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Brain Structure Segmentation from MRI by
Geometric Surface Flow
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We present a method for semiautomatic segmentation of brain structures such as thalamus from MRI images based on the con-
cept of geometric surface flow. Given an MRI image, the user can interactively initialize a seed model within region of interest.
The model will then start to evolve by incorporating both boundary and region information following the principle of variational
analysis. The deformation will stop when an equilibrium state is achieved. To overcome the low contrast of the original image
data, a nonparametric kernel-based method is applied to simultaneously update the interior probability distribution during the
model evolution. Our experiments on both 2D and 3D image data demonstrate that the new method is robust to image noise and
inhomogeneity and will not leak from spurious edge gaps.
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1. INTRODUCTION

Thalamus is the relay center for nerve impulses in the brain.
It mediates communication among sensory, motor, and as-
sociative brain regions. Axons from almost every sensory
system connect here as the last site before the information
reaches the cerebral cortex. Information received from the di-
verse brain regions is passed on to the cortex through the tha-
lamus. Anatomically, thalamus is the largest, most internal
structure of the diencephalon consisting of dual lobe masses
of gray matter. It is located at the rostral end of the mid-
brain on each side of the third ventricle. Each lobe is about
4 centimeters. Motor nuclei of the thalamus receive signals
from the striatum and cerebellum and project into the mo-
tor and premotor areas of the cerebral cortex. The thalamus
play a major role in the regulation of consciousness, alert-
ness, arousal, and attention and is thus considered part of
the limbic system.

Thalamus segmentation has become more and more es-
sential for a wide range of clinical and research applica-
tions. For example, thalamus changes in terms of volume
and intensity are involved in a large number of diseases, such
as schizophrenia, Parkinson’s disease and multiple sclerosis,
and so forth. Manual segmentation is very labor intensive
and the result is not reproducible. On the other hand, dis-
crete methods such as thresholding or region growing are not

reliable because of the low contrast and discontinuous edges
in the MRI images of thalamus.

In this paper, we present a new semiautomatic framework
for thalamus segmentation based on the concept of geomet-
ric surface flow. Unlike previous methods with edge infor-
mation only, we apply a nonparametric kernel-based method
that can simultaneously update the interior region statis-
tics along with the boundary shape evolution. By integrating
both boundary and region information, the new method is
robust to image noise and inhomogeneity and will not leak
from spurious edge gaps.

2. ACTIVE CONTOURS AND MEDICAL IMAGE
SEGMENTATION

Segmenting structures from medical images and reconstruct-
ing a compact geometric representation of these structures
is difficult due to the sheer size of the datasets and the com-
plexity and variability of the anatomic shapes of interest. Fur-
thermore, the shortcomings typical of sampled data, such as
sampling artifacts, spatial aliasing, and noise, may cause the
boundaries of structures to be indistinct and disconnected.
The challenge is to extract boundary elements belonging to
the same structure and integrate these elements into a co-
herent and consistent model of the structure. Among var-
ious segmentation techniques, active contours/deformable
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models have been very successful since their invention in
late 80’s. The mathematical foundation of deformable mod-
els stems from the confluence of geometry, physics, and ap-
proximation theory. Terzopoulos pioneered the theory of
continuous (multidimensional) deformable models based
on Lagrangian dynamics [1] and formulated deformation
energies for generalized splines with controlled continuity
[1]. Kass et al. [2] introduced the active contour model or
“snake,” a deformable model which is essentially a 2D spline
that minimizes an internal deformation energy subject to ex-
ternal forces derived from images. Later, a voluminous litera-
ture on deformable models appeared in computer vision, and
especially in the field of medical image analysis [3–9]. For a
collection of seminal works, see [10, 11].

3. THALAMUS SEGMENTATION BY GEOMETRIC
SURFACE FLOW

3.1. Geometric surface flow

Our new thalamus segmentation framework is based on the
concept of geometric surface flow. The general formulation
of the geometric surface flow is the following initial-value dy-
namical system of nonlinear PDEs:
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where F is the speed function, t is the time variable, k and
k′ are the surface curvature and its derivative at the point
�p, �s0(�p) is the initial surface, �n is the surface normal vector.
Equation (1) can be either directly provided by the user, or
more generally, obtained as a gradient descent flow of the
Euler-Lagrange equation of certain energy functionals by the
calculus of variations.

In general, there are two approaches to numerically sim-
ulate PDEs such as (1): explicit Lagrangian approach or im-
plicit level-set approach. Implicit level-set methods [3, 6] are
becoming popular recently mainly because of their ease in
handling topology changes, however since all the compu-
tations are conducted in a higher dimension, the compu-
tational cost tends to be quite expensive. In this paper, we
take the explicit Lagrangian approach to simulate the sur-
face flow. In particular, we apply the new framework we re-
cently proposed [12, 13]. In our new framework, the geom-
etry and topology of the model are always explicitly repre-
sented throughout the simulation process. To ensure the reg-
ularity of the model and the stability of the numerical in-
tegration process, powerful Laplacian tangential smoothing,
along with commonly used mesh optimization techniques,
are employed throughout the geometric deformation and
topological variation process. In addition, a novel particle-
based collision detection scheme is conducted to automati-
cally handle topology changes during the deformation. The
new framework for surface flow simulation is fast, simple,
and accurate. More importantly, it allows the user to directly
interact with the model during the deformation. For more
details of our new framework, please refer to [12, 13].

3.2. Thalamus segmentation

When applying the above geometric surface flow for tha-
lamus segmentation, the speed function F in (1) is explic-
itly formulated as a linear combination of the following two
terms:

F = a1Freg + Fdata, (2)

here Freg is the regularity term to maintain the smoothness
of the model. Freg is usually a function of the curvature (e.g.,
mean curvature, Gaussian curvature). In this paper, we de-
fine Freg as the difference between the mean curvature Hcurr

at the current position and the average mean curvature Havg

of the whole model:

Freg = Hcurr −Havg. (3)

Comparing with other commonly used regularity terms such
as mean curvature or Gaussian curvature, (3) works much
better in our experiment. This is probably because of the vol-
ume preserving property of (3), which can be considered as
a shape prior term for the thalamus’s oval shape. A more de-
tailed explanation can be found in [14], where a similar term
is used.

Fdata is the term that interacts the model with the im-
age data, and is often defined as a function of the edge in-
formation of the image data. However, since the thalamus
has low contrast, using boundary information alone is not
very reliable. It is more preferable to combine the edge in-
formation along with the region information as suggested by
Huang et al. [15]. Hence, in this paper, we propose to employ
both the edge information as well as the region information.
In particular, we define Fdata as a linear combination of the
following two terms:

Fdata = a2Fedge + a3Fregion, (4)

Fedge is the speed function corresponding to the edge infor-
mation in the image data that will attract the contour moving
towards the edges of the image data and is defined as

Fedge = −Δ
(
Gσ ∗ I(s)

)
, (5)

where Δ is the Laplacian operator, I is the image intensity
function, and Gσ ∗ I is the smoothed intensity function by
convoluting with a Gaussian filter with variance σ . Variance
σ can be assigned according to the image resolution of the
MRI dataset. In our experiment, σ is set as 1.0.

Fregion is the speed function corresponding to the region
information, and is defined as

Fregion = 1

1 +
∣∣∇(B(s)

)∣∣2 , (6)
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where ∇ is the gradient operator, B(s) is the binary image
created by the interior probability estimation of the current
model, which will be explained in more detail in the follow-
ing section (Sections 3.3.2 and 3.3.3). In a nutshell, Fregion will
expand the contour outwards in regions that are considered
compatible with the current segmented volume’s statistics.

Substituting (3), (4), (5), and (6) into (2), we obtained
the following speed function for thalamus segmentation:

F = a1
(
Hcurr −Havg

)− a2Δ
(
Gσ ∗ I(s)

)

+ a3
1

1 +
∣
∣∇(B(s)

)∣∣2 .
(7)

Here, a1, a2, a3 are the corresponding weighting coeffi-
cients. In our experiments, a1, a2, a3 are set as 0.1, 1, 1, re-
spectively.

3.3. Algorithm pipeline

There are four main steps in our thalamus segmentation
framework: (1) seed initialization; (2) interior statistics es-
timation; (3) binary image creation; (4) model evolution.

3.3.1. Seed initialization

First, the user interactively selects a pixel/voxel inside the re-
gion of interest in the image data. Considering the thala-
mus has an oval shape, a circular contour centered at the
pixel/voxel is then automatically created and serves as the ini-
tial seed model.

3.3.2. Interior statistics estimation

Then, the intensity probability density function of the in-
terior regions enclosed by the seed contour is estimated.
Specifically, we approximate the distribution by a Parzen-
window-function-based nonparametric method [16] be-
cause it is differentiable, more generic, and can represent
complex multimodal intensity distributions. We choose the
Gaussian kernel as the Parzen window function. Suppose the
model M is placed on an image I , the volume of the image
region bounded by the current model M is V , then the prob-
ability of a pixel’s (voxel’s) intensity value i being consistent
with the model interior intensity can be derived as

P(i |M) = 1
V

∫∫∫
1√
2πσ

e−(i−I(y))2/2σ2
, (8)

where σ is a constant that specifies the width of the Gaussian
kernel and is set as 1.0 in our experiment. Since (8) is a simple
integral, it can be calculated very efficiently as an incremen-
tal update, that is, only newly added voxels are calculated to
update the integral value at each time step.

3.3.3. Binary image creation

Next, based on the interior probability density distribution of
model M obtained in the previous step, the image intensity

probability map PI of every pixel’s (voxel’s) intensity is ob-
tained. Then a small threshold (e.g., the mean probability
over the entire image domain) is applied on PI to produce
a binary image B(s), in which pixels/voxels with probability
higher than the threshold have value 1, zero otherwise.

3.3.4. Model evolution

Finally, the model will start to evolve according to (1) and
(7). More specifically, the surface evolution process is numer-
ically approximated using a simple, explicit iterative equa-
tion:

�S
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�p, t + Δt

) = �S(�p, t
)

+ F
(
�p, t
)�N
(
�p, t
)
Δt. (9)

When advancing the model, we must enforce a constraint
on the size of the time step Δt. In particular, the time step Δt
must satisfy the following stability condition: the velocity of
change must be strictly restrained by the minimum detail in
the system. In our system, this condition is

Δt ≤ me

MF
, (10)

where me is the unit grid cell length of the image data and MF

is the maximum magnitude of the speed F obtained by (7).
Before each deformation step, we will calculate the velocity F
at each vertex point and determine the maximum magnitude
of the velocity MF . A proper time step can then be estimated
from (10). At each deformation cycle, the model will loop
from step 2 to step 4 until an equilibrium state is achieved,
then the deformation stops and the geometry of the thalamus
is extracted from the MRI image.

3.4. Experimental results

Some of the experimental results for 2D and 3D thalamus
segmentations are shown in Figure 1 to Figure 4. In partic-
ular, an example of our 2D thalamus segmentation result is
shown in Figures 1 and 2. Each of the two figures shows five
snapshots of the model evolution process including the ini-
tial seed (a) and the final shape (e). Figure 1 shows the model
superimposed with the original image, while Figure 2 shows
the same five snapshots superimposed with the binary im-
age created by the interior statistics estimation (Sections 3.3.2
and 3.3.3). The 3D thalamus segmentation result is shown in
Figures 3 and 4. Figure 3 shows the four snapshots during the
model evolution process. The four different views of the final
3D shape of the thalamus are shown in Figure 4.

4. CONCLUSION

We proposed a semiautomatic thalamus segmentation meth-
od based on an explicit simulation of geometric surface flow.
To overcome the low contrast of the thalamus, we employ a
nonparametric kernel-based statistics estimation that can in-
corporate both the boundary and region information in the
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(a) (b) (c)

(d) (e)

Figure 1: The model evolution process of the 2D thalamus segmentation superimposed with original image. (a) Initial seed; (b)–(d) three
intermediate stages; and (e) final extracted shape.

(a) (b) (c)

(d) (e)

Figure 2: The same five snapshots of the model evolution process of the 2D thalamus segmentation superimposed with the binary mask
created by interior statistics estimation.

(a) (b) (c) (d)

Figure 3: The model evolution process of the 3D thalamus segmentation superimposed with original image. (a) Initial seed; (b)-(c) two
intermediate stages; and (d) final extracted shape.
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(a) (b) (c) (d)

Figure 4: (a)–(c) Three different views of the final shape of the 3D thalamus; and (d) a close-up view of the thalamus.

model evolution process, so that the model is very robust to
image noise and small gaps. In the future we would also like
to apply our method for the more challenging task of thala-
mus nuclei segmentation from the newly available diffusion
tensor images.
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