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Abstract

The goal of unsupervised learning, i.e., clustering, is to determine the intrinsic structure of unlabeled data. Fea-

ture selection for clustering improves the performance of grouping by removing irrelevant features. Typical feature

selection algorithms select a common feature subset for all the clusters. Consequently, clusters embedded in different

feature subspaces are not able to be identified. In this paper, we introduce a probabilistic model based on Gaussian

mixture to solve this problem. Particularly, the feature relevance for an individual cluster is treated as a probability,

which is represented by localized feature saliency and estimated through Expectation Maximization (EM) algorithm

during the clustering process. In addition, the number of clusters is determined simultaneously by integrating a Min-

imum Message Length (MML) criterion. Experiments carried on both synthetic and real-world datasets illustrate the

performance of the proposed approach in finding clusters embedded in feature subspace.

1 Introduction

Clustering is unsupervised classification of data objects into different groups (clusters) such that objects in one group

are similar together and dissimilar from another group. Applications of data clustering are found in many fields, such

as information discovering, text mining, web analysis, image grouping, medical diagnosis, and bioinformatics. Many

clustering algorithms have been proposed in the literature [8]. Basically, they can be categorized into two groups:

hierarchical or partitional. A clustering algorithm typically considers all available features of the dataset in an attempt

to learn as much as possible from data. In practice, however, some features can be irrelevant, and thus hinder the

clustering performance. Feature selection, which chooses the “best” feature subset for clustering, can be applied to

solve this problem.

Feature selection is extensively studied in supervised learning scenario [1–3], where class labels are available for

judging the performance improvement contributed by a feature selection algorithm. For unsupervised learning, feature

selection is a very difficult problem due to the lack of class labels, and it has received extensive attention recently. The

algorithm proposed in [4] measures feature similarity by an information compression index. In [5], the relevant

features are detected using a distance-based entropy measure. [6] evaluates the cluster quality over different feature
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subsets by normalizing cluster separability or likelihood using a cross-projection method. In [7], feature saliency

is defined as a probability and estimated by the Expectation Maximization (EM) algorithm using Gaussian mixture

models. A variational Bayesian approach is presented in [9]. The algorithm described in [10] employs a criterion on

the psychological similarity for content-based image retrieval systems. An evolutionary local selection algorithm is

used in [11] to search for possible combination of features and numbers of clusters, with the guidance of the k-means

algorithm. The benefits of feature selection include simplifying the problem by discarding irrelevant information,

improving the learning performance, reducing the storage cost of databases, and providing more precise knowledge of

the underlying model that generates the data.

The aforementioned algorithms perform feature selection in a global sense by producing a common feature subset

for all the clusters. This, however, can be problematic in practice, where the local intrinsic property of data matters

more for grouping analysis [12]. In the illustrative example shown in Figure 1, the relevant feature subset for cluster C1

is {x1, x2}, while clusters C2 and C3 are better to be recognized on {x2} and {x1}, respectively. A common feature

subset, i.e., {x1, x2}, can not reflect the inherent structural properties of the three clusters. Clustering with local

features is highly desired. To this end, bipartite graph partitioning algorithms [13, 14] attempt to partition features

together with patterns such that the output contains relevant features for each individual cluster. However, features

are divided exclusively, which prevents a feature to be relevant to more than one cluster. Other approaches in this

direction, usually referred as subspace clustering [15], seek density areas embedded in a high dimensional feature

space [16–20]. These algorithms navigate the possible subspaces heuristically [20] or in a grid manner [16], often

requiring the density threshold and the cluster number as inputs. In addition, the clusters produced are overlapping in

many cases.

In this paper, we focus on the clustering problems with exclusive partitioning. We propose to detect clusters

embedded in feature subspace based on EM with a local feature saliency measure. The number of clusters is also si-

multaneously detected by integrating a Minimum Message Length (MML) criterion. Through experiments performed

on both synthetic and real-world datasets, we demonstrate the advantages of the proposed localized feature selection

method over the global one. The rest of the paper is organized as follows: In Section 2, we introduce some essential

background on EM-based clustering and simultaneous global feature selection. In Section 3, we perform model detec-

tion for Gaussian mixture through EM with an integrated local feature saliency. The proposed algorithm is evaluated

on both synthetic and real-world datasets in Section 4. Finally, we summarize our work in Section 5.

2 Background on EM-based Clustering and Global Feature Selection

From a model-based perspective, each cluster can be mathematically represented by a parametric distribution. The

entire dataset is therefore modeled by a mixture of these distributions. The most widely used model in practice is
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the mixture of Gaussians. The clustering process thereby turns to estimating the parameters of the Gaussian mixture,

usually by the EM algorithm.

Traditionally, a finite mixture of densities with K components is represented by,

p(y) =
K∑

j=1

αjp(y|θj), (1)

where αj is the a priori probability, and θj is a set of parameters of component j. The parameters are estimated by

maximizing the likelihood as,

θ̂ML = arg max
θ

[log p(Y|θ)] . (2)

Let Z = {zij}N×K be a set of missing (latent) cluster labels, where zij = 1 if yi is a sample of p(·|θj), and zij = 0

otherwise. Z can be also written as a vector Z = (z1, . . . , zN ) such that zi = j if yi is a sample of p(·|θj). The

log-likelihood when Z is observed is,

log p(Y,Z|θ) =
N∑

i=1

K∑

j=1

zij log[αjp(yi|θj)] (3)

LetW = E[Z|Y, θ̂(t)] represent the expected value of Z , where θ̂(t) is the estimate of θ at iteration t. The parameters

can be estimated by the following updating rule,

θ̂(t + 1) = arg max
θ
{log p(Y,W|θ̂(t))} (4)

Assuming features are conditionally independent, the mixture of densities can be described as,

p(y|θ) =
K∑

j=1

αjp(y|θj) =
K∑

j=1

αj

D∏

l=1

p(yl|θjl) (5)

where D is the number of features. Define the global feature saliency ρl to be the probability that feature l is salient

to all the components. Then, (1 − ρl) is the probability that l is not salient to any of the components. Let Φ =

(φ1, . . . , φD) be the feature relevance vector with φl = 1, if feature l is relevant and, φl = 0, otherwise. Then,

ρl = Pr(φl = 1). Finally, the likelihood function can be rewritten as [7],

p(y|θ) =
K∑

j=1

αj

D∏

l=1

[ρlp(yl|θjl) + (1− ρl)q(yl|λl)] (6)

where q(·(λl)) is a common density, which defines the distribution of an irrelevant feature l. If we treat Φ as missing

variables, the feature saliency vector ρ can be estimated by the EM algorithm [7].
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3 Detecting Clusters Embedded in Feature Subspace

In this section, we present a probabilistic model based on Gaussian mixture to detect clusters embedded in feature

subspace. First, we define a localized feature saliency and show how it could be integrated into EM clustering. Then,

we estimate the number of clusters with the MML criterion.

3.1 Localized Feature Saliency

In our approach, the importance of a feature can be different for different clusters, which implies that the feature

relevance takes a matrix form, Φ = {φjl}K×D, where φjl = 1 indicates that feature l is associated with component

j, otherwise φjl = 0. Let ρjl = Pr(φjl = 1) be the probability that feature l is relevant to component j. Then, the

likelihood can be obtained based on the following proposition.

Proposition 1. Let p(·|θjl) represent the distribution of a salient feature l for a particular component j, and q(·|λjl)

the distribution if feature l is non-salient to the particular component. Assuming that the features are conditionally

independent, the likelihood function can be written as,

p(y|θ) =
K∑

j=1

αj

D∏

l=1

(
ρjlp(yl|θjl) + (1− ρjl)q(yl|λjl)

)
(7)

Proof. Let φj = (φj1, . . . , φjD). For a particular component j, we have

p(y|z = j, φj) =
D∏

l=1

(
p(yl|θjl)

)φjl
(
q(yl|λjl)

)1−φjl

p(y, φj , z = j) = p(y|z = j, φj)p(φj |z = j)P (z = j)

= αj

D∏

l=1

(
p(yl|θjl)

)φjl
(
q(yl|λjl)

)1−φjl

D∏

l=1

ρ
φjl

jl (1− ρjl)1−φjl

= αj

D∏

l=1

(
ρjlp(yl|θjl)

)φjl
(
(1− ρjl)q(yl|λjl)

)1−φjl (8)

Marginal density on y gives

p(y|θ) =
K∑

j,Φ

p(y, φj , z = j)

=
K∑

j=1

αj

∑

φjl

D∏

l=1

(ρjlp(yl|θjl))
φjl ((1− ρjl)q(yl|λjl))

1−φjl

=
K∑

j=1

αj

D∏

l=1

(ρjlp(yl|θjl) + (1− ρjl)q(yl|λjl)) (9)
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where θ = {{αj}, {θjl}, {ρjl}, {λjl}} is the set of all the parameters.

Taking {zij} and {φjl} as latent variables, we derive the E-step and M-step of the EM algorithm to estimate the

parameter set.

E-Step: Compute the expectation of the log-likelihood.

From Equation (8), the expected complete log-likelihood of the dataset based on θ(t) is

Eθ(t) [log P (Y, z, Φ)]

=
∑

i,j,Φ

P (zi = j, Φ|yi)(log αj +
∑

l

φjl (log ρjl + log p(yil|θjl))

+ (1− φjl) (log(1− ρjl) + log q(yil|λjl)))

=
∑

j

(
∑

i

P (zi = j|yi)) log αj

+
∑

jl

∑

i

P (zi = j, φjl = 1|yi)(log p(yil|θjl) + log ρjl)

+
∑

jl

∑

i

P (zi = j, φjl = 0|yi) (log q(yil|λjl) + log(1− ρjl)) (10)

The probabilities are computed as follows,

P (zi = j|yi) =
αj

∏
l[ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)]∑

j αj

∏
l[ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)]

(11)

P (zi = j, φjl = 1|yi) =
ρjlp(yjl|θjl)

ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)
P (zi = j|yi) (12)

P (zi = j, φjl = 0|yi) =
(1− ρjl)q(yjl|λjl)

ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)
P (zi = j|yi) (13)

M-step: Maximize the log-likelihood.
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The three parts of Equation (10) can be maximized separately by updating the following quantities,

α̂j =
∑

i P (zi = j|yi)∑
j

∑
i P (zi = j|yi)

(14)

µ̂θjl
=

∑
i P (zi = j, φjl = 1|yi)yjl∑

i P (zi = j, φjl = 1|yi)
(15)

σ̂2
θjl

=
∑

i P (zi = j, φjl = 1|yi)(yjl − µ̂θjl
)2∑

i P (zi = j, φjl = 1|yi)
(16)

µ̂λjl
=

∑
i P (zi = j, φjl = 0|yi)yjl∑

i P (zi = j, φjl = 0|yi)
(17)

σ̂2
λjl

=
∑

i P (zi = j, φjl = 0|yi)(yjl − µ̂λjl
)2∑

i P (zi = j, φjl = 0|yi)
(18)

ρ̂jl =
∑

i P (zi = j, φjl = 1|yi)∑
i P (zi = j, φjl = 1|yi) +

∑
i P (zi = j, φjl = 0|yi)

(19)

The EM algorithm alternates between the E-step, which computes an expectation of the likelihood by including

the latent variables as if they were observed, and the M-step, which maximizes the expected likelihood found in the

E-step. The parameters found in the M-step are then used to begin another iteration of the E-step, and the process is

continued until the algorithm converges to a finite mixture model with feature saliency associated with each cluster.

Thus, clustering and localized feature saliency detection is achieved simultaneously.

3.2 Model Selection Based on Minimum Message Length (MML)

Alternation of E and M steps in the above algorithm eventually results in a maximum likelihood estimate of Gaussian

mixtures, which requires the number of clusters K as prior knowledge. To overcome this difficulty, we employ the

MML criterion to detect the optimal number of clusters [7]. The MML criterion for our model with respect to θ is as

follows,

J(θ) =− log(Y|θ) +
1
2
(K + DK) log(N)

+
R

2

D∑

l=1

K∑

j=1

log(Nαjρjl) +
S

2

D∑

l=1

K∑

j=1

log(Nαj(1− ρjl)) (20)

In the above equation, R and S are the number of parameters of p(·) and q(·), respectively, which for a Gaussian

distribution is 2. Also, − log(Y|θ) corresponds to log-likelihood, and 1
2 (K + DK) log(N) represents the code-

length of standard Message Description Length (MDL) of parameters αjs and ρjls. While Nαjρjl indicates the

effective number of data for estimating θjl, R
2

∑D
l=1

∑K
j=1 log(Nαjρjl) computes the code-length corresponding to

the parameters θjl. Similarly, S
2

∑D
l=1

∑K
j=1 log(Nαj(1 − ρjl)) represents the code-length for parameters λjl. The
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optimal mixture model is the one that minimizes the cost function J(θ) in Equation (20),

θ̂ = arg min
θ

(J(θ)) (21)

The algorithm introduced above works well in general cases. However, extreme bad initialization may lead to

some clusters with singular covariance matrices, and thus adversely affect the cost function J(θ). Those clusters can

be pruned based on a modification of Equation (14) [7],

α̂j =
max

(∑
i P (zi = j|yi)− RD

2 , 0
)

∑
j max

(∑
i P (zi = j|yi)− RD

2 , 0
) (22)

The effect of Equation (22) is that some small trivial components are quickly eliminated at an early stage. Similarly,

Equation (19) is modified to,

ρ̂jl =
max

(∑
i P (zi = j, φjl = 1|yi)− R

2 , 0
)

max
(∑

i P (zi = j, φjl = 1|yi)− R
2 , 0

)
+ max

(∑
i P (zi = j, φjl = 0|yi)− S

2 , 0
) (23)

The above Equation can prune ρjl to either 1 or 0.

In summary, the proposed EM clustering with localized feature saliency consists of the following steps,

1. Initialize the algorithm with a large value of K, minimal number of components Kmin, and the parameter set θ.

2. Alternate between E-step and M-step until the model converges to a local maximum. During this step, compo-

nents with αj = 0 are pruned.

3. Record the parameter set θ and the message length based on Equation (20).

4. Terminate the iterations if K equals Kmin. Otherwise, reduce K to K−1 by removing the smallest component,

and repeat steps (2) and (3).

5. Output the model with the smallest message length.

3.3 Computational Complexity

The computational load of the proposed algorithm is mainly due to the E and M steps. For every iteration, the com-

plexity of both the steps is O(KND). The total computational time is dependent on the number of iterations required

for converging. Conventional feature selection algorithms usually seek optimal features by trying out large number of

combinations. On the other hand, the proposed algorithm computes the localized feature saliency simultaneously with

clustering, thus avoiding the navigation over all possible feature subsets. It only needs to search over a small set of

possible Ks.
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4 Experimental Results

In general, the performance of an unsupervised feature selection algorithm is hard to be evaluated. Localized feature

selection makes it even more difficult as we have an additional layer of complexity brought by the association of

clusters to different feature subsets. In this section, we provide thorough evaluation of the proposed algorithm by

comparing it with the global feature selection approach [7] on both synthetic and real-world datasets. In addition, we

show the need for feature selection in clustering and the benefits of selecting features locally through a case-study on

Boston housing dataset.

4.1 Synthetic Data

First, we applied both our method and the global feature selection algorithm to several synthetic datasets. As we know

the underlying models from which the patterns were sampled from, the performance of an algorithm is interpreted as:

can the algorithm find the given model? The synthetic datasets are created by a data generator. It first generates c

Gaussian components N (µj ,Σj), j = 1, · · · , c, separately, where Σj is restricted to a diagonal matrix. Components

can have different number of features Dj , and different number of patterns Nj . Those Gaussians are then embedded

into subsets of a D-dimensional background with Gaussian noiseN (0, I). Finally, a D-dimensional dataset consisting

of c Gaussian mixtures, with each component corresponding to an individual relevant feature subset is generated. The

total number of patterns is N =
∑c

j=1 Nj . Table 1 shows a summary of the four synthetic datasets generated.

In the experiments, we initialized the parameters as follows: number of clusters K is set to 20, the a priori

probabilities αj are set equally at 1/20, the feature saliencies ρjl are set at 0.5, and the common components are set

to cover the entire dataset. We ran the proposed algorithm 10 times independently with stopping threshold of 10−7.

The clustering error rates and cluster numbers are computed as the average over the 10 runs, and standard deviations

are calculated accordingly. The feature saliency for each cluster at each run is mapped to a grey-scale image, where

each column represents a feature, and each row represents an individual run, as shown in Table 2. For all the four

datasets, the proposed algorithm successfully detected the number of clusters. Each cluster and its relevant feature

subset are also detected correctly. The grey-scale image is steady vertically, indicating that the algorithm is stable in

different runs. In Table 2, we also show the performance of the global feature selection algorithm [7] on each of the

datasets. We can see that the union of the localized feature subsets is equivalent to the relevant features selected by

the global approach. Moreover, while global algorithm is able to detect the number of clusters correctly, it can not

determine if a salient feature really plays a critical role for a particular cluster. On the other hand, our approach yields

more informative models, which not only provide information about whether a feature is relevant or not, but also about

which cluster the feature is relevant or irrelevant to.
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4.2 Real-world datasets

For the evaluation on real-world datasets, we utilized four datasets: wine, wdbc, vehicle, and zernike, from the UCI

machine learning repository [21], having varying number of features, patterns, and categories. The wine dataset is used

to recognize different wine types by 13 characters of chemical analysis. It consists of 178 patterns and 3 categories.

The wdbc dataset is used to diagnose if a breast cancer is benign or malignant based on 30 features and contains

576 data points. The vehicle dataset contains 846 samples with 18 features extracted from vehicle silhouettes. The

purpose is to classify a given silhouette as one of four types of vehicles. The zernike dataset records 47 zernike

moments extracted from 2000 images of handwriting digits. Summary of these four datasets is shown in Table 3.

The parameters are initialized in the same way as for the synthetic datasets, except that K is set at 30 for the zernike

dataset.

The datasets are provided with class labels for supervised learning, which are excluded during the clustering

process. We assign a class label to each final cluster afterwards so that a pseudo error rate can be computed for

evaluation purpose. The cluster label is simply selected as the class to which majority of patterns in the cluster

belongs. In other words, we assume that each cluster consists of patterns from the same class. Comparing the cluster

labels of all the patterns with the true class labels yields the pseudo error rate.

The estimated cluster numbers and pseudo error rates are shown in Table 4 for both local and global methods.

It is clear that the proposed EM clustering with localized feature saliency generally outperforms the global one with

lower error rates and variances. We also compared the feature saliency of the two algorithms as grey-scale images

in Table 5. Obviously, different clusters have different relevant feature subsets, which are usually smaller than the

globally relevant feature subset. This result indicates that a globally relevant feature can be irrelevant to some clusters.

Our experiments also show that a locally relevant feature might be treated as globally irrelevant. For example, the third

feature of wine dataset is relevant to the first cluster (bright column), but, it has been ignored by the global feature

selection algorithm (dark column). Thus, EM clustering with localized feature saliency provides users more accurate

knowledge regarding the underlying model from which the cluster component is generated. Moreover, the vertical belt

patterns in the grey-scale images demonstrates the stability of the proposed algorithm over different runs.

4.3 Boston Housing Dataset

In this section, we present a case study of the proposed algorithm on the Boston housing data from UCI [21], which

contains 506 neighborhoods in the Boston metropolitan area with 14 attributes, as described in Table 6. This dataset is

often used as a test bed to compare the performance of prediction methods by estimating the value of the last attribute

MEDV from the other 13 attributes. In our experiment, we remove the binary attribute CHAS, and consider the rest

13 attributes on an equal basis. Our goal is to find groups of neighborhoods based on these attributes, and to identify
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the saliency of attributes for each individual group.

In our experiment, the number of clusters are initialized to 20, and other parameters are initialized in the same

way as for the synthetic datasets. As shown in Figure 2, 10 clusters are identified. Notice that the attribute saliency

varies for each cluster. For example, attributes {CRIM, RAD, TAX, PTRT} are important to Group A but not to

Group E, while attribute B is important to Group E but not to Group A. Figure 2 clearly shows that the distribution

of feature saliency over the 13 attributes is quite different across clusters. Traditional clustering algorithms without

feature selection or with global feature selection is not able to reveal these properties of the dataset. Our method, on

the other hand, can provide this vital information to users through cluster-wise feature selection.

5 Conclusion

In this paper, we proposed a EM clustering algorithm with localized feature saliency. In our approach, unsuper-

vised feature selection is performed by estimating feature saliency of individual clusters simultaneously with the EM

clustering. The determination of cluster number is also integrated in our method by adopting an MML criterion. Ex-

perimental results show that the cluster model produced by the proposed algorithm can provide users more accurate

understanding of the underlying process which generates the data.

Acknowledgement

This research was partially funded by the 21st Century Jobs Fund Award, State of Michigan, under grant: 06-1-P1-

0193, and by National Science Foundation, under grant: IIS-0713315.

References

[1] A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” Transactions

on Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 153–158, 1997.

[2] A. Blum and P. Langley, “Selection of relevant features and examples in machine learning,” Artificial Intelligence,

vol. 97, no. 1-2, pp. 245–271, 1997.

[3] M. Dong and R. Kothari, “Feature subset selection using a new definition of classifiability,” Pattern Recognition

Letters, vol. 23, pp. 1215–1225, 2003.

[4] P. Mitra, C. Murthy, and S. Pal, “Unsupervised feature selection using feature similarity,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 301 –312, 2002.

10



[5] M. Dash, K. Choi, P. Scheuermann, and H. Liu, “Feature selection for clustering - a filter solution,” in IEEE

International Conference on Data Mining, 2002, pp. 115–122.

[6] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning.” Journal of Machine Learning Research,

vol. 5, pp. 845–889, 2004.

[7] M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, “Simultaneous feature selection and clustering using mixture

models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1154–1166, 2004.

[8] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,” ACM Coimputing Surveys, vol. 31, no. 3, pp.

264–323, 1999.

[9] C. Constantinopoulos, M. K. Titsias, and A. Likas, “Bayesian feature and model selection for gaussian mixture

models,” IEEE Trans. on PAMI, vol. 28, no. 6, pp. 1013–1018, 2006.

[10] W. Jiang, G. Er, Q. Dai, and J. Gu, “Similarity-based online feature selection in content-based imageretrieval,”

IEEE Transactions on Image Processing, vol. 15, no. 3, pp. 702–712, 2006.

[11] Y. S. Kim, W. N. Street, and F. Menczer, “Feature selection in unsupervised learning via evolutionary search,”

in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

2000, pp. 365–369.

[12] Y. Li, M. Dong and J. Hua, “Localized feature selection for clustering,” Pattern Recognition Letters, in press,

doi:10.1016/j.patrec.2007.08.012.

[13] H. Zha, X. He, C. Ding, M. Gu, and H. Simon, “Bipartite graph partitioning and data clustering,” in Proceedings

of ACM CIKM, 2001, pp. 25–32.

[14] M. Rege, M. Dong, and F. Fotouhi, “Co-clustering documents and words using bipartite isoperimetric graph

partitioning,” in IEEE International Conference on Data Mining (ICDM), Hong Kong, 2006, pp. 532 – 541.

[15] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data: a review,” SIGKDD Explor.

Newsl., vol. 6, no. 1, pp. 90–105, 2004.

[16] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high dimensional

data for data mining applications,” in 1998 ACM-SIGMOD Int. Conf. Management of Data, Seattle, Washington,

1998, pp. 94–105.

[17] C. C. Aggarwal, J. L. W. C. M. Procopiuc, P. S. Yu, and J. S. Park, “Fast algorithms for projected clustering,” in

Proc. ACM-SIGMOD Intl. Conf. Management of Data, 1999, pp. 61–72.

11



[18] C. Aggarwal and P. Yu, “Finding generalized projected clusters,” in Proc. ACM-SIGMOD Intl. Conf. Management

of Data, 2000, pp. 70–81.

[19] C. H. Cheng, A. W.-C. Fu, and Y. Zhang, “Entropy-based subspace clustering for mining numerical data,” in

Proceedings of the fifth ACM SIGKDD international conference on Knowledge Discovery and Data Mining.

ACM Press, 1999, pp. 84–93.

[20] C. Baumgartner, C. Plant, K. Kailing, H.-P. Kriegel, and P. Kröger, “Subspace selection for clustering high-
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Figure 1: A three-cluster system with cluster C1 embedded in feature set {x1, x2}, cluster C2 embedded in feature
subset {x2}, and cluster C3 embedded in feature subset {x1}.

Yuanhong Li, et. al.
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Table 1: Summary of the synthetic datasets, where N represents the number of patters, D the number of features, c the
number of clusters, Dj the number of relevant feature respecting to the j-th cluster, and Nj the size of the j-th cluster.

Dataset N D c Dj Nj

syn 1 600 15 3 3/3/3 200/200/200
syn 2 600 20 3 3/4/5 200/200/200
syn 3 1000 20 5 3/4/5/4/2 200/200/200/200/200
syn 4 900 30 3 3/3/3 200/300/400

Yuanhong Li, et. al.
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Table 2: Results on the synthetic datasets. Saliency in the range [0, 1] is mapped to grey-scale [0, 255] linearly. For
the clustering with localized feature saliency, each image is a mapping of feature saliency of one cluster, where rows
and columns of pixels represent runs and features, respectively. The separated row pixels above an image represent
the true relevant features. The global feature saliency is illustrated in the same way.

Localized feature selection Global feature selection
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Table 3: Summary of UCI datasets

data Description N D c
wine wine recognition 178 13 3
wdbc Wisconsin diagnostic breast cancer 569 30 2

vehicle vehicle classification 846 18 4
zernike Zernike moments of digit images 2000 47 10
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Table 4: Cluster numbers and pseudo error rates for UCI datasets.

Localized feature selection Global feature selection
data error (std)(%) ĉ (std) error (std)(%) ĉ (std)
wine 2.1 (1.2) 3 (0) 2.4 (1.2) 3.3 (0.5)
wdbc 7.6 (0.6) 7.1 (0.7) 7.5 (1.2) 7.4 (0.8)

vehicle 44.6 (1.3) 9.2 (1.3) 45.4 (2.6) 10.5 (1.3)
zernike 44.9 (2.2) 15.3 (1.9) 47.6 (2.8) 16.7 (1.3)
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Table 5: Feature saliency. Each image is a mapping of feature saliency for a cluster, with exception that the highlighted
one represents the global feature saliency. Saliency values [0,1] are linearly mapped to grey-scale [0,255]. Each row
represents a run, and each column represents a feature.
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Table 6: Attributes for the Boston housing data.
Num. Var. Description
1 CRIM per capita crime rate by town
2 ZN land zoned for lots over 25,000 sq.ft.
3 INDS proportion of non-retail business acres per town
4 CHAS Charles River dummy variable
5 NOX nitric oxides concentration
6 RM number of rooms per dwelling
7 AGE proportion of units built prior to 1940
8 DIS distances to five Boston employment centres
9 RAD accessibility to radial highways
10 TAX full-value property-tax rate
11 PTRT pupil-teacher ratio by town
12 B (Bk − 0.63)2 where Bk is the proportion of blacks
13 LSTT % lower status of the population
14 MEDV Median value of owner-occupied homes in $1000’s
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Figure 2: Localized feature saliency on the Boston housing dataset. The number of objects grouped together are listed
with the group ID.
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