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Abstract
Document clustering without any prior knowledge or

background information is a challenging problem. In
this paper, we propose SS-NMF: a semi-supervised non-
negative matrix factorization framework for document clus-
tering. In SS-NMF, users are able to provide supervision
for document clustering in terms of pairwise constraints on
a few documents specifying whether they “must” or “can-
not” be clustered together. Through an iterative algorithm,
we perform symmetric tri-factorization of the document-
document similarity matrix to infer the document clusters.
Theoretically, we show that SS-NMF provides a general
framework for semi-supervised clustering and that existing
approaches can be considered as special cases of SS-NMF.
Through extensive experiments conducted on publicly avail-
able data sets, we demonstrate the superior performance of
SS-NMF for clustering documents.

1. Introduction
Document clustering is the grouping of text documents

into meaningful clusters in an unsupervised manner. It is
one of the most important tasks in text mining and has re-
ceived extensive attention in the data mining community re-
cently [6, 19, 38].

Information retrieval (IR) needs range from a specific
search at one end to an open ended browsing of the database
at the other [8]. A keyword-based search, where the user is
interested in retrieving all the documents that have an exact
match with the query keyword, is an example of a specific
search scenario. On the other hand in open-ended browsing,
the user generally has a broader perspective of the informa-
tion he/she is looking for and is interested in browsing and
navigating through the database. While traditional IR tech-
niques have been well developed for the specific search sce-
nario, they are ill-suited for providing a browsing capability
to the user. A good document clustering algorithm can pro-
vide a holistic view of the text corpus and hence overcome
the limitations of traditional IR techniques.

Document clustering methods in general can be catego-
rized into document partitioning (flat clustering) and ag-
glomerative (hierarchical) clustering. Partitioning methods
typically divide the documents in a given number of clus-
ters directly. Hierarchical clustering aims to obtain a hi-
erarchy of clusters by building a tree structure, that shows
how the clusters are related to each other. The clustering
result of the documents can be obtained by cutting the tree
at a desired level. One of the popular hierarchical docu-
ment clustering methods is the hierarchical agglomerative
clustering (HAC) that proceeds in a bottom-up fashion by
iteratively merging small clusters into larger ones [7, 35].
This is continued until all the documents get merged into
one single cluster at the root node of the tree. Variations
of HAC algorithm have been proposed that differ based on
the method adopted to compute the similarities between the
clusters. Some of the common methods to measure cluster
similarity are single-linkage, complete-linkage, and group-
average linkage. While, the first two use the maximum
and minimum distance between the clusters, respectively,
group-average linkage uses the cluster center distance. [14]
has studied the different types of similarity measures and
their effect on clustering accuracy.

Some of the widely applied methods in document parti-
tioning include k-means [12], probabilistic clustering using
the Naive Bayes or Gaussian mixture model [1, 28], etc. k-
means produces clusters that minimizes the sum of squared
distances between the data points and their corresponding
cluster centers. On the other hand, both naive Bayes and
Gaussian mixture model define a probabilistic cluster model
and try to find the model by maximizing the likelihood of
the data. The problems associated with these methods is
that they make a strict assumption on the distribution of the
document corpus. k-means assumes every document clus-
ter has a compact shape, the Naive Bayes model assumes
feature independence in the document corpus feature space,
and the Gaussian mixture model assumes that the density
of each cluster can be approximated by a Gaussian distribu-
tion. Since, the actual underlying distribution of the docu-
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ment corpus can be different, these methods are susceptible
to their a priori assumptions.

Recently, document clustering based on spectral cluster-
ing has emerged as a popular approach [9,11]. These meth-
ods model the documents as vertices of a weighted graph
with edge weights representing the similarity between two
documents. Clustering is then obtained by “cutting” the
graph vertices into different partitions. Partitioning of the
graph is obtained by solving an eigenvalue problem where
the clustering is inferred from the top eigenvectors. As
can be seen from the above discussion, document cluster-
ing has been extensively studied and various methods pro-
posed. However, accurately clustering documents without
domain-dependent background information, is still a chal-
lenging task.

In this paper, we propose a non-negative matrix fac-
torization (NMF) [23, 24] based framework to incorpo-
rate prior knowledge into document clustering. Under the
proposed semi-supervised NMF (SS-NMF) methodology,
user is able to provide pairwise constraints on a few docu-
ments specifying whether they “must” or “cannot” be clus-
tered together. We derive an iterative algorithm to perform
symmetric non-negative tri-factorization of the document-
document similarity matrix. The correctness of the algo-
rithm is proved by showing that the algorithm is guaran-
teed to converge. We also prove that SS-NMF is a general
and unified framework for semi-supervised clustering by es-
tablishing the relationship between SS-NMF and other ex-
isting semi-supervised clustering algorithms. Experiments
performed on publicly available text data sets demonstrate
the effectiveness of the proposed work.

2. Related Work
There have been prior efforts on using user provided

information to improve clustering. [17] proposed incorpo-
rating background knowledge into document clustering by
enriching the text features using WordNet1. In [21], some
words per class and a class hierarchy were sought from the
user in order to generate labels and build an initial text clas-
sifier for the class. A similar technique was proposed in
[27], where the user is made to select interesting words from
automatically selected representative words for each class
of documents. These user identified words were then used
to re-train the text classifier. Active learning approaches
have also found application in semi-supervised clustering.
[13] has proposed to convert a user recommended feature
into a mini-document which is then used to train an SVM
classifier. This approach has been extended by [31] which
adjusts SVM weights of the key features to a predefined
value in binary classification tasks. Recently, [18] presented
a probabilistic generative model to incorporate extended

1http://wordnet.princeton.edu

feedback that allows the user and the algorithm to jointly ar-
rive at coherent clusters that capture the categories of inter-
est to the user. [5, 20, 30] proposed methods where the user
provided class labels a priori to some of the documents.
These algorithms use the labeled data to generate seed clus-
ters that initialize a clustering algorithm, and use constraints
generated from the labeled data to guide the clustering pro-
cess. Proper seeding biases clustering towards a good re-
gion of the search space, while simultaneously producing a
clustering similar to the specified labels.

However, in certain applications, supervision in the form
of class labels may be unavailable. For example, complete
class labels may be unknown in the context of clustering
for speaker identification in a conversation [2], or cluster-
ing GPS data for lane-finding [34]. In some domains, pair-
wise constraints occur naturally, e.g., the Database of In-
teracting Proteins (DIP) data set contains information about
proteins co-occurring in processes, which can be viewed as
must-link constraints during clustering. Similarly, for doc-
ument clustering, user knowledge about which few docu-
ments are related or unrelated can be incorporated to im-
prove the clustering results. Moreover, it is easier for a
user who is not a domain expert to provide feedback in
the form of pairwise constraints than class labels, since pro-
viding constraints does not require the user to have signif-
icant prior knowledge about the categories in the data set.
Amongst the various methods proposed for utilizing user
provided constraints for semi-supervised clustering [3, 4],
two of the well-known include the semi-supervised kernel
k-means (SS-KK) [22] and semi-supervised spectral clus-
tering with normalized cuts (SS-SNC) [19]. While, SS-KK
transforms the clustering distance measure by weighted ker-
nel k-means with reward and penalty constraints to perform
semi-supervised clustering of data given either as vectors or
as a graph, SS-SNC utilizes supervision to change the clus-
tering distance measure with pairwise information by spec-
tral methods. The SS-NMF framework presented in this
paper, allows the user to provide pairwise constraints on a
small percentage of the documents. Specifically, these con-
straints specify whether two documents should belong to
the same cluster or should strictly belong to different clus-
ters.

3. Semi-supervised Non-negative Matrix Fac-
torization for Document Clustering

3.1. Model Formulation
The entire document collection is typically represented

using the vector space model [32] by a word-document ma-
trix X ∈ Rm×n where columns index the documents and
rows denote the words appearing in them. The documents
are treated as vectors with words as their features such that
an entry xfi in the matrix signifies the relevance of word
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f for document di, usually by the frequency of the word
appearing in the document.

We propose a semi-supervised NMF (SS-NMF) model
for document clustering. NMF has received much atten-
tion recently and proved to be very useful for applications
such as pattern recognition, text mining, multimedia, and
DNA gene expressions. It was initially proposed for “parts-
of-whole” decomposition [23, 24], and later extended to a
general framework for data clustering [10]. It can model
widely varying data distributions and accomplish both hard
and soft clustering simultaneously. When applied to the
word-document matrix X, NMF factorizes X into two non-
negative matrices [36],

X ≈ PQT (1)
where P ∈ Rm×k is cluster centroid, Q ∈ Rn×k is cluster
indicator, and k is the number of clusters.

In the proposed model, we perform symmetric non-
negative tri-factorization of the document-document simi-
larity matrix A = XT X ∈ Rn×n as,

A ≈ GSGT (2)
where G ∈ Rn×k is the cluster indicator matrix. An entry
gih in G gives the degree of association of document di with
cluster h. The cluster membership of a document is given
by finding the cluster with the maximum association value.
S ∈ Rk×k is the cluster centroid matrix that gives a compact
k × k representation of X.

Supervision is provided as two sets of pairwise con-
straints on the documents: must-link constraints CML and
cannot-link constraints CCL. Every pair of documents,
(di, dj) ∈ CML implies that di and dj must belong to the
same cluster. Similarly, all possible pairs (di, dj) ∈ CCL

implies that the two documents should belong to differ-
ent clusters. The constraints are accompanied by associ-
ated violation cost matrix W. An entry wij in this matrix
denotes the cost of violating the constraint between docu-
ments di and dj , if such a constraint exists, that is, either
(di, dj) ∈ CML or (di, dj) ∈ CCL. The model relies on
a distortion measure D : Rm → R, to compute distance
between documents. Assuming the text corpus consists of
k semantic concepts, the goal is to partition the set of doc-
uments into k disjoint clusters {Xh}kh=1, such that the to-
tal distortion between the documents and the corresponding
cluster representatives is (locally) minimized according to
the given distortion measure D, while constraint violations
are kept to a minimum.

3.2. Algorithm Derivation

We define the objective function of SS-NMF as follows:

JSS−NMF = min
S≥0,G≥0

‖Ã−GSGT ‖2 (3)

where Ã = A−Wreward + Wpenalty is affinity or similar-
ity matrix A with constraints Wreward = {wij |(di, dj) ∈

CML, s.t.yi = yj} and Wpenalty = {wij |(di, dj) ∈
CCL, s.t.yi = yj}, wij is the penalty cost for violating
a constraint between documents di and dj , and yi is the
cluster label of di. S ∈ Rk×k is the cluster centroid, and
G ∈ Rn×k is the cluster indicator. Equation (3) can be
re-written as:
JSS−NMF = min

S≥0,G≥0
‖(A−Wreward+Wpenalty)−GSGT ‖2

(4)
We propose an iterative procedure for the minimization of
equation (3) where we update one factor while fixing the
others. The updating rules are,

Sih ← Sih
(GT ÃG)ih

(GT GSGT G)ih

(5)

Gih ← Gih
(ÃGS)ih

(GSGT GS)ih

(6)

Thus, the SS-NMF algorithm for document clustering can
be illustrated in Algorithm 1.

Algorithm 1 SS-NMF Algorithm
INPUT: Document-document similarity matrix A, num-
ber of clusters k, constraint penalty matrix Wpenalty , and
constraint reward matrix Wreward

OUTPUT: Clusters {Xh}kh=1 with Yh = {i|di ∈ Xh}
METHOD:

1. Initialize S and G with non-negative values.

2. Construct Ã = A−Wreward + Wpenalty

3. Iterate for each i and h until convergence

(a) Cluster centroid

Sih ← Sih
(GT ÃG)ih

(GT GSGT G)ih

(b) Cluster indicator

Gih ← Gih
(ÃGS)ih

(GSGT GS)ih

3.3. Algorithm correctness and convergence

We now prove the theoretical correctness and conver-
gence of SS-NMF. Motivated by [29], we render the proof
based on optimization theory, auxiliary function and several
matrix inequalities.

3.3.1 Correctness
First, we prove the correctness of algorithm.
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1. Following the standard theory of constrained optimiza-
tion, we introduce the Lagrangian multipliers λ1 and
λ2 to minimize the lagrangian function,

L(S, G, λ1, λ2) = min
S≥0,G≥0

‖Ã−GSGT ‖2

−Tr(λ1ST )− Tr(λ2GT ) (7)

2. Based on the Kuhn-Tucker complementarity condi-
tion, ∂J

∂S
= 0 (8)

∂J

∂G
= 0 (9)

λ1 � S = 0 (10)

λ2 �G = 0 (11)
where � denotes the Hadamard product of two matri-
ces. Taking the derivatives, we obtain the following
two equations from equation (8) and equation (9), re-
spectively.

4GT ÃG− 4GT GSGT G + λ1 = 0 (12)

4ÃGS− 4GSGT GS + λ2 = 0 (13)

3. Applying the Hadamard multiplication on both sides
of equation (12) and equation (13) by S and G, re-
spectively, and using conditions of equation (10) and
equation (11), we can prove that : if S and G are a lo-
cal minimizer of the objective function in equation (7),
then the following equations are satisfied,

(GT ÃG)� S− (GT GSGT G)� S = 0 (14)

(ÃGS)�G− (GSGT GS)�G = 0 (15)

4. Based on the above two equations, we derive the pro-
posed updating rules of equation (5) and equation (6).

3.3.2 Convergence
Next, we prove the convergence. This can be done by mak-
ing use of an auxiliary function similar to that used in [23].
Due to space constraints, we give an outline of the proof
and omit the details.

1. Assuming L(S, S′) is an auxiliary function of J(S)
if L(S, S′) ≥ J(S) and L(S, S) = J(S), we mini-
mize a lower bound, set S(t+1) = arg minS L(S, S(t)),
then J(S(t)) = L(S(t), S(t)) ≥ L(S(t+1), S(t)) ≥
J(S(t+1)) . Thus J(S) is monotonically decreasing
and is bounded from up.

2. Similarly, assuming L(G, G′) is an auxiliary
function of J(G) if L(G, G′) ≥ J(G) and
L(G, G) = J(G), we minimize a lower bound,
set G(t+1) = arg minG L(G, G(t)), then J(G(t)) =
L(G(t), G(t)) ≥ L(G(t+1), G(t)) ≥ J(G(t+1)) . Thus
J(G) is monotonically decreasing and is bounded
from up.

3.4. Equivalence of SS-NMF and other
semi-supervised clustering methods

We now show that SS-NMF is a general and uni-
fied framework for semi-supervised clustering by es-
tablishing the relationship between SS-NMF and other
well-known semi-supervised clustering algorithms, i.e.,
semi-supervised kernel k-means (SS-KK) [22] and semi-
supervised spectral clustering with normalized cuts (SS-
SNC) [19]. In fact, both these algorithms can be considered
to be special cases of SS-NMF.

Proposition 1. Orthogonal SS-NMF clustering is equiv-
alent to SS-KK clustering.

Proof. The SS-NMF objective function is,

JSS−NMF = min
S≥0,G≥0

‖Ã−GSGT ‖2 (16)

The equation can be written as, JSS−NMF = ‖Ã −
GSGT ‖2 = ‖Ã − G′G′T ‖2 = Tr(Ã

T
Ã − 2G′T ÃG′ +

G′T G′) if let S = QT Q and G′ = GQT . Since Tr(Ã
T

Ã +
G′T G′) is a constant, the minimization of J becomes a
maximization problem as,

max
G′≥0

Tr(G′T ÃG′) s.t. G′T G′ = I (17)

The SS-KK objective function is [22],

JSS−KK =
k∑

h=1

∑
i∈Xh

‖φ(di)− φh‖2

−
∑

(di,dj)∈CML,
s.t.yi=yj

wij

+
∑

(di,dj)∈CCL,
s.t.yi=yj

wij (18)

where φ(·) is the kernel function and φh the centroid. Let
E be the matrix of pairwise squared Euclidean distances
among the data points, W the constraint matrix and G the
cluster indicator. Equation (18) becomes the minimization
of the following function,

min
G≥0

Tr(GT (E− 2W)G) s.t. GT G = I (19)

We can convert the minimization of equation (19) to a max-
imization of the problem,

max
G≥0

Tr(GT KG) s.t. GT G = I (20)

where K = A + W and A the similarity matrix.
It is clear that the objective function of SS-NMF (equa-

tion (17)) is equivalent to that of SS-KK (equation (20)) if
K = Ã. The G′ in equation (17) represents the same clus-
tering as G of equation (20) does.
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Proposition 2. Orthogonal SS-NMF clustering is equiv-
alent to SS-SNC clustering.

Proof. The objective function of SS-SNC is [19],

JSS−SNC =
k∑

h=1

gT
h (D̃− Ã)gh

gT
h D̃gh

=
k∑

h=1

zT
h (I− Ȧ)zh (21)

where Ã = A − Wreward − Wpenalty is the pairwise
similarity matrix with constraints, D̃ = diag(d̃1, ..., d̃n) is
the diagonal matrix, gh is the cluster indictor, scaled clus-

ter indicator vector zh = D̃
1/2

gh/‖D̃1/2
gh‖, and Ȧ =

D−1/2ÃD−1/2.
It can be shown that the minimization of equation (21)

becomes a maximization problem as,

max
Z≥0

Tr(ZT ȦZ) s.t. ZT Z = I (22)

Also, it can be seen that equation (17) is equivalent to
equation (22) if Ã = Ȧ. Moreover, the G′ in equation (17)
represents the same clustering as Z of equation (22) does.

From the above two proofs, we can see that the SS-NMF,
SS-KK, and SS-SNC are mathematically equivalent. How-
ever, notice that in SS-NMF, the matrix Ã might have some
negative values, which is not permitted in traditional NMF
[23, 24]. In this case, one possible solution is to perform
some normalization techniques to guarantee non-negative
values. Alternatively, we can simply relax the non-negative
constraint to allow negative values as in Semi-NMF [26].
In either of the approaches, the clustering result will not
get affected. In SS-NMF, the cluster indicator G′ is near-
orthogonal and can produce soft clustering results. The
cluster centroid S can provide good characterization of the
quality of data clustering because the residue of the ma-
trix approximation J = min ‖Ã − GSGT ‖ is smaller than
J = min ‖Ã − GGT ‖. On the other hand, for SS-KK and
SS-SNC, if input matrix is added with constraint weight W,
in order to ensure positive definiteness, certain additive con-
straints need to be enforced. Moreover, these constraints are
difficult to be relaxed. Also, the cluster indicator G or Z is
required to be orthogonal, leading to only hard clustering
results. Hence, both SS-KK and SS-SNC can be viewed as
special cases of SS-NMF with orthogonal space constraints.
Thus, SS-NMF essentially provides a general and flexible
mathematical framework for semi-supervised data cluster-
ing.

3.5. Advantages of SS-NMF
In this Section, we further illustrate the advantages of

SS-NMF using a toy data set shown in Figure 1a, which
follows an extreme distribution consisting of 20 data points
forming two natural clusters: two circular rings with 10 data
points each. Traditional unsupervised clustering methods,
such as (kernel) k-means, spectral normalized cut or NMF,

Table 1. Cluster indicator G of SS-KK and SS-NMF for
the toy data set.

G SS-KK SS-NMF
g1 1 0 0.2778 0.0820
g2 1 0 0.2977 0.0486
g3 1 0 0.4301 0.0009
g4 1 0 0.1295 0.0494
g5 1 0 0.1377 0.0021
g6 1 0 0.3845 0.0000
g7 1 0 0.1281 0.0001
g8 1 0 0.1426 0.0097
g9 1 0 0.3119 0.0023
g10 1 0 0.4691 0.0080
g11 0 1 0.0651 0.3959
g12 0 1 0.0599 0.4449
g13 0 1 0.1161 0.4108
g14 0 1 0.0978 0.2985
g15 0 1 0.0592 0.2506
g16 1 0 0.1220 0.1233
g17 0 1 0.1047 0.1735
g18 0 1 0.1503 0.2028
g19 0 1 0.1233 0.2866
g20 0 1 0.1181 0.3800

are unable to produce satisfactory results on this data set.
However, after incorporating knowledge from the user in
the form of constraints, we are able to achieve much better
results.

Unlike SS-SNC, SS-NMF maps the documents into a
non-negative latent semantic space. Moreover, SS-NMF
does not require the derived space to be orthogonal. Figures
1b and c show the data distributions in the two spaces for
SS-NMF and SS-SNC, respectively. Data points belong-
ing to the same cluster are depicted by the same symbol.
For SS-NMF, we plot the data points in the space of two
column vectors of G, while for SS-SNC the first two singu-
lar vectors are used. Clearly, in the SS-NMF space, every
data point takes non-negative values in both the directions.
Furthermore, in SS-NMF space, each axis corresponds to a
cluster, and all the data points belonging to the same cluster
are nicely spread along the axis. The cluster label for a data
point can be determined by finding the axis with which the
data point has the largest projection value. However, in the
SS-SNC space, there is no direct relationship between the
axes (singular vectors) and the clusters.

Table 1 shows the difference of cluster indicator between
the hard clustering of SS-KK and soft clustering of SS-
NMF. An exact orthogonality in SS-KK means that each
row of cluster indicator G has only one nonzero element,
which implies that each data object belongs to only 1 clus-
ter. The near-orthogonality of cluster indicator G in SS-
NMF relaxes this a bit, i.e., each data object could be-
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Figure 1. (a) An artificial toy data set consisting of two natural clusters (b) Data distribution in the SS-NMF subspace of the
two column vectors of G. The data points from the two clusters get distributed along the two axes. (c) Data distribution in
the SS-SNC subspace of the first two singular vectors. There is no relationship between the axes and the clusters.

long fractionally to more than 1 cluster. This can help
in knowledge discovery in the cases where the data point
is evenly projected along the different axes. For instance,
g16 = {0.1220, 0.1233} indicates that this data point may
belong to any one of the two clusters.

SS-NMF uses an efficient iterative algorithm instead of
solving a computationally expensive constrained eigen de-
composition problem as in SS-SNC. The time complexity
of SS-NMF is O(tkn2) where k is the number of clusters,
n is the number of documents, and t is the number of it-
erations. In fact, the time complexity is similar to that of
the classical SS-KK clustering algorithm. However, com-
pared to SS-KK, SS-NMF algorithm is simple as it only in-
volves some basic matrix operations and hence can be easily
deployed over a distributed computing environment when
dealing with large data sets. Another advantage in favor of
SS-NMF is that a partial answer can be obtained at interme-
diate stages of the solution by specifying a fixed number of
iterations.

4. Experiments and Results
In this Section, we empirically demonstrate the perfor-

mance of SS-NMF in clustering documents by comparing
it with well-established unsupervised and semi-supervised
clustering algorithms.

4.1. Data Description
We primarily utilize the data set used in [15] 2. Data sets

oh0 and oh5 are from OHSUMED collection [16], a sub-
set of MEDLINE database, which contains 233, 445 docu-
ments indexed using 14, 321 unique categories. Data set re0
is from Reuters-21578 text categorization collection Distri-
bution 1.0 [25]. Data set Fbis is from the Foreign Broadcast
Information Service data of TREC-5 [33].

2http://www.cs.umn.edu/˜han/data/tmdata.tar.gz

For the experiments, we mixed some of the data sets
mentioned above. Table 2 shows the details. These data
sets were created as follows:

1. Classes Graft-Survival and Phospholipids from
oh5 were mixed to form the Graft-Phos data set.

2. Data set England-Heart was created by mix-
ing classes England and Heart-V alve-Prosthesis
from oh0.

3. Interest-Trade was formed by mixing Interest and
Trade classes of re0 data set.

4. We randomly selected 2, 3, 4, and 5 classes from Fbis
to form data sets Fbis2, Fbis3, Fbis4 and Fbis5, re-
spectively.

We performed feature selection on the words according to
[37] by retaining the top 10% of the words based on mutual
information in each of the data sets.

Table 2. Summary of data sets used in the experiments.
Data sets No. of clusters No. of words No. of docs

Graft-Phos 2 2432 293
England-Heart 2 2504 375
Interest-Trade 2 2682 438

Fbis2 2 2000 200
Fbis3 3 2000 300
Fbis4 4 2000 400
Fbis5 5 2000 500

4.2. Methodology and Evaluation Metrics
We evaluate the clustering results using confusion matrix

and the accuracy metric AC. Each entry (i, j) in the confu-
sion matrix represents the number of documents in cluster
i that belong to true class j. The AC metric measures how
accurately a learning method assigns labels ŷi to the ground
truth yi, and is defined as,
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AC =
∑n

i=1δ(yi, ŷi)
n

. (23)

where n denotes the total number of documents in the ex-
periment, and δ is the delta function that equals one if
ŷi = yi, else its zero. Since iterative algorithm is not guar-
anteed to find the global minimum, it is beneficial to run
the algorithm several times with different initial values and
choose one trial with a minimal objective value. In real-
ity, usually a few number of trials is sufficient. In the case
of NMF and k-means, for a given k, we conducted 20 test
runs. 3 trials are performed in each of the 20 test runs and
final accuracy value is the average of all the test runs.

4.3. Clustering Results
We compare the performance of SS-NMF model on all

the 7 data sets with the following 6 clustering methods: (1)
k-means, (2) kernel k-means, (3) spectral normalized cuts,
(4) NMF, (5) SS-KK, (6) SS-SNC. The first four methods
are the most popular unsupervised data clustering methods,
whereas SS-KK and SS-SNC are the representative semi-
supervised ones. Through these comparison studies, we
demonstrate the relative position of SS-NMF with respect
to unsupervised and semi-supervised approaches to docu-
ment clustering.

We first perform comparison of the 4 unsupervised
clustering approaches with SS-NMF having pairwise con-
straints on only 3% pairs of all the possible document pairs,
which is (total docs

2 ). Each of the constraints were generated
by randomly selecting a pair of documents. If both the
documents have the same class label (must-link) , then the
constraint is assigned maximum weight in the document-
document similarity matrix. On the other hand, if they
belong to different classes (cannot-link), then the mini-
mum weight in the similarity matrix is used for the con-
straint. For kernel k-means, we used a Gaussian (exponen-
tial) kernel K(x, y) = exp(−‖x − y‖2/2σ2), with vari-
ance σ = 0.00001 for 2 clusters and σ = 0.01 for more
than 2 clusters. In Table 3, we compare the algorithms on
all the data sets using AC values. The performance of the
first three methods is similar with NMF proving to be the
best amongst the unsupervised methods. However, the ac-
curacy of NMF greatly deteriorates and is unable to pro-
duce meaningful results on data sets having more than 2
clusters. On the other hand, the superior performance of
SS-NMF is evident across all the data sets. We can see that
in general a semi-supervised method can greatly enhance
the document clustering results by benefitting from the user
provided knowledge. Moreover, SS-NMF is able to gen-
erate significantly better results by quickly learning from
the few pairwise constraints provided. Table 4, demon-
strates the performance of SS-NMF when varying amounts
of pairwise constraints were available a priori. We report
the results in terms of the confusion matrix C and the clus-

ter centroid matrix S. As the available prior knowledge in-
creases from 0% to 5%, we can make the following two
key observations. Firstly, the confusion matrices tend to
become perfectly diagonal indicating higher clustering ac-
curacy. Second observation pertains to the cluster centroid
matrix S which represents the similarity or distance between
the clusters. Increasing values of the diagonal elements of S
indicate higher inter-cluster similarities. As expected, when
the amount of prior knowledge available is more, the per-
formance of the algorithm clearly gets better.

In Figure 2a, the sparsity pattern of a typical document-
document matrix A = XT X (England-Heart in the figure)
before clustering is shown. The SS-NMF algorithm is ap-
plied to the modified similarity matrix Ã. Document clus-
tering leads to re-ordering of the rows and columns of the
matrix. Figures 2b and c, show the Ã matrices for England-
Heart and Fbis5 data sets after clustering with 5% pairwise
constraints. Document clusters are indicated by the dense
sub-matrices in these matrices.

(a) (b) (c)
Figure 2. (a) Typical document-document matrix
(shown here England-Heart) before clustering (b)
England-Heart similarity matrix after clustering with
SS-NMF (c) Fbis5 similarity matrix after clustering with
SS-NMF.

We now compare SS-NMF with the other two semi-
supervised clustering approaches. As before, for SS-KK,
a Gaussian kernel was used. In Figures 3 and 4, we plot the
AC values against increasing percentage of pairwise con-
straints available, for the algorithms on all the data sets. On
the whole, all three algorithms perform better as the per-
centage of pairwise constraints increases. While the perfor-
mance of SS-KK is close to that of SS-SNC on the data sets
in Figure 3, it is clearly left out of the race completely in
Figure 4. This is mainly because of the fact that SS-KK is
unable to maintain its accuracy when producing more than
2 clusters. While, the performance of SS-SNC is head-to-
head with SS-NMF on Fbis2 and Fbis3, it is consistently
outperformed by SS-NMF on the rest of the data sets. An-
other noticeable fact is that the curve for SS-KK and SS-
SNC might take a slow rise in some cases indicating that
they need more amount of prior knowledge to improve the
performance. Comparatively, SS-NMF gets better accuracy
than the other two algorithms even for minimum percentage
of pairwise constraints.
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Table 3. Comparison of document clustering accuracy between k-means, kernel k-means, spectral normalized cuts (SNC),
NMF and, SS-NMF with 3% constraints.

Data set Graft-Phos England-Heart Interest-Trade Fbis2 Fbis3 Fbis4 Fbis5
k-means 0.6849 0.7108 0.7228 0.5650 0.4728 0.4620 0.4180

kernel k-means 0.7986 0.7147 0.7420 0.5700 0.5533 0.5525 0.5140
SNC 0.6553 0.6320 0.7032 0.9900 0.6367 0.5975 0.5420
NMF 0.8157 0.7840 0.9566 0.9950 0.6533 0.6125 0.5900

SS-NMF 0.9932 0.9973 1.0000 1.0000 0.8833 0.8775 0.7520

Table 4. The comparison of confusion matrix C and cluster centroid matrix S of SS-NMF for different percentages of
document pairs constrained.

% of Comparison Graft-Phos England-Heart Interest-Trade Fbis5
constraints matrix data set data set data set data set

0%

C

116 21 181 81 215 15 1 1 4 1 4
33 123 0 113 4 204 84 95 0 0 1

14 1 11 1 0
0 0 0 96 3
1 3 85 2 92

S

0.7771 0 1.0364 0 2.2788 0 1.0695 0 0 0 0
0 0.7733 0 1.1500 0 2.0855 0 0.8690 0 0 0

0 0 1.0392 0 0
0 0 0 0.87 0
0 0 0 0 1.0416

1%

C

130 3 181 31 216 1 92 17 0 8 0
19 141 0 163 3 218 0 0 22 0 0

0 0 64 0 1
0 0 1 89 0
8 83 13 3 99

S

0.9143 0 1.2164 0 2.6920 0 2.5203 0 0 0 0
0 0.9442 0 1.5346 0 2.4075 0 2.4751 0 0 0

0 0 2.4251 0 0
0 0 0 2.6532 0
0 0 0 0 2.8233

3%

C

147 0 193 0 219 0 55 0 0 7 0
2 144 1 181 0 219 33 99 0 0 0

0 0 0 0 0
0 0 90 89 0
72 1 10 4 100

S

1.2317 0 2.5813 0 3.3250 0 4.2578 0 0 0 0
0 1.3005 0 2.7989 0 3.7290 0 4.6787 0 0 0

0 0 4.2349 0 0
0 0 0 4.0898 0
0 0 0 0 4.0951

5%

C

149 0 194 0 219 0 100 0 0 0 0
0 144 0 181 0 219 0 100 0 0 0

0 0 100 0 0
0 0 0 100 0
0 0 0 0 100

S

1.6094 0 3.4279 0 4.1829 0 6.5171 0 0 0 0
0 1.5981 0 2.5649 0 4.5167 0 6.3111 0 0 0

0 0 6.0427 0 0
0 0 0 6.7312 0
0 0 0 0 5.9222
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Figure 3. Comparison of document clustering accuracy between SS-KK, SS-SNC, and SS-NMF for different percentages of
document pairs constrained (a) Graft-Phos (b) England-Heart (c) Interest-Trade data set.

5. Conclusions

We presented SS-NMF: a semi-supervised approach for
document clustering based on non-negative matrix factor-
ization. In the proposed framework, users are able to pro-
vide supervision in terms of must-link and cannot-link pair-
wise constraints on the documents. We derived an itera-
tive algorithm to perform symmetric tri-factorization of the
document-document similarity matrix. We have proved that
SS-NMF provides a general framework for semi-supervised
clustering and that existing approaches can be consid-
ered as special cases of SS-NMF. Empirically, we showed
that SS-NMF outperforms 6 well-established unsupervised
and semi-supervised clustering methods in clustering docu-
ments using publicly available text data sets.
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Figure 4. Comparison of document clustering accu-
racy between SS-KK, SS-SNC, and SS-NMF for differ-
ent percentages of document pairs constrained (a) Fbis2
(b) Fbis3 (c) Fbis4 and (d) Fbis5 data sets.
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