
Point Set Surface Editing Techniques based on Level-Sets

Xiaohu Guo Jing Hua Hong Qin

Department of Computer Science
State University of New York at Stony Brook
Email: {xguo|jinghua|qin@cs.sunysb.edu}

Abstract

In this paper we articulate a new modeling paradigm for
both local and global editing on complicated point set sur-
faces of arbitrary topology. In essence, the proposed tech-
nique leads to a novel point-set methodology that can unify
the topological advantage of the level-set methods and the
simplicity of point-sampled surfaces. Any user-specified re-
gion of a point set surface in our system can be embedded
into a grid-based level-set framework. The super-imposed
grid structure enables both powerful local surface edit-
ing and global scalar-field free-form deformation anywhere
across the point-sampled geometry. Furthermore, the un-
derlying level-set representation, coupled with the concept
of digital topology, greatly facilitates the topological modi-
fication of the sculpted point-set geometry whenever neces-
sary during shape deformation. We have developed a vari-
ety of editing toolkits that can allow users to directly ma-
nipulate the point-set surface through interactive sketching,
smoothing, embossing, and global free-form deformations
with ease. We demonstrate the usefulness and efficacy of our
prototype system for the point-sampled geometry via many
examples.

1 Introduction

Most recently, point set surfaces are gaining momentum
and enjoying their renaissance in both modeling and ren-
dering. In the recent past, many efforts have been mainly
concentrated on both direct rendering techniques [17], [24]
and effective modeling mechanisms [1], [23], [15], [16] for
point sampled geometry without worrying about their con-
nectivity. However, such research achievements are still not
fully adequate enough for interactive shape control of the
point based geometry, and the spectrum of surface editing
and deformation types is still quite limited. This paper aims
to serve this need by developing the level-set-based editing
paradigm for point set surfaces in order to enable both lo-
cal manipulation and global free-form deformation over any

Figure 1. “Rabbit Teapots” and “CGI 2004”
logo created using our level-set-based point
set surface editing framework.

region of interest across the entire point-set surface.

Our novel editing techniques are founded upon the rep-
resentation of an embedding scalar field associated with
any region of the point-set surface. In comparison with the
pure, explicit point-based surface representation, the scalar-
field-driven implicit representation and level sets have been
proven as a very powerful paradigm that can not only be
free of parameterization artifacts, but also handle arbitrary
topology and complicated geometry easily. In particular,
the implicit representation further facilitate the proper topo-
logical change during the shape sculpting process without
any ambiguity. We shall demonstrate the ease of the topo-
logical modification for the modeled objects later in our
paper. In our level-set based surface editing framework,
we employ unstructured point samples as the basic mod-
eling and rendering primitive throughout this paper. By
constructing an implicit surface from the point cloud using
some existing techniques [13], we can naturally incorporate

the level-set-based surface editing techniques [12] into the
deformation framework of the point based geometry, which
not only offers us a wide range of powerful surface editing
techniques for the point set surface editing, but also facil-
itates the topology change with ease. Equipped with the
level-set editing functionality, Scalar Free-Form Deforma-
tions (SFFD) [10] can be also incorporated into our surface
deformation system in order to further expand the ability
for both local and global surface editing. With the aid of dy-
namic re-sampling, we can quickly update the surface shape
of the point-based geometry (undergoing geometric defor-
mation and/or topological change) without worrying about
point connectivity at all.

2 Previous work

This section briefly outlines the background of point set
geometry processing, level-set methods, and free-form de-
formations. In the interest of space limitation, a more com-
prehensive survey on these topics is not feasible for this
conference paper.

In recent years, considerable research has been devoted
to the efficient modeling, and processing of point-sampled
geometry. In [23], the Pointshop 3D system was presented
for interactive shape and appearance editing of 3D point
sampled geometry. Alexa et al. [1] used the framework
of moving least squares (MLS) projection to approximate a
smooth surface defined by a set of points. Pauly et al. [15]
presented several efficient simplification schemes for the
point sampled surfaces. Later, they presented a free-form
shape modeling framework [16] for point sampled geome-
try using the implicit surface definition of the moving least
squares approximation. Most recently, Guo and Qin [9] pre-
sented a physics-based dynamic local sculpting paradigm
for point sampled surfaces using volumetric implicit func-
tions.

Level-set methods were introduced by Osher and Sethian
[14] by representing the contour as the level-set of a scalar-
valued function. Desbrun et al. [8] and Breen et al. [6]
used this method for shape morphing. Whitaker [21] and
Zhao et al. [22] employed this method for 3D reconstruc-
tion. More recently, Museth et al. [12] and Baerentzen et
al. [2] presented the level-set frameworks for interactively
editing implicit surfaces.

Free-form shape deformations have been studied exten-
sively in the past [3], [18], [7], [19]. Recently, Hua and
Qin [10] proposed the Scalar-field Free-Form Deformation
(SFFD) technique based on general flow constraints and im-
plicit functions. In this paper we further extend the SFFD
approach and integrate it into our level-set framework in
order to provide users the powerful free-form deformation
tools directly on point-set surfaces.

3 System overview

Figure 2. The editing framework.

The data flow and architecture of our level-set based
point set surface editing system is presented in Figure 2.
The system takes any region of the original point set sur-
faces as the input, utilizes the level-set based editing tech-
niques to deform the point set either locally or globally and
change its topology when needed, and finally uses point-
based surface rendering techniques to render the modified
surface. In this paper, we utilize the Multi-level Partition
of Unity (MPU) method [13] to convert any user-specified
region of the original point set surfaces into an implicit
surface representation. It may be noted that even after
the implicitization process, the original point-sampled ge-
ometry must be retained for the downstream procedures
such as local editing, global free-form deformation, topo-
logical change, and rendering. After the construction of
the implicit surface, the existing level-set surface editing
techniques [12] can be directly integrated into our sys-
tem, such as sketch-based editing, embossing/engraving,
smoothing/sharpening, etc. While incorporating the level-
set operators, we also integrate the Scalar-field Free-Form
Deformation (SFFD) techniques [10] into the level-set
framework to expand the ability for both local and global
surface editing. After the deformation of the underlying
level-set surface at each iteration step, we update the point
set surface accordingly. Besides the usual geometric defor-
mation, collision detection and topology change should be
considered, which we address in Section 4.4.

4 Level-set-driven surface modeling

4.1 The level-set formulation

Deformable iso-surfaces implemented through the mean
of level-set methods [14] have demonstrated a great poten-
tial in a wide range of fields such as visualization, scientific
computing, computer graphics, and vision related areas. An

implicit surface consists of all points

S = {~x(t)|φ(~x, t) = k},

whereφ(~x, t) is a time-varying scalar function embedded
in 3D. Level-set methods relate the motion of the implicit
surface to a partial differential equation (PDE) defined on
the associated volume through:

∂φ

∂t
= |∇φ|F (~x, φ,∇φ, ...), (1)

where∇φ denotes the gradient of the implicit surface and
F (~x, φ,∇φ, ...) ≡ − ∇φ

|∇φ| ·
d~x
dt is the speed function. Us-

ing the level-set method, we can implement a wide range
of deformations by defining an appropriate speed function,
which is always based on a combination of data depen-
dent terms, and geometric measures (e.g. curvature) of
the implicit level-set surface [20][11]. In this paper, we
not only utilize this representation to perform the level-set-
based editing operations on the point set surfaces, but also
integrate the Scalar-Field Free-Form Deformation [10] into
our level-set framework.

Since we are only interested in the surface editing of the
point set which are relying on the zero level-set of the iso-
surfaces, first we only need to solve the parts of the solu-
tion that are adjacent to the moving surface. Second, our
operations are directly applied to the point set, so the level-
set embedding occurs wherever the deformation is needed.
The level-set space and the deformation operators within the
space are controlled by users interactively. In this paper, we
utilize the Sparse-Field method proposed by Whitaker [21]
to update only the wavefront, and several layers around it
via a simple city block distance metric at each iteration.
The set of grid points adjacent to the level-set is called
active setdenoted byL0, and the neighborhoods of the
active set are defined in layers,L+1, ..., L+l, ..., L+N and
L−1, ..., L−l, ..., L−N , where thel indicates the city block
distance from the nearest active grid point(Note that, neg-
ative numbers are used for the outside layers). The work
in this paper uses only up to the second-order derivatives
of φ, so we only need 5 layersL2, L1, L0, L−1, andL−2.
For more detailed information on the Sparse-Field method,
please refer to [21]. The complexity of the computational
time grows only proportional to the area of the surface re-
gion which undergoes the deformation.

4.2 Free-form deformation

Free-Form Deformation has been used extensively in
shape modeling and animation since the designers do not
need to worry about the underlying geometric representa-
tion and topological structure of the embedded object. It
would be rather straightforward for users to perform the
Free-Form Deformation directly on the point set surface as

in [16]. However, then we would have to rely on the Moving
Least Squares surface projection to find out the exact posi-
tion for all the newly inserted points. This is because point
insertion is unavoidable if a deformation is large and in fact
expands the model rather significantly. As a result, gaps will
occur at the current resolution. In principle, point insertion
is far from trivial. To address this problem, we take a rather
different approach by performing the Free-Form Deforma-
tion directly on the global scalar field as we acquired using
the Multi-level Partition of Unity (MPU) implicit surface
construction methods[13]. Then the global scalar field can
be used to guide both the point movement and point inser-
tion in a single unified fashion, without the separate effort
for adding new points.

Specifically in this paper, we utilize the Scalar-field Free-
Form Deformation (SFFD) introduced in [10]. Since it is
founded upon the PDE-based flow constraints, we can eas-
ily convert the velocity field obtained by SFFD into the up-
dating of the global scalar field of our point surface. Fur-
thermore, introducing intermediate steps during deforma-
tion steps allows us to perform dynamic sampling on the
point set surface in order to maintain a good surface quality
throughout the model sculpting session. So in our represen-
tation, we have two classes of scalar field. One is for the sur-
face representation, as we denoted byss, which is exactly
the global scalar field we acquired from the point clouds us-
ing the MPU implicit surface construction method. Another
scalar field is for the deformation tool, as we denoted byst,
which is the scalar field of the deformation tool described
in [10], such as the sketched point or curve skeleton.

4.2.1 Scalar-field free-form deformation

Now we shall briefly overview the idea of applying the
scalar fieldst of the tools to perform deformations on the
scalar fieldss of the point surface. In our global free-form
deformation, we are still using the discretized voxel grids to
store bothss andst. And we utilize the sparse-field method
to update them at each iteration step.

During the deformation of the tool scalar fieldst, we as-
sume that the vertices on the discretized voxel grids are con-
strained on the same level-set where they originally reside.
Then the trajectory of these grid vertices can be represented
as:

{~x(t)|st(~x(t), t) = c}.

The derivative ofst(~x(t), t) with respect to time yields:

∇~xst ·
d~x

dt
+

∂st

∂t
= 0,

where∇~xst is the gradient ofst at ~x. In order to get the
general velocity along the three coordinate axes of the 3D
space(vx, vy, vz), and also take the smoothness of the de-
formation motion into account, we can add a smoothness

(a) (b) (c) (d) (e) (f)

Figure 3. (a) The surface scalar field ss representing the point set surface; (b) The initial tool scalar
field st; (c) The deformed tool scalar field; (d) The velocity (red arrow) field computed according to
the deformation of the tool scalar field; (e) The velocity field is utilized to deform the surface scalar
field; (f) The deformed surface scalar field.

constraint on the underlying level-set surfacess by mini-
mizing the following objective function:

E =
∫

(∇~xst · ~v +
∂st

∂t
)2 + λ(|∇~v|)2d~x, (2)

whereλ is a Lagrange multiplier. In order to discretize the
objective function 2, we can consider a voxel grid vertexi,
wherei ∈ L−2 ∪ L−1 ∪ L0 ∪ L1 ∪ L2 (The Sparse-Field
Layers), and its adjacent neighboring voxel gridsNi, where
Ni = {j|ij ∈ C6, j ∈ L−2∪L−1∪L0∪L1∪L2}, C6 is the
set of 6-connected voxel grid pairs. Then we can transform
the objective function 2 into:

E =
∑

i

(c(i) + λs(i)), (3)

wherec(i) is the error of the flow constraint approximation:

c(i) = (
∂st

∂x
vx(i) +

∂st

∂y
vy(i) +

∂st

∂z
vz(i) +

∂st

∂t
)2,

ands(i) is the discretized smoothness factor computed as
the velocity difference between the voxel grid vertex and its
adjacent neighbors:

s(i) =
1
|Ni|

∑
j∈Ni

[(vx(i)− vx(j))2 + (vy(i)− vy(j))2

+ (vz(i)− vz(j))2],

where|Ni| is the number of voxel grid vertices inNi. By
satisfying ∂E

∂vx(i) = 0, ∂E
∂vy(i) = 0, and ∂E

∂vz(i) = 0, we can
minimize the objective functionE and obtain the iterative
solution:

[vx, vy, vz]> = [vx, vy, vz]> − µ[
∂st

∂x
,
∂st

∂y
,
∂st

∂z
]>, (4)

where(vx, vy, vz) is the average velocity of all the adjacent
voxel grids, and

µ =
∂st

∂x vx + ∂st

∂y vy + ∂st

∂z vz + ∂st

∂t

λ + (∂st

∂x)2 + (∂st

∂y)2 + (∂st

∂z)2
.

4.2.2 Updating surface scalar field and point geometry

It may be noted that, although we obtain the velocity field
associated with each voxel grid according to the change of
the tool scalar fieldst, we are not going to change their
positions. Instead, we utilize the velocity field~v acquired
above to update the surface scalar fieldss by defining the
speed function in the following level-set fashion:

F = − ∇ss

|∇ss|
· ~v. (5)

Based on these formulations, we can design our level-set
based global free-form deformation as the following evo-
lution process. First we generate a tool scalar field using
skeletons or sketches. Also, we track down the original tool
scalar valuessto at these voxel grid positions. After the user
alters the tool scalar field, we also track down their final tool
scalar valuesstf . Thenstf = sto + k∆st, while k is a user
specified number of steps taken to deformst, and∆st is the
step size of the tool scalar field evolution.

The SFFD algorithm for point geometry is as follows:
At each time stepm (m=0...k):

1. Update the tool scalar field by:st = sto +m∆st, then
∂st

∂t = ∆st;

2. Calculate∂st

∂~x with finite difference;

3. Initiate the velocities of the voxel grids in the Sparse-
Field layers to be 0;

4. Deduce the current velocity field by iteration using
Equation (4). This normally needs 3-4 iterations for
the velocities to converge;

5. Deduce the updating rate of the surface scalar field
by Equation (5), and obtain the updated surface scalar
field ss;

6. Update points’ positions and perform dynamic sam-
pling (see Section 4.3 for details).

7. If m=k, terminate the deformation process; Otherwise,
proceed to the next time stepm + 1 and repeat the
above steps.

Figure 3 illustrates the idea of deforming the surface scalar
field based on the deformation of tool scalar field. In this
figure, the yellow curves denote the iso-surface of the sur-
face scalar field associated with the point set surface, and
the blue curves denote the skeleton-based tools used to de-
fine the tool scalar field. The red arrows in (d) and (e) denote
the velocities evaluated at those voxel grids of the Sparse-
Field Layers.

4.3 Dynamic update of point set surface

After we modify the surface scalar field through user in-
teraction, we must change the points’ locations since the
point samples are assumed to be on the zero level-set of the
underlying implicit function. As in [9], if we assume that
the points are only moving in their normal direction, we
can obtain its normal velocity:

~v~n =
∂ss

∂t

|∇~xss|
~n. (6)

where∇~xss denotes the gradient∂ss(~x(t),t)
∂~x , and~n is the

normal of the surface evaluated at~x. This velocity is then
employed to update the point position by advancing to the
next time step through the forward Euler method:

~xi+1 = ~xi + ~v~n∆t.

The point sampling density will be changed while users
are performing sculpting or deformation on the surface. To
maintain a nice surface quality, we need to insert new sam-
ple points while the surface density becomes too low, or we
can simplify the surface by eliminating points while the sur-
face is squeezed otherwise. We use the up-sampling scheme
from [1] for the point insertion. In each modeling step, each
point should check its neighboring density by projecting
its neighbor points onto its tangent plane. Then we com-
pute the Voronoi diagram of these points. We choose the
Voronoi vertex that has the largest circle radius on the tan-
gent plane. If the radius is larger than a specified thresh-
old, we can project the vertex onto the iso-surface of the
global scalar field. Using this approach, we can achieve a
surface density of locally near-uniform. In the meantime,
we can also reduce the sampling density using any method
proposed in [15]. We implement the iterative simplification
method similar to the one introduced in [15]. Instead of
using a quadric error metric, we simply replace two points
by their middle point and then project this new point onto
the iso-surface of the global scalar field. The up-sampling
and down-sampling process can be followed by a relaxation
stage using a simple point repulsion scheme similar to [16]
to obtain a more uniform sampling pattern.

4.4 Topology change handling

In order to use our level-set based surface editing tools to
change the shape and topology of the point set surfaces, the
surface must be able to change its topology properly when-
ever a collision with other parts of itself is detected. The un-
derlying level-set surface contour can automatically change
topology (e.g. merge or split) without requiring an elaborate
mechanism to handle such changes. However, the topology
of the point set surfaces need to be explicitly handled, e.g.
deleting the points in the intersection region. So we need a
robust method to predict where the topology change is go-
ing to be occurring.

In [5], an efficient and robust method to control the
topology of the level-set contour was proposed by adding
topological information to the volume representation with
a clear goal of locally resolving topological ambiguities.
Their novel method is extremely useful for collision de-
tection of the level-set contour. In our current work, our
tasks are different and our focus is mainly on the robust and
proper topological modification of the point-sampled geom-
etry undergoing deformation. Therefore, we simply change
the topology when a collision is detected, even though it is
quite straightforward to integrate the whole settings of [5]
into our framework to preserve the topology of the under-
lying point set surface. In the interest of space limitation,
more details about the digital topology can be found in [5]
or elsewhere.

According to [5], we say that a grid point~v is simple
with respect toV ⊂ Z3, if V andV ∪ {~v} have the same
number of components, handles and cavities. Otherwise~v
is called complex. Furthermore, [4] proved that~v is simple
with respect toV if and only if

nint(~v, V) = next(~v, V) = 1. (7)

wherenint(~v, V) is the number of interior components ofV
that touch~v, andnext(~v, V) the number of exterior compo-
nents. [5] gives more detailed definitions ofnint(~v, V) and
next(~v, V) based on digital topology, and more theoretical
results are available in [4]. However, the above discussion
is sufficient to enable the development of modeling and de-
formation tools to correctly handle collision detection and
topological modification for the point-set surfaces.

For the purpose of clarity, we only consider the situation
when the surface is advancing outward, since for the inward
case, we can simply switch the role of the inside and outside
of the surface region. A grid point is said conquered if it is
either on the active layerL0 of the sparse-field (the green
circle grids in Figure 4) or inside the surface region (the blue
square grids in Figure 4). Whenever a grid point is about to
be conquered (i.e. changing its status from the outside layer
L−1 to the active layerL0, e.g. the red triangle grid in Fig-
ure 4), we first compute itsnint andnext using the digital

topology method provided in [5], and test it for simplicity
according to Equation (7). If it is simple, the Sparse-Field
algorithm proceeds as usual. If not, we have to explicitly re-
solve the topology change of the point set surface, i.e. delet-
ing the point samples residing in the small vicinity of this
grid. Similar to [5], the only case we need to handle the
topological change and resolve the topological ambiguity is
whennint ≥ 2, i.e. two parts of the front collide. Figure
4 shows an example of the collision between two parts of
the front(green solid curves). The red dashed curve will be-
come the new advancing front in the current iteration step,
while grid ~v is changing its status fromL−1 to L0. The
topology numbernint for ~v equals 2. So we shall delete the
point samples residing in the prescribed vicinity of grid~u
and ~w (Note that, the affected region can be identified ei-
ther interactively or automatically given the user-specified
parameters such as the influence factor of each grid). Also
we need to place a tag between~v and~w, so they will be con-
sidered disconnected when checking the topology numbers
for other grid points nearby.

Figure 4. Collision detection.

5 Editing toolkits

5.1 Free-form deformation tools

In order to enable users to perform free-form deforma-
tions on the point set surfaces, our system allows users
to interactively sketch skeletons using a mouse or a 3D
pointing device. Then the tool scalar field is generated
as the blending of field functionsgi of a set of skeletons
ti(i = 1, ..., N):

st(x, y, z) =
N∑

i=1

gi(x, y, z),

where the skeletonsti can be any geometric primitive such
as blobs, curves, etc. After the construction of the tool
scalar fieldst, the designers can enforce global control of
st in two different ways: (1) adjusting the coefficients of
the implicit functions defined for each skeletal element; (2)
manipulating or moving the skeletons. When the designers
modify the tool scalar field, the embedded surface scalar
field and the point set surfaces are deformed according to
our aforementioned SFFD algorithm. Figure 5(a) shows the
example of performing free-form deformations on a rab-
bit model by adjusting the influence radius of the under-
lying blob skeletons, where the blue color indicates the iso-
surface of the skeleton-based scalar field. Figure 5(b) shows
the example of bending the rabbit model by bending the un-
derlying curve skeleton. Note that bending the underlying
curve skeleton first changes the tool scalar field, then it leads
to deformation of the embedded point geometry accord-
ing to the algorithm documented in Section 4.2.2. Users
can also perform tapering operations by simply sketching
source and target strokes, see Figure 5(c).

5.2 Sketch-based editing tools

We also develop several simple sketching tools to al-
low users to directly work on point set surfaces with hand
strokes. Strokes can be gathered from the mouse as a set
of curves or a collection of points and the Gaussian blobs
are assigned evenly along the curve or at each point. The
surface will then grow along this implicitly defined region,
which can be either growing outside or drilling inside de-
pending on the direction of the surface motion. Here we
utilize the commonly used speed function which consists of
a combination of two terms [20] [11]:

F = αD + (1− α)∇ · ∇φ

|∇φ|
,

where D is a term dependent on the user input strokes, and it
forces the surface to expand or contract toward the bound-
ary of the stroke region. The term∇ · ∇φ

|∇φ| is the mean
curvatureH of the surface, which forces the surface to re-
main smooth. The topology change handling techniques ad-
dressed in Section 4.4 is employed to handle collision detec-
tion and point sample deletion. Figure 6 shows an example
of the sketch-based surface growing method. By inverting
the growing direction of level-set surfaces, we can easily
achieve drilling operations based on the user’s input strokes.

5.3 Other tools

The embossing/engraving and smoothing/sharpening
operations can be easily achieved by utilizing the speed
function proposed by [12]:

F = Dq(d)C(γ)G(γ).

(a) (b) (c)

Figure 5. (a)Shrinking and Inflation of a rabbit model using blobs skeleton; (b)Bending of a rabbit
model using curve skeleton; (c)Tapering of the rabbit mouth using sketched strokes.

(a) (b) (c) (d)

Figure 6. Sketch-based surface growing.

HereDq is a distance-based cut-off function that depends
on a distance measured to a geometric region of influence
(ROI) primitive, e.g. a superellipsoid.C(γ) is a cut-off
function that controls the contribution ofG(γ) to the speed
function, whileG(γ) is dependent on geometric measures
γ of the level-set surface, e.g. curvature.

For embossing/engraving operations, the user can draw
curves, or place some points near the surface, which are
used to attract/repel the surface. The surface can be also
smoothed/sharpened by applying motions in a direction that
reduces/increases the local surface curvature. For more de-
tailed information on the formulation of the speed functions
for embossing/engraving and smoothing/sharpening, please
refer to [12]. Figure 7 (a) shows an example of surface
embossing based on a set of user sketched curves near the
surface. Figure 7 (b) demonstrates the smoothing operator
applied to the intersection region of the point set surfaces
constructed from the CSG union operations.

6 Results and Time Performance

Both simulation and rendering parts of our system are
implemented on a Microsoft Windows XP PC with dual In-
tel Xeon 2.0GHz CPUs and 1.5GB RAM. We document the
various point set surface editing techniques in our system
and report their time performances in Table 1. We did not
include the dynamic sampling time into the updating time
in Table 1, because the dynamic sampling time greatly de-
pends on the number of points inserted/deleted on each sim-
ulation step. In our experiment of global FFD of the rabbit

(a) (b)

Figure 7. (a)Surface embossing based on
user sketched curves; (b)Curvature-based
surface smoothing.

Table 1. The simulation time of our point set
surface editing tools applied on the rabbit
model (67,038 points).

Editing Tools # Grids # Points Time (s)
Shrinking/Inflation 2563 67,038 7.809316

Bending 2563 67,038 7.631438
Tapering 1283 24,107 1.815174

Sketch Editing 1283 5,188 0.323902
Embossing 1283 5,824 0.370414
Smoothing 1283 7,189 1.647415

model (67,038 points), the required time of checking all the
point samples for dynamic sampling is around 0.5 second.

Using our level-set-based point set surface editing frame-
work, we have created several interesting objects. See Fig-
ure 1. The “rabbit teapots” are created from rabbit models
and spouts of the teapot models by using curve-based bend-
ing on the rabbit models, tapering on the rabbits’ mouths,
sketch-based editing for the handles on the back of the rab-
bits, and smoothing the intersection of the rabbits and the
spouts after the CSG union operation between them. The
“CGI 2004” logos are created using sketch-based editing
techniques by sketching the logo-shaped curves on the santa
and rabbit point set surface models and allowing the surface
to grow along the user input curves.

7 Conclusion

In this paper, we have developed a new modeling and
deformation paradigm for point set surfaces and articu-
lated its key constituents and the associated contributions.
Our novel paradigm facilitates both local and global edit-
ing on arbitrarily complicated point set surfaces of any
topological types. We have implemented a unique mod-
eling framework that collectively takes advantage of level-
set geometry and scalar-field-driven free-form deformation.
The key feature of our framework is a new point-geometry
methodology that uniquely integrate the topological flexi-
bility of the level-set approach and the simplicity of point-
sampled surfaces. The grid structure resulted from the
level-set approach enables both powerful local surface edit-
ing and global scalar-field free-form deformation anywhere
across the point-sampled geometry. Furthermore, we em-
ploy the techniques of digital topology to handle topological
changes during the shape deformation. We have developed
a family of editing toolkits such as interactive sketching,
smoothing, embossing, and sharpening. It is our hope that,
through our extensive experimental results, we can show
that our new approach on point set surfaces is both promis-
ing and valuable for interactive graphics.

Several further improvements to extend our current re-
search work are possible in the near future. Currently the
speed of our editing system is limited by the dynamic sam-
pling rate and the spatial resolution of the underlying level-
set approach. More efficient algorithms with the improved
performance are always desirable. Our ultimate goal is to
enhance all the deformation operations with haptics, includ-
ing the free-form deformation and the local shape editing,
so that the users can obtain the realistic force feedback when
performing all of the previously-mentioned deformations
on any point set surfaces.

Acknowledgment

This research was supported in part by the NSF grants
IIS-0082035 and IIS-0097646, and Alfred P. Sloan Fellow-
ship. The santa and rabbit models are courtesy of Cyber-
ware Inc.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Computing and rendering point set surfaces.
IEEE TVCG, 9(1):3–15, January-March 2003.

[2] J. A. Baerentzen and N. J. Christensen. Volume sculpting
using the level-set method. InInternational Conference on
Shape Modeling and Applications, pages 175–182, 2002.

[3] A. H. Barr. Global and local deformations of solid primi-
tives. InSIGGRAPH, pages 21–30, 1984.

[4] G. Bertrand. Simple points, topological numbers and
geodesic neighborhoods in cubic grids. InPattern Recog-
nition Letters, pages 1003–1011, 1994.

[5] S. Bischoff and L. Kobbelt. Sub-voxel topology control for
level set surfaces. InEurographics, pages 273–280, 2003.

[6] D. E. Breen and R. T. Whitaker. A level-set approach for the
metamorphosis of solid models.IEEE Trans. on Visualiza-
tion and Computer Graphics, 7(2):173–192, 2001.

[7] S. Coquillart. Extended free-form deformation: A sculptur-
ing tool for 3d geometric modeling. InSIGGRAPH, pages
187–196, 1990.

[8] M. Desbrun and M.-P. Cani. Active implicit surface for ani-
mation. InGraphics Interface, pages 143–150, Jun 1998.

[9] X. Guo and H. Qin. Dynamic sculpting and deformation
of point set surfaces. InPacific Graphics, pages 123–130,
2003.

[10] J. Hua and H. Qin. Free-form deformations via sketching
and manipulating scalar fields. InProceedings of the Eighth
ACM Symposium on Solid Modeling and Applications, 2003.

[11] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape model-
ing with front propagation: A level set approach. InIEEE
Transactions on Pattern Analysis and Machine Intelligence
17, pages 158–175, 1995.

[12] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr.
Level set surface editing operators. InSIGGRAPH ’02 Pro-
ceedings, pages 330–338, 2002.

[13] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Sei-
del. Multi-level partition of unity implicits. InSIGGRAPH,
pages 463–470, 2003.

[14] S. Osher and J. A. Sethian. Fronts propagating with
curvature-dependent speed: algorithms based on hamilton-
jacobi formulations. Journal of Computational Physics,
79:12–49, November 1988.

[15] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification
of point-sampled surfaces.IEEE Visualization, 2002.

[16] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape mod-
eling with point-sampled geometry.SIGGRAPH, 2003.

[17] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes.SIGGRAPH, pages
343–352, 2000.

[18] T. W. Sederberg and S. R. Parry. Free-form deformation
of solid geometric models. InSIGGRAPH, pages 151–160,
1986.

[19] K. Singh and E. Fiume. Wires: A geometric deformation
technique. InSIGGRAPH, pages 405–414, 1998.

[20] R. T. Whitaker. Volumetric deformable models: Active
blobs. In Visualization in Biomedical Computing, pages
122–134, 1994.

[21] R. T. Whitaker. A level-set approach to 3d reconstruction
from range data. InInternational Journal of Computer Vi-
sion, pages 203–231, 1998.

[22] H.-K. Zhao, S. Osher, and R. Fedkiw. Fast surface recon-
struction using the level set method. InProc. 1st IEEE Work-
shop on Variational and Level Set Methods, pages 194–202,
2001.

[23] M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop3d: An interactive system for point-based surface
editing. SIGGRAPH, 2002.

[24] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting.SIGGRAPH, pages 371–378, 2001.

