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h i g h l i g h t s

• We introduce a volume-preserving registration framework for brain shift analysis.
• A volume-preserving mapping is supported by a rigorous continuous theory.
• The registration is performed on spherical tetrahedron mesh with MRI gray value.
• The registration can retain the equality of local volume elements.
• Our method can register the brain efficiently while preserving the volume.
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a b s t r a c t

In order to analyze the brain shift situation accurately, we need to register themedical image and analyze
its deformation. In this paper, we introduce a framework with volume-preserving registration for brain
shift analysis. First, a volume-preserving mapping is introduced for general manifolds supported by a
rigorous continuous theory. The registration is then performed on the spherical tetrahedron mesh with
MRI gray values. The registration can retain the equality of local volume elements while registering the
manifold to a template at the same time.We use simulated brain shift data to test ourmethod. The results
show that our method can efficiently register the brain while preserving the volume of each vertex.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

At present, the increasing use of image-guided surgery systems
for neurosurgery has brought to prominence of the problem re-
garding brain shift, including the deformation of the brain after
craniotomy and tumor resection. This phenomenon is caused by
various interacting factors such as the characteristics of tissue, the
swelling of brain structures, a deformation following gravity, and
so on [1]. Most of the deformation can be considered as a volume-
preserving deformation. In consequence, the correspondence of
structures identified between the pre-operative image data and
the real-time imaging data of the patient’s brain becomes incor-
rect during the operation. Therefore, the location and the extent of
structures are misinterpreted when mapping pre-operative find-
ings into real-time images. Thus, it is of great importance to register
and align these images. This topic has recently led to considerable
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interest in the solid and physics-basedmodeling aswell asmedical
image analysis communities [2].

In order to analyze medical image data, a complicated geomet-
ric structure from the image data is desired to be mapped onto a
canonical domain. Instead of working on the complicated geom-
etry directly, all the operations can be defined on a simpler do-
main, such as planes and structured grid volumes. The mapping
will help improving the efficiency of the data processing. In gen-
eral, a manifold cannot be mapped to another domain without
anydistortions. Thus, differentmappingmethods focus onpreserv-
ing certain local geometries like angle [3,4] or area [5,6]. To date,
more and more volumetric measurements are derived from a rich
line of multimodal imaging, e.g. neuronal density, activation ex-
tent, thickness, etc., so that volume-preserving mapping becomes
increasingly important. In 2D domain, to prevent severe geomet-
ric stretches, the original model can be decomposed into many
charts which are topologically equal to an open disk to make in-
terior Gaussian curvature closed to zero [7]. Even distribution of
intrinsic distortions [5,7] are studied to achieve uniformity met-
rics mapping. Based on the singular values of the Jacobian matrix,
Sander [5] optimized the parametric location of each vertexwithin
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its 1-ring neighborhood to reduce local stretches. Sorkine et al.’s
bounded-distortion mapping [7] made heavy use of mesh cuts to
keep distortions below some preset threshold. They considered 2D
area distortion with an energy term. The purpose is to minimize
the 2D area distortion. No conclusion is drawn whether an abso-
lute area-preserving patch mapping can be practically achieved.
Desbrun et al. [8] also focused on minimizing area distortion for
the intrinsicmapping of trianglemeshes. In theirwork, an intuitive
area-preserving functional was devised. Zhao [9] presents a novel
area-preserving flattening method using the optimal mass trans-
port technique based on Monge–Brenier theory. Zou [6] proposed
a theoretical authalic mapping based on the differential forms on
2D manifold by flowing under a Lie advection of area. The afore-
mentioned methods are for 2D general surfaces so far. There also
exist many harmonic volumetric mapping techniques among ob-
jects [10].

Image registration is the process of finding the optimal trans-
formation that aligns different imaging data into spatial corre-
spondence. As a result, the same anatomic structures occupy the
same spatial locations in different images [11]. It is the build-
ing block for a variety of medical image analysis tasks, such
as motion correction, multi-modality information fusion, atlas-
based image segmentation, population-based studies, longitudinal
studies, computational anatomy and image-guided surgery [12].
Since most brain shift deformations can be treated as a volume-
preserving deformation based on their physical properties, regis-
tration with preserving volumetric properties can capture more
information of brain deformation, hence achieving a higher accu-
racy in terms of volume-preserving alignment. However, general
manifold volume-preserving mapping with registration was sel-
dom discussed within those mapping methods.

In this paper, we introduce a framework for a volume-
preserving registration method based on volume-preserving pa-
rameterization. First, a volume-preserving mapping is introduced
for general manifolds supported by a rigorous continuous theory.
Then, registration is performed based on new Demons metric to
preserve local volume elements.Weuse 12pairs of simulated brain
shift datasets to test our method and compare our method with
traditional Demons. The results show that ourmethod can success-
fully register the deformed and shifted brain while preserving the
volume during the registration.

2. Spherical volume-preserving registration

Our framework consists of two major steps. First, we introduce
a volume-preserving parameterization to map the mesh into a
sphere domain. Then, we conduct the novel volume-preserving
Demons registration to register the different meshes.

2.1. Volume-preserving parameterization

Given two connected manifolds with the same topology, there
are diffeomorphisms between them. Each diffeomorphism is cor-
responding to a mapping between these meshes. Different map-
pings have different purposes. They either preserve local geometry
orminimize somedeformation energy. Consider a three dimension
manifold P , a local volume element is defined on the local coordi-
nates x1, x2, x3 as

τP = ρP(x)dx, (1)

where dx = dx1 ∧ dx2 ∧ dx3 and ρP(x) > 0 is a volume density
function. There exists a diffeomorphism f whichmaps P to another
manifold Q , f : P → Q . Without loss of generality, the global vol-
ume of Q can be scaled to that of P , which means


P τP =


Q τQ .

After themapping, the local volume element τP deforms to τQ . Sup-
pose there is another diffeomorphism g which maps Q to itself,
g : Q → Q . g also maps the local volume element τQ to τ ′

Q . If
τP ≡ τ ′

Q everywhere, g ◦ f is such a diffeomorphism, which maps
P to Q preserving the local volume. According to Eq. (1), τP ≡ τ ′

Q
can be converted to ρ ′

Q ≡ ρP . g not only maps Q to itself, but also
maps the volume density back to the original one in P . This density
change in Q is described as fluid dynamics. Suppose that Q follows
a velocity field V defined at itself; then the material derivative can
be derived from V :

Dρ

Dt = ∇ρ · V .
Thematerial derivative describes the density changes along the

stream line in V . Note that, each element moves along the stream
line in V , so that the local density ρQ changes to ρP . This change
can be interpolated linearly as ρ(t) = (1− t)ρQ + tρP , t ∈ [0, 1].

Thus, V must satisfy

− ρQ + ρP = ∇ρ · V . (2)

In order to solve this equation of V , we introduce a scalar field
ϕ(x, t) such that V = ∇ϕ. Then, Eq. (2) is converted into a Poisson
equation of ϕ(x, t): −ρQ + ρP = −ρ1ϕ.

The Poisson equation has a unique solution. Once the scalar field
is solved, the path of each element on Q is an integral curve x(t)
such that

dx(t)
dt

= V (x(t), t),

x(0) = x0,
(3)

where x is the initial position of the curve. If each element follows
the curve x(t) from t = 0 to t = 1, the density ρ on it changes
linearly from ρQ to ρP . Since the density is positive, the curve x(t)
yields a desired diffeomorphism g , and g ◦ f : P → Q is a dif-
feomorphism which maps manifold P to Q with local volume pre-
served.

Based on the above mathematical derivation, in the discrete
condition, we apply an iterative algorithm on thosemanifoldswith
discrete representations. Manifolds in 3D can be represented with
tetrahedral volumemeshes. First, an initialmapping is constructed.
Then, the time interval is divided into the discrete time steps for
the iteration. At the beginning of each iteration, the current local
density is calculated on each vertex. The Poisson equation, Eq. (2),
is solved within current time step. All the vertices move a time
step along the vector field V guided by the solved scalar field. The
iteration continues for each time step.

Assume that a 3D volume is represented with a tetrahedral
mesh T = {V , E, F , C}, V = {vi} denotes the vertex set, E = {eij}
the edge set, F = {fijk} the face set, and C = {cijkl} the tetrahedral
cell set with 1 ≤ i, j, k, l ≤ m = |V |. Given a scalar function ϕ on
the volume, its discrete version is a vector ϕ⃗ = [ϕ1, ϕ2, . . . , ϕm]

T ,
defined at the vertices. The volume element is represented with
the voronoi volume |Ωi| of that vertex.

Thus, the discrete Laplace–Beltrami operator is linearly approx-
imated at each vertex. Suppose that eij is shared by n tetrahedrons,
the volumetric δϕ is estimated at vi as [13]

δϕ(vi) =


j∈N(i)

wij(ϕ(vi) − ϕ(vj)), (4)

where wij is the volumetric edge weight defined on edge eij and
N(i) is the one-ring neighbor of vertex i. As the scalar function ϕ is
represented with a vector, the Laplace operator is defined with a
weight matrix as Lij.

Suppose that an edge eij is shared by n tetrahedrons, wij is de-
fined as wij =

1
|Ωi|

( 1
6


kl lilcot(θkl)) [14], where |Ωi| is the voronoi

volume of vi, lkl is the edge length of ekl to the opposite edge eij,
and θkl is the dihedral angle on ekl. When considering all vertices
of a mesh, Eq. (4) can be written as a linear system Lx = b, where
x = ϕ⃗ and b = (ρQ − ρP)/ρ.
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By solving the discrete Poisson equation, we obtain the scalar
field ϕ on the unit sphere volume. The gradient of the field is
assumed constant inside the tetrahedral cell. To obtain a unique
vector at each vertex, ∇ϕ at vertex vi is defined as

Vi = ∇ϕi =
1

cijkl∈N1(i)
αi
jkl


cijkl∈N1(i)

αi
jkl∇ϕ(cijkl), (5)

that is, an average of the gradients of the adjacent cells, weighted
by the inverse of the distance αi

jkl between the central vertex vi and
the centroid of cell cijkl.

V (t) is not a steady field but varieswith time t depending on the
solution of ∇ϕ(t). Therefore, an iterative integration is employed
based on each vertex. The time interval [0, 1] is divided into K step,
and the time difference between the neighbor step is δ =

1
K . Thus,

we get the iteration

X(k) = X(k − 1) +
1
K
V (K − 1), k = 1, 2, . . . , K , (6)

whereX(k) is the current position of the k-th step. And the final dif-
feomorphism g is represented with the sum of the displacements
of all steps as g(x) = x0 +

K
k=1

1
K ∇ϕ(k − 1).

In general, a larger number of iteration steps result in more ac-
curate approximations. Empirically, K is set to 50, which will sat-
isfy most cases.

Themovement of vertices is in principle determined by the des-
ignated volume changes. However, degenerated tetrahedron may
undermine the discrete computation due to inaccurate approxi-
mation of the Laplace–Beltrami operator. At the beginning of each
step, we optimize the underlying tetrahedralization by perform-
ing combinatorial flips to all flippable faces for the Delaunay con-
dition. Note that the geometry of volume is realized by their R3

embedding. Throughout this procedure, the discrete sampling of
the shape remains unchanged, but is merely interpolated by a dif-
ferent tetrahedralization.

2.2. Volume-preserving demons registration

Based on the volume-preserving parameterization,we continue
to solve the volume-preserving registration. The registration can
be defined to find a registration which can minimize the distance
between two meshes without breaking the original volume-
preserving constraint. Here, the distance between twomeshes can
be defined as the MRI gray value differences of the corresponding
vertices between two meshes.

We introduce metrics similar to the Demons approach [15] to
our volume-preserving registration. In [15], Thirion proposed to
consider non-parametric non-rigid registration as a diffusion pro-
cess. He introduced Demons that pushes according to local charac-
teristics of the images in a similar way Maxwell did for solving the
Gibbs paradox.

A normal Demons approach is a two-step optimization, in
which the first step represents a search for the update direction
of the current warp, and the second the regularization of the new
warp resulting from this update. Given a fixed image S and a mov-
ing image T , non-parametric image registration is treated as an op-
timization problem that aims at finding the displacement of each
pixel to get a reasonable alignment of the images. In many cases,
non-parametric spatial transformations will be described by a dis-
placement field uwhich is simply added to an identity transforma-
tion to get the non-parametric transformation: u : p → p + u(p).

The similarity criterion Sim(., .) measures the resemblance
of two volumes. Here, we consider the distance between two
volumetric meshes as Sim(S, T ◦ u) =

1
2∥|S − T ◦ u|∥2.

A simple optimization of Sim over the space of non-parametric
transformations leads to an ill-posed problem with unstable and
non-smooth solutions. To avoid this and possibly add some a priori
knowledge, a regularization term Reg(u) is introduced to get the
global energy

E(u) =
1
σ 2
i
Sim(S, T ◦ u) +

1
σ 2
T
Reg(u), (7)

where σi accounts for the noise on the image intensity and σT
controls the amount of regularization we need.

The idea is to consider the regularization criterion as a prior on
the smoothness of the transformation u. Instead of requiring the
point correspondences between image pixels, a non-parametric
spatial transformation, g , is exact realization of the spatial trans-
formation u, but allows some error at each image point. Consider-
ing a Gaussian noise on displacements, we end up with the global
energy:

E(g, u) =

 1
σi

(S − T ◦ g)
2

+
1
σ 2
x
dist(u, g)2 +

1
σ 2
T
Reg(u), (8)

where σx accounts for a spatial uncertainty on the correspon-
dences, dist(u, g) = ∥g − u∥ and Reg(u) = ∥∇u∥2.

The unique advantage of the algorithms is precisely the separa-
tion of the two optimization problems: each cost can be optimized
very efficiently with either a linear approximation or a fast convo-
lution.

Since the third term in Eq. (8) can be interpreted as a penalty on
the harmonic energy of u, as well as its norm, and can be smoothed
with a Gaussian kernel. Smoothing the displacement field is often
termed ‘‘diffusion-like regularization’’, and smoothing the update,
‘‘fluid-like regularization’’. Thus, in order to preserving the volume
while registration, wemodified the regularization term as follows.

Given a manifold M , a displacement field u is required to de-
form the whole volume domain at each step. To accomplish the
volume registration, u must satisfy two criteria: first, u is diver-
gence free everywhere so that the volume elements are preserved
under the deformation; second, u on the boundary has no normal
components, where no elementmoves in or out of the original vol-
ume domain. Formally, the problem can be represented as finding
a displacement field u defined on the volume domainM such that

∇U ≡ 0
u(bj) · n(bj) ≡ 0, bj ∈ ∂M.

(9)

Since Radial Basis Function (RBF) interpolation is a powerful
tool to generate a function which interpolates a discrete set of val-
ues, the set of values is the displacement vector u for each constant
time step. Therefore, instead of regular scalar RBF, vector–matrix
RBF is employed, which is represented as

u(x) =


i

Φ(∥x − xi∥)ci, (10)

where Φ is an n ∗ n matrix valued radial basis function in n di-
mensions space, and ci is a coefficient vector. The set of ci satisfies
|u(ci)| = |gi|. Thus, Eq. (10) is an overdetermined equation that we
could find the optimal solution.

To interpolate a divergence free field, we employ the radial ba-
sis function, which McNally proposed to interpolate a magnetic
field [16], since at each step, the update direction g can form a di-
vergence free field.

Φ(x) = (∇∇
T

− I∆)φ(x), (11)

where the ∇ operator is represented with a vector operator
[∂x1 , ∂x2 , . . . , ∂xn ]

T , ∆ is a scalar valued Laplace operator, and Φ

is a scalar value radial basis function. Thus, we have
i

Φ(∥xj − xi∥)ci = gj, j = 1, 2, . . . ,N. (12)
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Fig. 1. Brain volume parameterization results. The original brain volume and its parameterized result are displayed in the left column; the corresponding deformed volume
and its parameterized result are displayed in the right column.
With the solution of this equation, u is interpolated, which is
divergence free and guarantees that each point is along the direc-
tion. In the experiment, we choose Gaussian Φ(x) = e−λ∥x∥2 as the
scalar valued radius basis function, which makes the divergence
procedure equivalent with diffusion like Demons registration in
the Lie group [17].

After a divergence free displacement fieldu is obtained,weneed
to constrain the boundary so that the shape of the domain can
still be a unit sphere after the deformation. To keep the original
shape of the domain, the displacement fieldmust have zero normal
component on the boundary, whichmeans nothing is moving in or
out of the original domain. To eliminate the normal component on
the boundary to zero, another displacement field uc can be added
to the existing u. uc is also divergence free as u and has the same
normal components at those sampling points on the boundary, but
with opposite normal directions. Then, adding uc to u leads to the
final registration displacement field ur = u + uc .

Here, we can find that the divergence free displacement field
u is a Lie group under composition, the original warp direction is
computed based on Eq. (8), thewarp value is calculated by Eq. (10),
after the iteration, we can finally get the optimal registration re-
sults.

Thus, we define the volume-preserving Demons registration as
u = argminu


∥S − T ◦ {g ∗ u}∥2

2 +
1
σ
dist(g, u)


u(bj) · n(bj) ≡ 0, bj ∈ ∂M

u(x) =

N∗K
i=1

Φ(∥x − xi∥)ui.

(13)

In practice, we first perform a rigid registration to minimize
the distance between two meshes. Then we conduct the volume-
preserving registration based on Eq. (13). Finally we can get the
transfer matrix and the registration results. Algorithm 1 shows the
whole registration steps.

3. Experimental results

In order to evaluate our algorithms, we obtain 12 brain volumes
from the CUMC dataset.1 The data was scanned at the Columbia
University Medical Center on a 1.5 T GE scanner, and segmented
and manually labeled by one technician trained according to the
Cardviews labeling scheme [18] created at the CMA with 128 la-
beled regions. Each brain volume was first extracted out the brain

1 http://mindboggle.info.
Algorithm 1 Volume-preserving Demons registration
Input: Mesh S,T, tolerance tol
Output: Displacement field u

1. Initialize u to be uniformly 0
2. While (t < maxiterations and

∥S−T◦{ut }∥22−∥S−T◦{ut−1}∥
2
2

∥S−T◦{g0}∥22
> tol).

(a) Given the current transformation u, compute a correspon-
dence update field s by minimizing E(s) with respect to s

(b) For a fluid-like regularization let s = Kfluid⋆s. The convolution
kernel with typically be a Gaussian kernel.

(c) Let g = u ◦ exp(s)
(d) Adjust u to satisfy Eq. (10) with original displace vector g
(e) Adjust u to satisfy u(bj) · n(bj) ≡ 0, bj ∈ ∂S

3. End While
4. Return u

surface based on their brainmask. Then, the tetrahedral mesh is
constructed from the brain surface using TetGen software.2 Each
brain mesh was performed a brain shift simulation based on [19].
The deformation is based on generalized barycentric coordinates
while adding the constraint of keeping a volume constant. The de-
formation first computes the Mean-Value Coordinates, then using
the generalized barycentric coordinates to calculate the newmesh.
In order to simulate the brain shift, we modify the elastic coeffi-
cient to make the brain mesh modeled as a homogeneous linear
visco-elastic material [20]. Besides, we add position constrained at
some vertices of brainstem to make the deformation close to brain
shift situation.

After performing the deformation, we conduct the volume
preserving parameterization. Fig. 1 shows the original volume and
the parameterized volume, the volume ratio between the original
volume and parameterized volume of each vertex is around 1
(Fig. 2), which means it successfully preserves the volume while
parameterization. Besides, we also calculate the angle distortion.
After parameterization, the angle distortion is still around 1 while
its variance is about 0.3.

After the parameterization, we register the deformed mesh to
the original one with their parameterized results. Fig. 3 shows
the registration results between each group. Then we evaluate the
accuracy of the registration with union overlap (UO). UO is defined
as the ratio of overlapped volume area with corresponding labels
to the union,which is also called Jaccard coefficient [21]. In another
word, UO between V1 and V2 is defined as UO =

AV1∩V2
AV1∪V2

.

2 http://wias-berlin.de/software/tetgen/.

http://mindboggle.info
http://wias-berlin.de/software/tetgen/
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Fig. 2. Voronoi volume ratio between original volume and the parameterized
results.

Fig. 3. Brain volume registration results. Left is the original brain mask. Middle
is the registration brain mask. Right is the Atlas brain mask. Different colors
correspond to different subcortical structures. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

The average UO of the registration is 94.65%, which means that
our method can successfully register the mesh of different shapes.
Fig. 4 shows the Voronoi volume ratio between original volume
and the registration results. From Fig. 4(a), we can see that the ra-
tio of the Voronoi volume of each vertex is still around 1, which
means our volume-preserving registration method can efficiently
preserve the volume of each vertex while achieving accurate reg-
istration. Compared with Fig. 2 we found that the volume ratio
around 1 is decreased, which is caused by the registration since
Eq. (10) is overdetermined so that we can only find the optimal so-
lution which makes the displacement field not be able to preserve
strictly divergence free.

We also analyze the registration accuracy for each structure, re-
spectively. Table 1 shows the registration result of each structure.
From the results we can see that our method can successfully and
accurately register the volume.

We also compared our method with traditional Demons algo-
rithms. The average UO of traditional Demons is about 95%. Fig. 5
shows the registration accuracy comparison between our method
and Demons for each subcortical structures. About 67.26% of the
Table 1
Registration UO(%) of the brain substructure.

L hippocampus 93.67 R hippocampus 94.15
L putamen 94.10 R putamen 95.30
L caudate 95.65 R caudate 93.80
L amygdala 95.80 R amygdala 95.28
L ventralDC 94.60 R ventralDC 93.49
L angular gyrus 93.45 R angular gyrus 94.01
L postcentral gyrus 94.72 R postcentral gyrus 93.92
L precentral gyrus 95.50 R precentral gyrus 94.08
L temporal pole 96.09 R temporal pole 93.53
L frontal pole 95.23 R frontal pole 93.61

Fig. 5. Registration accuracy comparison between our method and traditional
Demons on brain volume. The blue area shows the region where the Demons
method is better than our method while the red area shows contrary. The green
area shows the region where there is no difference between our method and the
Demons method. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

brain volumetric structures show that our method’s accuracy is
better than traditional Demons. Our method can successfully reg-
ister the image with the comparable performance to traditional
Demons. We also compare the volume change ratios between our
method and traditional Demons. Fig. 4(b) shows the ratio between
original volumes and registration results of traditional Demons.
Since Demons does not preserve the volume ratio, the ratio is only
about 50% while our method can preserve the ratio up to 80%.

Based on the experiments, we can see that our method can suc-
cessfully register the image. The accuracy of the registration is sim-
ilar to traditional Demons. Besides, our method can successfully
preserve the volume ratio during the registration. In some subcor-
tical structure, our method’s results are less accurate than tradi-
tional Demons. Themain reason is becauseweneed to preserve the
Volume ratio between the original image and the deformed one.

4. Conclusion

In this paper, we introduce a new spherical volume-preserving
Demons registration of tetrahedral volumes.
Fig. 4. Voronoi volume ratio between original volume and the registration results. (a) Ratio of volume-preserving registration. (b) Ratio of traditional Demons registration.
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Since the brain shift can be treated as a volume-preserving defor-
mation, we find a way to register the deformation while preserv-
ing the volumetric property. Given an initialmapping between two
closed connected manifolds, a volume-preserving mapping can be
built, derived from the compressible flow of the volume form on
the target manifold. Then, a volume-preserving Demons registra-
tion is introduced to minimize the misalignment. Compared with
traditional Demons registration, our method’s registration results
are similar to Demons, while ours can preserve the local volume. In
future, we will test our method on real patient data. Also we will
extend our registration method to other different cortical struc-
tures.
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