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ABSTRACT

Based on the theory of Markov Random Fields, a Bayesian regu-
larization model for diffusion tensor images (DTI) is proposed in
this paper. The low-degree parameterization of diffusion tensors in
our model makes it less computationally intensive to obtain a max-
imum a posteriori (MAP) estimation. An approximate solution to
the problem is achieved efficiently using hierarchical Markov Chain
Monte Carlo (HMCMC), and a loopy belief propagation algorithm
is applied to a coarse grid to obtain a good initial solution for hierar-
chical MCMC. Experiments on synthetic and real data demonstrate
the effectiveness of our methods.

Index Terms— Diffusion Tensor Images, Image Restoration,
Bayesian Models, Markov Chain Monte Carlo

1. INTRODUCTION

Diffusion tensor imaging (DTI) enables the indirect inference of
white matter microstructures by reconstructing local diffusion dis-
placement probability density functions for water molecules from lo-
cal measurements. When following a 3D Gaussian distribution, this
probability density function can be described with a diffusion tensor
which is a 3×3 symmetric positive semidefinite matrix whose eigen-
values and eigenvectors characterize underlying fiber orientation and
anisotropy. A diffusion tensor is inherently related to the covariance
matrix of the Gaussian distribution, and can be reconstructed from
diffusion coefficients measured locally along several gradient direc-
tions. Due to inherent noise of DTI measurements, the reconstructed
tensors are inaccurate, giving rise to possibly erroneous results in the
derived white matter fiber orientation which further affects the accu-
racy of fiber tracking. There is an extensive literature on different
regularization techniques [1, 8, 10].

We would like to focus on the statistically sound Bayesian
framework for tensor field regularization. Prior distributions in
the Bayesian framework are often modeled using Markov Random
Fields (MRFs) with pairwise interactions. Bayesian regularization
by means of the maximum a posteriori (MAP) estimation is well-
known in the statistical literature, initiated in the 1980s by Geman
and Geman [4]. Bayesian regularization of the primary directions of
diffusion tensors has been developed in Poupon et al. [10]. Similar
work for full diffusion tensors following a multivariate Gaussian
distribution was proposed in Martin-Fernandez et al. [7]. The gen-
eralization of such work to Markov random tensor fields with more
generic distributions has been presented in Frandsen et al. [3]. It
should be noted that the MAP estimation in previous work was
achieved using either locally iterative optimization which can be
easily trapped in locally optimal solutions or generic Markov Chain
Monte Carlo sampling [5] which needs a large number of iterations
to converge.

In this paper, we introduce more advanced techniques for com-
puting the MAP estimation of the tensor field. We first develop a
Bayesian model based on a low-degree parameterization of diffu-
sion tensors. This model makes MAP estimation less computation-
ally intensive. We further develop a hierarchical MCMC technique
that dynamically partitions the original state space into a hierarchy of
nested smaller state spaces with an increasing resolution. It is able to
converge to better approximate solutions than conventional MCMC
in a relatively small number of iterations. Loopy belief propagation
(LBP) [9, 6] is applied to a coarse grid of diffusion tensors to quickly
obtain a good initial solution for hierarchical MCMC. LBP is an ef-
ficient deterministic technique for MRF based optimization. Exper-
imental results confirm that our revised Bayesian model as well as
our MAP estimation techniques are both efficient and effective.

2. BASIC MODEL

Let W be a finite set of voxels in the white matter. We denote the
diffusion tensor field reconstructed from measured diffusion coef-
ficients by Σ = {Σw : w ∈ W}, where Σw is a 3 × 3 positive
semidefinite matrix at voxel w. Let λw1 ≥ λw2 ≥ λw3 ≥ 0 be
the eigenvalues of Σw with corresponding orthonormal eigenvectors
uw1, uw2, and uw3. The fractional anisotropy (FA) index is defined

as: FAw =

√
1
2

∑3
i=1(λwi−λ̄w)2

1
3

∑3
i=1 λ2

wi

, and the normalized diffusion ten-

sor at w is: Σ̄w = Σw/λ̄w, where λ̄w = 1
3
(λw1+λw2+λw3). Since

most white matter voxels do not have neural fiber crossings, the reg-
ularized tensors should most likely be of “cigar” type, which means
λw2 = λw3. For this type of tensors, we define σw = λw2/λw1 as
the eigenratio of Σ̄w . It is obvious that there is a one-to-one map-
ping between eigenratios and FA values, and both of their ranges
are (0,1]. These two quantities are closely related since the larger
the eigenratio is, the smaller the FA value is. Moreover, a normal-
ized cigar-type tensor at w can be uniquely determined by the pri-
mary direction of the tensor Mdw = uw1 and the eigenratio σw,
i.e. Σ̄w = Σ̄w(Mdw, σw). These two variables are crucial to fiber
tracking. We further define the primary direction field as Md =
{Mdw : w ∈ W} and eigenratio field as σ = {σw : w ∈ W}.

The diffusion function at w is denoted as fw . For a given di-
rection u on the unit sphere, fw(u) = λ̄u′Σ̄w(Mdw, σw)u. Let
F = {fw : w ∈ W} be the field of diffusion functions. Also de-
note the set of measured diffusion coefficients as F = {Fw(ui) :
i = 1, . . . , k, w ∈ W}, where u1, . . . , uk are the directions in
which the signal intensity is measured. F is determined by the equa-
tion Sw(ui) = Sw0 ∗ exp(−bFw(ui)) and estimated by the least
square approximation. Here Sw0 is the signal intensity without gra-
dient, Sw(ui) is the measured intensity on direction ui and b is the
diffusion-encoding strength factor. To reduce the noise level of a
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given data set, we aim to achieve the MAP estimation p(F|F ). Ac-
cording to the Bayes’ theorem, we have p(F|F ) ∝ p(F |F)p(F).
Therefore, performing regularization is equivalent to solving the fol-
lowing optimization problem

arg max
Md, σ

p(F |F)p(F). (1)

Our prior and likelihood models are revised versions of those in
Frandsen et. al [3]. The prior distribution P (F) is defined to be

p(F) =
1

Zα
exp

⎛
⎝−α

∑
w∼w′

g(‖Σ̄w(Mdw, σw) − Σ̄w′ (Mdw′ , σw′ )‖)
⎞
⎠ ,

(2)
where Zα is a normalizing constant and α > 0. ‖ • ‖ represents
the Frobenius norm of a matrix, and ∼ means w and w′ are direct
neighbors. To choose an appropriate function g, outlier suppression
should be taken into account. So we set g(x) = c−c∗exp(−x2/K)
with constant parameters c and K.

A well-known assumption is that the raw signal intensity follows
a Racian-distribution. Thus the noise on measured diffusion coeffi-
cients at each voxel is independently and normally distributed([3]).
The covariance of these distributions may be varying at different
voxels. We define such a covariance as hw = exp(2bλ̄w)+1

(b∗SNR0)2
, where

SNR0 is the signal-to-noise ratio of the signal intensity without any
gradient. This is a revised version of the function h(fw(μ)) in [3].
Their choice of h may result in the preference of spherical (isotropic)
tensors during MAP estimation while ours using the average eigen-
value does not have such a bias. Therefore, at each voxel w and
direction μ, we have:

p(Fw(μ)|F) =
1√

2πhw

exp

(
− (Fw(μ) − fw(μ))2

2hw

)
(3)

Then the likelihood p(F |F) is formulated as

p(F |F) =
∏

w∈W

(
1√

2πhw

)k

exp

(
−1

2

k∑
i=1

(Fw(ui) − fw(ui))
2

hw

)
,

(4)

Now we are ready to solve the optimization problem (1) follow-
ing the above prior and likelihood models. Set

Ew
1 (Σ̄w) =

k∑
i=1

(
ln(2πhw) +

(Fw(ui) − λ̄u′iΣ̄wui)
2

hw

)
,

and
Eww′

2 (Σ̄w, Σ̄w′ ) = 2αg(‖Σ̄w − Σ̄w′‖).
Since Σ̄w is uniquely determined by the primary direction and eigen-
ratio, Ew

1 is a function of both Mdw and σw. Similarly, Eww′
2 is a

function of Mdw, Mdw′ , σw and σw′ . We also define ETotal =∑
w∈W Ew

1 +
∑

w∼w′ Eww′
2 . Therefore, ETotal is a function of

Md and σ at all voxels. The optimization problem in (1) becomes

arg min
Md, σ

ETotal (5)

3. MULTILEVEL TENSOR REGULARIZATION

Markov Chain Monte Carlo has been traditionally adopted for solv-
ing the optimization problem in (4). Each step of this method needs
to sample a normalized cigar tensor from a proposal distribution.
Sampling positive semidefinite matrices in the continuous tensor
space is time-consuming, and MCMC has a slow convergence rate.

Define the resolution index RA of a set A with norm ‖ • ‖ as

RA = min{‖a − a′‖ : a 	= a′ and a, a′ ∈ A}. (6)

We say a set is of high resolution when its resolution index is small.
A higher resolution of the tensor state space gives rise to slower con-
vergence of the Markov chain while performing MCMC sampling.
Our effort is to overcome this obstacle by means of a multilevel tech-
nique for MCMC. As stated in Section 2, a diffusion tensor can be
uniquely defined by its primary direction and eigenratio. The key
idea is that a tensor space at a low level is generated by a low-
resolution primary direction space and a low-resolution eigenratio
space. At level l, we denote the state space of primary directions as
M l and that of eigenratios as ERl. Then the optimization problem
at this level is formulated as

arg min
Md, σ

ETotal, ∀w ∈ W, Mdw ∈ M l
w, σw ∈ ERl

w. (7)

Our multilevel coarse-to-fine regularization is summarized as
follows:
1) At Level = 1, let ICOS be an icosahedron with vertices
on a unit sphere, and two of its vertices lie on the z axis of
the coordinate system. At any voxel w, Ml

w is set to be {p :
p is a vertex of ICOS and z(p) > 0}, and ERl

w is defined as
{ 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
} . The resolution indices of this level are

RM1
w

≈ 1.05 and RER1
w

= 0.125. Perform the loopy belief
propagation algorithm detailed in Section 4 to obtain a good initial
primary direction and eigenratio at every voxel.
2) Level update: Level = Level + 1. Suppose the new level is l.
At voxel w, suppose the current state is (Mdw, σw). Define a circle
on the unit sphere to be

Cw = {u : u ∈ unit sphere S2 and u ∈ B(Mdw, s ∗ R
Ml−1

w
)},

where B(Mdw, s ∗ R
Ml−1

w
) is a ball centered at Mdw with radius

s ∗ R
Ml−1

w
. Here s is a scaling factor. It can be proven mathemati-

cally that s ≥ √
3/3 is necessary. M l

w and ERl
w are defined as fol-

lows. Determine a set PTw which consists of six points uniformly
distributed on the circle Cw. M l

w = Mdw ∪ PTw. ERl
w is a set

of seven points which divide [σw − 1
2
R

ERl−1
w

, σw + 1
2
R

ERl−1
w

] into
eight uniform segments. Thus, the tensor state space for the current
level l is

T l = {Σ̄w(Mdw, σw)|Mdw ∈ M l
w, σw ∈ ERl

w, w ∈ W}.

3) Traverse the voxels at the current level in a sequential order. When
updating tensor Σ̄w , randomly select a normalized diffusion tensor
Σ̄′w in the constructed tensor space, and use it to replace Σ̄w with
probability β, where

β = exp(min{E(Σ̄w) − E(Σ̄′w), 0}),

E(Σ̄w) = Ew
1 (Σ̄w) +

∑
w∼w′

Eww′
2 (Σ̄w , Σ̄w′ ).

4) If the stopping criteria (which could be a time limit, a number of
sweeps, etc.) for the current level have been satisfied, goto 2) unless
the highest level has been reached; otherwise, goto 3).

As seen in the above steps, the state space at every level always
contains very few candidates, which accelerates the moving speed
of Markov chain, and saves both time and memory. In practice, we
typically use 6-10 levels in the above multilevel regularization.
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4. LOOPY BELIEF PROPAGATION

Quickly obtaining a good initial solution is of great importance to
multilevel regularization in Section 3. We chose to achieve this goal
through belief propagation [9, 6, 2] which is widely used for MAP
estimation to MRF problems. This algorithm is iterative and delivers
messages among neighboring nodes in parallel during each iteration.
Each message is a vector whose dimension is equal to the number
of distinct states in a discrete state space. For a graph without any
loops, belief propagation guarantees the optimal solution in a finite
number of iterations. For a graph with loops, the same algorithm,
which is now called loopy belief propagation (LBP), converges to a
good approximation of the optimal solution [6].

Parallel update of messages in BP leads to excessive memory
usage since all messages from one iteration need to be saved for the
next iteration. To improve the space complexity, we reduce both
the number of candidates in the state space and the number of mes-
sages. Since our prior distribution prefers similar primary directions
at neighboring voxels, we take advantage of this to establish our
coarsened LBP model. To reduce the number of messages, we di-
vide the voxel set into 2× 2× 2 blocks and only maintain messages
among blocks. We denote the block set by G. For any block g ∈ G,

Eg
G1 =

∑
w∈g

Ew
1 +

∑
w∼w′

w,w′∈g

Eww′
2 , Egg′

G2 =
∑

w∼w′
w∈g

w′∈g′

Eww′
2 . (8)

It is straightforward to prove that

ETotal =
∑
g∈G

Eg
G1 +

∑
g∼g′

Egg′
G2 . (9)

To reduce the size of the state space, we only optimize the primary
directions of the tensors using LBP. Voxels in the same block have
the same primary direction, but they still keep their original eigen-
ratios computed from the raw data. From (9), we formulate the fol-
lowing new optimization problem,

arg min
Mdg

(
∑
g∈G

Eg
G1(Mdg) +

∑
g∼g′

Egg′
G2 (Mdg, Mdg′)), (10)

which can be solved approximately by LBP. An additional technique
for saving both the computation time and space cost by half is color-
ing the blocks with black and white. Adjacent blocks have different
colors. The messages from black and white blocks are updated al-
ternatively in consecutive iterations.

Denote the blockwise messages by MG. The block-based LBP
is summarized as follows:
1) Devide the dataset into 2×2×2 blocks, and color the blocks with
black and white. Initialize all messages MG0

gg′ = 0 for g ∼ g′.
2) Update MGt

gg′ iteratively from t = 1 to T as follows. The update
is only performed on black blocks when t is even and white blocks
when t is odd.

MGt
gg′ = min

Mdg

(Eg
G1(Mdg)+Egg′

G2 (Mdg, Mdg′)+
∑

k �=g′,k∼g

MGt−1
kg ).

3) Compute the optimal state Md∗g for each block g:

Md∗g = arg min
Mdg

{Eg
G1(Mdg) +

∑
k∼g

MGcurrent
kg },

where MGcurrent
kg is the latest version of the message propagated on

the edge between k and g.
4) For each voxel w ∈ g, set Md∗g as its initial primary direction
and choose an initial eigenratio closest to the raw tensor’s eigenratio
from { 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
}. Start the multilevel MCMC described in

Section 3.

5. RESULTS

Our first experiment is based on synthetic data. Figure 1 contains
three images corresponding to the initial, noisy and regularized heli-
cal tensor field whose anisotropic elements are colored in red. Figure
1(b) shows the tensor field after Gaussian noise has been added onto
both the primary direction and the smaller eigenvalue of the normal-
ized cigar-type tensors. The covariance of the noises were set to 0.05
radian and 0.1, respectively. We further generated synthetic DTIs of
this noise-corrupted tensor field for their use in our Bayesian reg-
ularization model. Figure 1(c) demonstrates that our regularization
method can remove more than 97% of the noise, and thus, is very
effective.

We have also applied our regularization algorithm on noisy
real DTI data. The resolution of the DTI is 256x256x40, and the
diffusion-encoding strength factor b = 1000. In our regularization
model, we set α = 3.0, c = 1 and K = 3 (see eq. (2)). To verify
our method’s performance, we compare the results of tractography
of well-known fibers from the original noisy data and the processed
one using our regularization method. Figure 3(a) and (b) show the
fiber tracts that pass through a Region of Interest (ROI) defined on
the center sagittal slice of the corpus callosum. In the regularized
DTI data, the extracted fiber bundles correctly pass through the cor-
pus callosum ROI laterally making a U-shaped structure, and finally
end at the cortex dorsoventral along both sides of the hemispherical
cleft, as shown in Figure 3(b). In the original noisy data, the same
fiber tracking procedure, however, largely fails in determination
of the correct tracts, as shown in Figure 3(a). Figure 3(c) and (d)
show the cingulum fiber tracts extracted from the noisy and regular-
ized DTI data, respectively. By defining ROIs, the cingulum fiber
tracts can be cleanly extracted from the regularized data as shown
in Figure 3(d). However, in the original noisy data, there are many
short spurious fibers along the entire tract as shown in Figure 3(c).
These comparisons clearly demonstrate the effectiveness of our
regularization method.

Fig. 1. (a) A synthetic tensor field with anisotropic elements shown
in red. (b) Noise-corrupted version of the tensor field in (a). (c)
Regularized version of the tensor field in (b).

We further investigated the running time and convergence be-
havior of our regularization method on the aforementioned real DTI
data. A comparison of convergence behavior between conventional
MCMC and our Hierarchy MCMC (HMCMC) is shown in Figure 2.
Their initial tensor fields are installed by the same LBP algorithm.
We maintain six levels in our HMCMC, and the number of sweeps at
each level is respectively set to 100,150,50,50,20,20. The curve for
HMCMC shows the objective function (minus log probability den-
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Fig. 2. Convergence behavior of MCMC and Hierarchy MCMC.
Minus log probability density is shown as a function of running time
on an Intel Pentium D 3.0GHz processor.

# LBP iterations 5 10 15 20
LBP run time(s) 9 18 28 37
# MCMC sweeps 20 35 41 43
MCMC run time(s) 54 93 109 114
saves(s) 45 75 81 77

Table 1. Performance comparison between LBP and pure MCMC
on an Intel Pentium D 3.0GHz processor.

sity) drops rapidly at the first few sweeps of each level, and it even-
tually converges to a better approximate solution than conventional
MCMC.

Table 1 justifies the use of LBP to generate an initial solution.
It compares the performance between LBP and pure MCMC at the
first level. In pure MCMC, we initialize the tensor at each voxel
w with the one in the discrete state space that minimizes Ew

1 . In
this comparison, the number of iterations (sweeps) and the time to
reach the same value of the objective function are given in the same
row. We can see that running LBP 15 iterations saves more than 80
seconds.

6. CONCLUSION

In this paper, we have presented a Beyesian regularization model for
DTIs solved using MAP. This model introduces a low-degree pa-
rameterization of diffusion tensors that make MAP estimation less
expensive. The hierarchical MCMC algorithm we presented is a
much improved version of MCMC and it is able to converge to better
approximate solutions with lower energies. We also use LBP on a
coarse grid to install a good initial solution for hierarchical MCMC.
Experiments demonstrated the effectiveness of our methods.
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