, the whole volume is registered, following the registra-
tion of feature points. As aforementioned, s has to be divergence-free,
which means ∇ · s ≡ 0, so that the volume-preserving is guaranteed
during the whole registration procedure. Radial Basis Function (RBF)
interpolation is powerful tool to generate a function which interpolates
a discrete set of values. In our cases, the set of values is the displace-
ment vector {di} for each constant time step. Therefore, instead of
regular scalar RBF, vector-matrix RBF is employed, which is repre-
sented as

s(x) =
N×K

∑
i=1

Φ(‖ x−xi ‖)ci, (22)

where Φ is an N×N matrix valued radial basis function in n dimension
space, and ci is a coefficient vector. The set of {ci}N×K

i=1 satisfies

s(xi) = di. (23)

To interpolate a divergence-free field, we employ the radial basis func-
tion [20],

Φ(x) = (∇∇T − IΔ)ψ(x), (24)

where the ∇ operator is represented with a vector operator
[∂x1

,∂x2
, ...∂xn ]

T , Δ is a scalar valued Laplace operator, and ψ is a
scalar valued radial basis function. To calculate the divergence of each
column of Φ, ∇T operator can be multiplied from the left. Then, there
is

∇T Φ(x) = ∇T (∇∇T − IΔ)ψ(x)

= ((∇T ∇)∇T −∇T IΔ)ψ(x)

= (Δ∇T −∇T Δ)ψ(x)
= 01×nψ(x),

(25)

where 01×n is a 1 by n zero operator. Eq. (25) verifies that the diver-
gence of each column of Φ is 0. Therefore, s, the finite combination

of columns of Φ, is divergence-free. The next step is to solve the coef-

ficient set {ci}N×K
i=1 . Similar to a scalar radius basis function problem,

the set of {ci}N×K
i=1 satisfies Eq. (23), which means

N×K

∑
i=1

Φ(‖ x j −xi ‖)ci = d j, j = 1,2, ...,N ×K. (26)

These N ×K independent linear equation arrays can be combined into
one tensor equation:

TΦ ⊗mc = md , (27)

where Φ(‖ x j −xi ‖), {ci} and {d j} are filled into tensor TΦ, matrix
mc, and matrix md . With the solution of this equation, s is interpo-
lated, which is divergence-free and guarantees each sample point is
along the pathline. In the experiments of this paper, the case of 3D
unit sphere domain is employed. However, it is intuitive to extend

to other dimensions. We choose Gaussian, ψ(x) = e−λ‖x‖2
, as the

scalar valued radius basis functions. Note that, theoretically, ψ could
be other continuous functions. The matrix valued function Φ in 3D
space is represented as

Φ(x0) =

∣∣∣∣∣∣
−∂yy −∂zz ∂xy ∂xz

∂xy −∂xx −∂zz ∂yz
∂xz ∂yz −∂xx −∂yy

∣∣∣∣∣∣e−λ‖x‖2 |x=x0 .

(28)
In the space, each column represents a vector field. The vector field of
a single radial basis function is represented with the first column in the
3D space which is illustrated in Fig. 2. In this figure, the arrows rep-
resent the direction of the field while size and color for the magnitude.

Fig. 2. The 3D vector field represented with the first column of the matrix
function in Eq. (24).

5.4 Boundary Constraint
A divergence-free velocity field s is already obtained based on finite
sampling of the registration pathlines, which guarantees volume is pre-
served during the registration. However, s on the boundary is not veri-
fied yet. If the volume deforms by following s, the shape of the domain
may change. For example, it can not be a unit sphere any more after
the deformation. To keep the original shape of the domain, the velocity
field must have zero normal component on the boundary, which means
nothing is moving in or out of the original domain. Considering the
normal components of the s at the discrete samplings on the boundary
in Eq. (17), they are not guaranteed to be zero. To eliminate those
normal component to zero, another velocity field sc can be added to
the existing s. sc is also divergence-free as s, and has the same normal
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Fig. 3. Volume-preserving mapping pipeline. The volume is represented with a 3D tetrahedral mesh. The volume is first mapped to a 3 dimension
sphere with harmonic mapping as shown in the third column. Then, the volume-preserving mapping is applied to preserve the local volume element
as shown in the fourth column. During the mapping procedure, the mapping casts on the whole volume simultaneously. The volume is cut by a
virtual plane for the interior visualization. The histograms on the right show the log volume ratios on the vertices from the original volume to
harmonic (top) and volume-preserving mapping (bottom) ones, respectively.

components at those sampling points on the boundary, but with oppo-
site normal directions. Note that, s is supposed to register the volume
based on those pathlines, so sc has to be zero at the pathline samplings
in order not to affect the registration. Thus, there is another negative
sampling set for sc

{
sc(γi(

k−1
K ))≡ 0, k = 1,2, ...,K

sc =−s(b j) ·n(b j), b j ∈ ∂M.
(29)

With these samplings, the divergence in the previous section can be
applied again to generate sc. Then, adding sc to s leads to the final
registration velocity field sr = s+ sc.

Note that, the procedure generating the velocity field sr is guaran-
teed to satisfy the three criteria in Eq. (17). The registration deforms
the volume under sr with K steps. The salient feature points will be
registered to their target locations, and the other parts of the volume
will also follow the continuous flow to reach an alignment. Both vol-
ume element and local topological structure will be preserved as well.

6 EXPERIMENTAL RESULTS AND APPLICATIONS

In this section, we present the experimental results on the perfor-
mance and accuracy of our volume-preserving mapping and registra-
tion. And an example application will be demonstrated to show how
our method can facilitate collective data visualization of 3D multi-
modal brain imaging database.

6.1 Experimental Results and Validation

The typical volume-preserving mapping pipeline and results are
demonstrated in Fig. 3. A closed connected volume is initially mapped
onto a 3D sphere. Then, our volume-preserving mapping corrects the
local volume, which squeezes the log ratios of volume near to 0. Fig-
ure 4 shows another example, where the spherical volume map of the
input data is cut to show both the boundary and interior, and the color
map indicates the volume distortion rate. The sequence shows the pro-
cess of the correction of volume distortion from its initial mapping to
its 15th and 30th iterations.

To evaluate the registration accuracy, we synthesize incompress-
ible deformations to simulate physical shape changes of a brain, re-
lying on the fact that 75-78% of brain is water, as it is shown in

(a) (b) (c)

Fig. 4. Volume distortion correction process, where the spherical vol-
ume map is cut to show both boundary and interior, and the color in-
dicates the volume distortion rate. The red means increasing volume
while blue means shrinking volume. Green means no volume distortion.
(a) Its initial mapping with large volume distortions; (b) and (c) show
volume-preserving correction at the 15th and 30th steps, respectively.

Fig. 5. Deformation synthesis. The left one is the original brain while
the right one is the incompressible deformation under a divergence-free
field.

Fig. 5. Then, the volume-preserving mapping is employed to pre-
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dict the interior change. The incompressible deformation is gener-
ated with a divergence-free field. The reference and deformed shapes
are all mapped and registered to the same unit sphere with both har-
monic and volume-preserving mappings, respectively, for the purpose
of comparison. For the synthetic data, the vertex correspondence is
known. The deformed volumes and their references will have slightly
different vertex distributions in the unit sphere. The accuracy is evalu-
ated with the average vertex displacements from the deformed ones to
their references within the unit sphere. As shown in table 1, the confor-
mal mapping reduces the vertex displacement to 3.09% and introduces
32.3% volume distortions. Our volume-preserving mapping gives the
displacement as 2.32% and keeps the distortion within 12.9%, which
is significantly better.

Table 1. Comparison of Predictions

Conformal Volume-Preserving

Vertex Displacement 3.09% 2.32%

Volume Distortion 32.3% 12.9%

In many applications, it is desired that some salient features can
be registered so that analysis can be performed across subjects with
volume-preserving constraints. Fig. 6 demonstrates a divergence-free
velocity field during the registration of salient points at one iteration
step. To better visualize the velocity field and movement, we select
only 3 feature points for registration. The directions shows the mov-
ing direction at the current locations to the target positions. Please
note that, the boundary condition restricts the field within the sphere
domain. The salient points from different shapes are registered to
their reference positions. The whole volumes are also registered glob-
ally, following the incompressible flow. Fig. 7 shows a slice view of
the volume-preserving registration process, where (a) is the reference
brain, (b) is the brain to be registered to the reference brain, (c) shows
an intermediate result and (d) shows the final registration result. Note
that, in real applications, we use many more feature points in order to
achieve a registration for analysis purposes. In our experiments, we
do not choose any features as registration constraints in the caudates
or thalamus structures inside brain. In order to evaluate the registra-
tions of these structures, we calculate the dice coefficients based on
our database of 20 MRI scans. Then, they are compared with the re-
sults of the HAMMER algorithm [26] and the flow one [13], as shown
in table 2. Note that, these two algorithms focus only on registration,
but our method, with the volume-preserving constraint, is still com-
parable to their registration accuracy. In table 2, we also compare the
volume distortions of HAMMER [26], the flow method [13] and ours.
The results show HAMMER [26] introduced an average volume dis-
tortion of 13.3% during the elastic registration, the flow method [13]
14.2%, while ours volume-preserving mapping and registration limits
the distortion within 3.0%.

Our volume preserving mapping and registration are both iteration
algorithms. Each iteration is to solve a linear system. It is linear to the
number of the vertices with the preconditioned bi-conjugate gradient
method. With constant K steps, the global complexity is still linear.
We have performed our algorithm on a laptop with an i5 2.53 GHz
CPU and 8G memory. The algorithm is implemented with python and
C++. The average numbers of vertices and tetrahedrons of our brain
data used above are 5200 and 26052, respectively. It takes 521 seconds
to compute each entire volume-preserving mapping pipeline and 180
seconds for each pair registration, on average.

6.2 Collective Data Visualization for Large 3D Brain Imag-
ing Database

Quantitative multimodal imaging across a large number of human sub-
jects can provide complementing information to assess the many as-
pects of brain processes in the normal and diseased states. We have
applied our method to a database of 300 human brain images, includ-
ing Magnetic resonance imaging (MRI), Positron emission tomogra-

Fig. 6. Divergence-free velocity field in a 3D sphere. Red color and
long arrow demonstrate high velocity while blue color and short arrow
for low velocity. For the clear visualization, there are only 3 salient points
involved.

(a) (b)

(c) (d)

Fig. 7. Slice view of the volume-preserving registration process. (a)
shows the reference brain, (b) shows the brain to be registered to the
reference brain, (c) shows an intermediate registration deformation re-
sult and (d) shows the final registered result.

phy (PET) and Diffusion Tensor Imaging (DTI) data. The feature ex-
traction from the multimodal data in the large number of subjects in
the database can now be indexed and corresponded based on regular-
ized local volumetric element for accurate and efficient data sampling,
access and visualization. In brief, our system first applies volume-
preserving mapping and registration to 3D data collected from dif-
ferent individuals and brings each individual brain data to a regis-
tered volumetric canonical space. And then, an icosahedron subdi-
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Fig. 8. The left table is the patient table while the right table is the normal’s table. The table is generated after the query of finding salient features in
a certain diseased group based on the indexed volume-preserving and cross-subject registered elements. The normal distribution was generated
based on the same query on normal subjects.

Table 2. Comparison of Dice Coefficients

Structure HAMMER Flow Method Our Method

Left Caudate 0.5820 0.6912 0.6371

Right Caudate 0.8107 0.6474 0.6638

Left Thalamus 0.7365 0.8463 0.7676

Right Thalamus 0.8719 0.8291 0.7560

Average Volume Distortion 13.3% 14.2% 3.0%

vision scheme is employed to produce volumetric elements. As we
have shown, establishing a volume-preserving mapping and registra-
tion from one individual to volumetric canonical space can guarantee
that the same number of samples is used for feature computation and
the correspondence is generated in all the subdivided index elements.
Subsequently, multimodal feature extraction can be operated in each
subjects volumetric space with extracted features indexed in a com-
mon template.

With the above volume-preserving mapping and registration pro-
cess, the simultaneous exploration and collective data visualization
across a large number of human subject can now be facilitated upon
the features computed on the correspondent elements. The exploration
of salient features to certain disease typically starts from a single sub-
ject. As features confirm an abnormal variance when compared to the
normal population group, this set of salient features becomes an im-
portant insight that demands further scrutiny. To confirm this insight
and graduate it to a potential hypothesis, the system will formulate
this set of features as a formal query and search the database within
the current subject’s disease group to identify whether similar insight
can be found within it. If a substantial number of patients are found
having a similar profile, statistical parametric tests are initiated to con-
firm whether the hypothesis is true. Since confirmed hypothesis leads
to treatment decisions, scientists will usually verify these insights for
each patient queried from the database and exclude cases which do
not make sense. To verify the insights, we provide an interactive mul-

tiview coordinated 3-D table display that lists each subject as rows in
the table. Fig. 8 illustrates the result obtained after the formal query is
executed. The figure shows two separate tables. The table on the right
lists the patients as sets of rows, with the columns listing the modali-
ties from where the salient features were found for each patient. Each
display cell in the table, when in focus, will open a new window that
will visualize its salient feature distribution as a 2-D plot and the cor-
responding normal distribution. Similarly, the table on the left is a
table of normal subjects with the same features as columns so that an
analyst will also know the source of the normal distribution the patient
is compared against. Clicking on the column heading will show the
feature distributions of all the subjects in a single window. Because
the cells are interactive and coordinated, rotating the brain within a
table display cell will rotate the brain in all the other display cells so
that the same anatomical area will be in focus.

In particular, a group of doctors from neurosurgery department
have applied and evaluated our collective data visualization system
and method for the analysis of epilepsy and normal brain activities
using Positron Emission Tomography (PET). The detailed anatomy
structure is obtained from Magnetic Resonance Imaging (MRI). Fig. 9
illustrates how the brains of different subjects are registered to a com-
mon canonical sphere domain. The abnormality in the patient’s brain
can be visualized directly, which is statistically different from the nor-
mal one according to the cross-subject comparison of the PET values
among the aligned and volume-preserved local volume elements. For
the quantitative analysis, they have employed PET and MRI data of 50
normal brains. First, all the brain volumes are mapped and registered
to a unit 3D sphere. A reference brain in terms of PET is calculated
based on the average PET values. When a patient brain is undergo-
ing analysis, the mapping and registration processes are applied as
well. Epileptic abnormal foci can be discovered with the comparison
of PET values among the aligned and volume-preserved local volume
elements, as shown in Fig. 10. The detected foci have been com-
pared to the current gold standard, intracranial electroencephalogram
(EEG), which is an invasive method for recording brain electrical sig-
nals with the patient skull openned. The accuracy in terms of detected
foci volume overlap between the cross-subject PET analysis and EEG
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measures reaches 94.2%, which is significantly improved as compared
to the traditional individual image analysis (only 82.2%).

Fig. 9. Volume-preserving mapping of brains. The columns represent
MRI data, PET data, and mapped PET data, respectively, while rows
represent the normal brain and one from a patient.

Fig. 10. Map the PET difference back to the original shape. The PET
difference shows the abnormalities of the patient’s brain. With the bijec-
tive mapping, the difference is mapped back to the original brain shape,
indicating the epileptogenic region.

7 CONCLUSION

We have presented a volume mapping methodology which preserves
the volume form among general manifolds together with salient fea-
ture registration. Given an initial mapping between two closed con-
nected manifolds with the same total volume, a volume-preserving
mapping can be derived from a compressible flow of the volume form
on the target manifold. Then, salient feature based registration is per-
formed by constructing a divergence-free vector field within the do-
main. All the features move towards to the desired positions as the
manifold keeps moving along the field. The divergence-free field guar-
antees no volume distortion will be involved in the registration. Differ-
ent from optimization approaches, a volume-preserving mapping and
a registration are guaranteed at the final state of the mathematical in-
tegration without the concern of convergence. The volume-preserving
registration facilitates the alignment of a class of volume data with
similar geometric structures, such as patient brains, to the canonical
domain. As the local volume element is preserved and indexed corre-
spondingly across subjects, the quantitative analysis can be uniformly
performed upon the same volume size or based on the same number
of samples. The volume-based statistics analysis framework is more
accurate due to the very minimal distortions and accurate registration.
Hence, it facilitates an effective map-based collective data analysis and
visualization over a large number of volume objects.

Note that, the discrete algorithm suffers from errors in numerical
iterations. Our experiments show that increasing the resolution of the
tetrahedral meshes will improve the result. However, high resolution
meshes also require more computing power. Better numerical solvers
will be investigated in future work. In addition, our current method

has to process the boundary and interior separately. We believe that it
is a drawback which causes volume preserving and registration errors.
A more unified method which simultaneously processes both bound-
ary and interior area/volume preserving constraints could lead to an
improved solution.
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