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Abstract—Parameterization of complex surfaces constitutes a major means of visualizing highly convoluted geometric structures as
well as other properties associated with the surface. It also enables users with the ability to navigate, orient, and focus on regions
of interest within a global view and overcome the occlusions to inner concavities. In this paper, we propose a novel area-preserving
surface parameterization method which is rigorous in theory, moderate in computation, yet easily extendable to surfaces of non-disc
and closed-boundary topologies. Starting from the distortion induced by an initial parameterization, an area restoring diffeomorphic
�ow is constructed as a Lie advection of differential 2-forms along the manifold, which yields equality of the area elements between
the domain and the original surface at its �nal state. Existence and uniqueness of result are assured through an analytical derivation.
Based upon a triangulated surface representation, we also present an ef�cient algorithm in line with discrete differential modeling. As
an exemplar application, the utilization of this method for the effective visualization of brain cortical imaging modalities is presented.
Compared with conformal methods, our method can reveal more subtle surface patterns in a quantitative manner. It, therefore,
provides a competitive alternative to the existing parameterization techniques for better surface-based analysis in various scenarios.

Index Terms—Area-preserving surface parameterization, differential forms, Lie advection, surface visualization.

1 INTRODUCTION

Surface parameterization refers to the process of mapping a surface
into a canonical domain, which permits many surface operations to
be performed in the parametric domain with improved ef�ciency and
feasibility. It is of utmost importance in a broad range of graphics
and visualization applications, such as texture mapping [24], remesh-
ing [11], 3D shape analysis [18] and surface visualization [14].

To date, most parameterization techniques fall into two categories,
namely, functional methods [28, 30, 34] and conformal methods [13,
24, 14, 22]. Functional methods typically start with de�ning certain
penalty functions, such that the minima are assumed at desired re-
sults. Parameterization is then achieved using optimization methods.
Although these methods are fairly �exible in terms of customizability
to the properties to be preserved, in most cases, this approach can be
problematic as the �attening is non-deterministic, relying on a set of
tuning parameters and halting criteria. In general, no quantities are
exactly preserved by the methods of this type. In contrast to those
methods, conformal methods, on the other hand, possess several u-
nique advantages, e.g., exact angle preserving, guarantee of solution
existence, ef�cient implementations, and a rich continuous theory in
parallel. However, a signi�cant issue of conformal parameterization is
that, especially when dealing with extruding shapes, the areal elements
can be severely compressed for the price of preserving angular struc-
ture. Although it is known that additional surface cuts, along with cone
singularities, can be introduced to the surface to effectively reduce the
distortion of �nal results [22, 5, 31], such practice is ad hoc and can
give rise to complications when data needs be accessed across the cut
paths [11].

Despite a substantial literature devoted to surface and mesh param-
eterization, its area-preserving aspect has not been adequately stud-
ied or applied in this �eld. In many applications, such as quantitative
analyses and visualization of in vivo brain surfaces [37], it is high-
ly desirable that the fattened map, namely the parametric domain, can
preserve area elements of the original brain surface, so that many area-
related patterns derived from a rich line of multimodal information,

• Guangyu Zou, Jiaxi Hu and Jing Hua are with Wayne State University,
E-mail: {gyzou|jiaxihu|jinghua}@cs.wayne.edu.

• Xianfeng Gu is with State University of New York at Stony Brook, E-mail:
gu@cs.sunysb.edu.

• Correspondence to Jing Hua.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

e.g., neuronal density, activation extent, thickness, etc., can be accu-
rately represented in this analytical space. Even though the distortion
induced by parameterization procedures is notoriously undesired, it is
well known that, in general, a surface cannot be �attened without any
kinds of distortion in the presence of Gaussian curvature. For instance,
conformal mapping can preserve local surface geometry by preserving
angles no matter what conformal parameterization is chosen, howev-
er, the area stretching increases exponentially at the tip of protruding
shapes.

In [7], Desbrun et al. showed that, based on a few desirable prop-
erties such as rotation and translation invariance, the only admissible
parameterizations form a two-dimensional space spanned by the well-
studied conformal parameterization and an area-preserving counter-
part, namely, the authalic parameterization. They also explicitly stated
that their formulation of discrete authalic parameterization was only
a local minimum of a quadratic energy without known de�nition in
differential geometry. Along this direction, there is no any existing
technique which is rigorously area-preserving and meanwhile can be
generalized to arbitrary surfaces. Prior area-preserving parameteriza-
tions typically strive for the local minima of certain objective function-
als, which lack provable guarantee of area preservation.

In contrast, this paper presents a practical method to compute a
group of global rigorous area-preserving parameterizations, which is
mathematically rigorous and allows for an ef�cient implementation.
Our method formulates the process of area restoration from an initial
parameterization of arbitrary 2-manifolds using Lie advection, a fre-
quently appearing concept in classical mechanics. To our best knowl-
edge, this is the �rst work that employs Lie advection as a tool to ma-
nipulate area changes in the context of surface parameterization, which
accommodates a wide range of boundary condition options. Besides
a general framework, this work also features an ef�cient, yet accurate
discretization scheme that is motivated by preserving the original ge-
ometric and algebraic structures of the continuous model in the limit,
hence rendering better numerical �delity and algorithmic scalability.

A similar idea was mathematically sketched in [3] and backed by
a general result from [27] that guarantees the existence of an area-
preserving diffeomorphism between two surfaces with the same total
surface area. However, the discussion was restricted to a spherical do-
main. In this case, our mathematical derivation arrives at the same
solution as [3]. Based on the Monge-Kantorovich theory of optimal
mass transport, Haker et al. [15] developed an image registration and
warping technique. Lying at the core is a decomposition of the defor-
mation into a divergence-free vector �eld plus a curl-free one, called
the polar factorization. A mass (e.g., area/volume) preserving map-
ping was explicitly sought in Rn by a gradient descent method to the
Monge-Kantorovich functional. Their method has been used for area-



preserving corrections on top of conformally �attened vessel surfaces
in R2, implemented on a regular Cartesian grid [35]. Recently, the
technique of optimal mass transport has also been applied to texture
mapping of closed genus zero surfaces [8]. However, it is not clear
how these methods can be extended to a general manifold. As a matter
of fact, our analytical derivation as well as the implementation pre-
sented in this paper admits exact control of the �nite areal dilation
and shrinkage for the surface over the entire domain. Authalic param-
eterization is only a special case within a more versatile framework.
Furthermore, our method can be readily generalized to compute the
authalic mapping between two general manifolds equipped with non-
trivial metrics, as the foundation of the system is formulated in Dis-
crete Exterior Calculus (DEC).

In summary, our proposed parameterization method has a number
of prominent features, enumerated as follows:

• Area-preserving supported by a rigorous continuous theo-
ry. By introducing Lie advection to surface parameterization,
the evolution of area elements can be precisely quanti�ed by the
Lie derivative. Computing an area-preserving parameterization
is therefore equivalent to deriving a time-dependent vector �eld
that corrects area distortions, i.e., dilation/shrinkage induced by
an initial parameterization, through a diffeomorphic �ow.

• General to non-�at geometry of surfaces. Our formulation is
systematically based on the exterior calculus of differential form-
s. Thus, differential and integral equations can be conveniently
expressed on smooth and curved spaces in a consistent manner.
As our method is deeply-rooted to the intrinsic geometry of 2-
manifolds, performing this procedure on non-�at domains, e.g.,
a unit sphere, is straightforward.

• Extendable to surfaces of non-disc and closed-boundary
topologies, with and without surface cuts involved. This merit is
largely inherited from the state-of-the-art conformal parameteri-
zation techniques [13, 22]. Given the initial parameterization, the
subsequent evolution of the area elements essentially comprises
an automorphism over the domain. The topological structure of
the given parameterization remains intact.

• Computationally affordable. In general, the cost depends on
the size of the mesh times the number of discretized steps need-
ed for the desired accuracy. A satisfactory authalic parameteri-
zation can be usually obtained through solving a limited number
of sparse, linear systems.

The remainder of the paper is organized as follows: Section 2 re-
views the related work. The analytical foundation of our method is
presented in Section 3. After that, we proceed to the technical details
on the discrete algorithm in Section 4. The performance assessment as
well as a demonstrative application to the surface-based multimodality
analytics of brain imaging data is given in Section 5. Finally, in Sec-
tion 6, we summarize our work and conclude with a discussion about
the limitation, possible improvements as well as a few potential future
directions of this method.

2 RELATED WORK

Reducing area distortion of surface/mesh parametrization has been of
major interest in the main geometry processing �eld. To prevent severe
geometric stretches, on the one hand, the original model is typically
decomposed into a set of charts homeomorphic to a disc in such a way
that the interior Gaussian curvature is close to zero [24, 29, 30, 34],
while on the other hand, various uniformity metrics have been ap-
plied to surface parameterizations to encourage even distribution of
intrinsic distortions [28, 30, 21, 34]. Based on the singular values
of the Jacobian matrix, Sander et al. [28] optimized the parametric
location of each vertex within its 1-ring neighborhood to reduce lo-
cal stretches. Sorkine et al.’s bounded-distortion paramterization [30]
made heavy use of mesh cuts to keep distortions below some preset
threshold. Zhang et al. [34] identi�ed an anisotropic stretch term from

a 2× 2 tensor metric closely related to the one derived in [28] and
applied it to guide the vertex optimization. Even though their dis-
tortion metric contains an area-preserving energy term, they did not
mention whether an absolute area-preserving patch parameterization
can be practically achieved. Desbrun et al. [7] also emphasized the
importance of minimizing area distortion for the intrinsic parameteri-
zation of triangle meshes. In their work, an intuitive area-preserving
functional was devised. Since the functional tried to preserve the area
structure of the original 1-ring, the optimal parameterization derived
was termed “Discrete Authalic Parameterization (DAP)”. Due to the
fact that the parameterization is only a critical point to the function-
al, it cannot exactly preserve areas across the mesh. Jin et al. [21]
proposed to search for the optimal global conformal parameterization
in the space of Möbius transformations. As conformality is invariant
through Möbius transformations, the resulting parameterization is still
conformal, which cannot completely eliminate area distortions. Based
on the fact that surface parameterization is closely related to the topo-
logical constraints, delicate topological modi�cations can sometimes
improve the uniformity of the parameterization. Towards this end, Gu
and Yau punctured small holes at the tip of long appendages in [13];
Cone singularities were introduced with non-vanishing Gaussian cur-
vature in [22, 5]; Surface cuts were repeatedly augmented according
to the geometric stretches generated through the course of tentative
parameterizations in [11]. Although such schemes provide excellen-
t remedies to some applications, they are generally not acceptable to
the rest. In terms of area preservation, these methods can be consid-
ered as heuristic approaches. Rigorous authalic parameterization is in
general not achievable along this direction.

The analytical derivation of our method is consistently based on
the differential forms on the manifold. Exterior calculus of differen-
tial forms has become a powerful tool in geometry processing for its
clear revelation of the underlying geometric structures along with a
well shaped mathematical foundation. In fact, most differential equa-
tion systems can be concisely formulated in the notion of differential
forms. Holomorphic 1-forms were used for global conformal param-
eterization of nonzero genus surfaces in [13]. As this method is con-
formal, it potentially creates large area distortion, even after optimiza-
tion [21]. The theoretical background concerned with several celebrat-
ed topological and geometric theorems, e.g., the Poincaré-Hopf index
theorem and the Tutte’s spring embedding theorem, was generalized
in [10], based on the formalism of discrete 1-forms. Tong et al. [32]
utilized harmonic 1-forms for surface quadrangulation and extended
the discrete Laplacian operator to allow for a set of �exible meshing
controls. Fisher et al. [9] demonstrated an interactive tangent vector
�eld design system over arbitrary surface meshes, based on discrete
1-forms and the corresponding Laplacian operator. Recently, He et
al. [16] applied harmonic 1-forms to skeleton extraction of 3D mod-
els. Because of its intrinsic nature, the system was demonstrated to
be robust and can be generalized to different surface representations.
While these works made extensive use of 0-forms and 1-forms, the
computational primitive of our framework is 2-forms, which can be
regarded as in�nitesimal area elements on the manifold. Our applica-
tion of differential forms is to quantify in�nitesimal area changes of
surfaces via a diffeomorphic �ow formulated as a Lie advection.

3 MATHEMATICAL THEORY

This section presents the analytical basis that leads to a family of rig-
orous authalic surface parameterizations. We refer interested readers
to the appendix for the related concepts on diffeomorphism and differ-
ential forms.

Starting with an initial parameterization between a surface and its
targeting domain, which requires to be a diffeomorphism (most mod-
ern parameterization methods [12, 24, 31] meet this requirement), we
can homotopically deform it to an area-preserving one. Suppose M
and Ω are the surface and desired domain to be parameterized upon,
respectively. M and Ω are two differentiable 2-manifolds associated
by a diffeomorphism f : M→Ω. The in�nitesimal area elements of a
surface can be mathematically depicted as differential 2-forms. Let ωi,
i = M,Ω be the area form of M and Ω, respectively. The pullback of



ωΩ under f is a differential 2-form on M, denoted as f ∗(ωΩ). We as-
sume that M and Ω have the same area integral after a proper scaling,
that is, ∫

M
ωM =

∫
Ω

ωΩ. (1)

Computing an area-preserving map μ : M → Ω now is equivalent to
�nding a diffeomorphism ϕ : M → M, such that ϕ∗(ωM) = f ∗(ωΩ).
Consequently, μ is given by f ◦ϕ−1.

To accomplish this, we �rst linearly interpolate a 2-form over time:

ωt = (1− t)ωM + t f ∗(ωΩ), t ∈ [0,1]. (2)

Note that ω0 =ωM and ω1 = f ∗(ωΩ). In the following, we will design
a one parameter family of diffeomorphisms, such that the correspond-
ing �ow deforms the area element in the same fashion as ωt . More
speci�cally, consider a smooth surface M with a smooth vector �eld V
on it. Given any point p ∈M, there exists a unique integral curve γ(t)
of V passing through it, such that

{
dγp(t)

dt =V (γp(t)),
γp(0) = p.

(3)

An one-parameter family of diffeomorphisms (which are also auto-
morphisms) φt , parametrized by t ∈ [0,1], can be de�ned on M as

φt(p) = γp(t). (4)

Here we need φ∗t (ω0) = ωt . Computing the time derivative at t = 0 on
both sides, we get

dφ∗t ω
dt

∣∣∣
t=0

= f ∗(ωΩ)−ωM , (5)

which, by de�nition, is the Lie derivative of ωt with respect to V .
Hence, the central equation to solve is

LV (t)ωt = f ∗(ωΩ)−ωM , (6)

where LV (t) denotes the Lie derivative with respect to V (t). By us-
ing Cartan’s formula LV = d(iV )+ iV d, where iV denotes the interior
product with respect to V (t) and d the exterior derivative, we have

d(iV ωt)+ iV dωt = f ∗(ωΩ)−ωM . (7)

Because ωt is a 2-form on M, dωt = 0. We therefore have

d(iV ωt) = f ∗(ωΩ)−ωM . (8)

Suppose hM and hΩ are two scaling factors (0-forms), such that ωM =
hMdu∧dv and f ∗(ωΩ) = hΩdu∧dv. Eq. 8 can be solved as

V (t) =
1

(1− t)hM + thΩ
∇g, (9)

where
Δg = hΩ−hM , (10)

and Δ denotes the Laplacian-Beltrami differential operator. Note that,
the above derivation only holds at t = 0. As system evolves over time,
V (t) varies in both magnitude and direction. Thus V (t) needs to be
solved at each time. Since g is essentially a harmonic scalar �eld
on M (see Eq. (10)), the corresponding gradient vector �eld ∇g is
guaranteed to be suf�ciently smooth for integration and free of extra-
neous critical points. Time integration of V (t) therefore yields a dif-
feomorphism. Note that pre-assignment of hM essentially provides a
straightforward mechanism to control in�nitesimal area variation from
the surface to the parameter domain. For an area-preserving mapping,
hM = 1. The following discussion sticks to this case. Finally, the pro-
posed authalic parameterization is given by f ◦φ−1

t=1 : M→Ω.

4 ALGORITHM

Now we discuss the discretization and algorithm corresponding to the
theoretical result presented above. Most major mathematical con-
cepts have existing conventional discrete forms [25], thus yielding a
consistent computational framework which can be readily carried out
in practice. More sophisticated discretization schemes can be inter-
changeably employed within the framework for the enhanced numeri-
cal approximation, which could be critical in certain extreme circum-
stances [4].

We approximate a surface by a triangular mesh Σ= (V,E,F), where
V = {vi} denotes the set of vertices, E = {ei j} the edge set, and F =
{ fi jk} the face set with 1 ≤ i, j,k ≤ n = |V |. The position of vertex
vi is denoted by vi ∈ R3 and the edge vector corresponding to ei j ,
which connects vi to v j , is ei j = v j − vi. The 1-ring neighbors of vi
are denoted as N1(i). All triangular faces assume counterclockwise
orientation. Our algorithm is directly developed upon the structure of
the original mesh.

For each vertex, the associated surface patch is chosen to be the
barycentric �nite volume, whose piecewise linear boundary connect-
s the midpoints of the incident edges to the barycenters of adjacent
triangles. Such �nite volume con�guration tiles the surface perfectly
without overlap, i.e., each point on the surface is covered once and
only once, and is insensitive to obtuse triangulations. Its value can be
simply computed as

Ai =
1
6 ∑

fi jk∈N1(i)

|ei j× eik|. (11)

Geometric properties are averaged within the patch and retained at the
center vertex. Our algorithm runs in two successive stages, which are
illustrated in Fig. 1 using the brain hemisphere surface model. In the
following, we describe each essential step of the algorithm in the order
it occurs in the pipeline.

4.1 Initial Parameterization

In practice, we have chosen to use conformal parameterization to ini-
tialize our system, mainly for its robustness and abundant theoretical
support. We �rst assume the target �at domain is a unit square, as
is commonly used to parameterize topological disks. Later, we will
show how this framework can be extended to accommodate more �ex-
ible boundary conditions. The square boundary condition is set up as
follows: �rst, the boundary is isometrically mapped to that of the unit
square D; next, a discrete conformal map of the interior is computed
in the least squares fashion.

By selecting an arbitrary boundary vertex and assigning a corner of
D to it, the initial boundary map can be sequentially laid out along ∂D,
with consistent edge orientation relative to the original surface mod-
el. To avoid length distortion, we allocate for each edge an amount of
the boundary proportional to its original length. Triangle degeneracies
may incur when all the three vertices are on the boundary and mapped
to one of the four sides of the square. Whenever such a triangle aris-
es, we split its non-boundary edge(s) by inserting a new vertex at the
midpoint. Moreover, when an edge spans one of the four corners of D,
the edge is broken by introducing a vertex at the domain corner, thus
splitting its incident triangle into two.

Having the boundary pinned down, the interior mapping can be
solved via a linear system very ef�ciently, as detailed in [24]. The
non-uniform local area stretching induced by the initial parameteriza-
tion can be characterized by the �nite model/parameter area ratio as-
sociated with each vertex vi, denoted as λi. If the parameterization is
conformal, λ is called the discrete conformal factor. Fig. 1(a) and 1(b)
show the lateral and mesial views of a cortical hemisphere, respective-
ly. The initial (conformal) parameterization is illustrated in Fig. 1(c),
the area distortion of which is color encoded in Fig. 1(d). Some lat-
eral cortical patterns suffer from the intensive geometric stretch which
seriously impairs the inspection of these regions. Note that, the sub-
sequent computation of authalic parameterization is deterministic to
the initial parameterization provided. It is interesting to see how the



(a) Lateral view (b) Mesial view (c) Initial parameterization (d) Initial per-vertex area ratio

(e) Harmonic scalar �eld g(t = 0) (f) Gradient vector �eld ∇g(t = 0) (g) Authalic parameterization (t = 1) (h) Area/angle distortion

Fig. 1. Algorithm pipeline. (a) and (b) give the lateral and the mesial views of a cortical hemisphere, respectively, which is provided for an authalic
parameterization. We �rst compute an initial parameterization (c) of the surface on the targeted domain, e.g., using least square conformal map [24];
(d) shows the per-vertex model/parameter area ratio induced by (c). Based on the parameterization result generated, a harmonic scalar �eld is
constructed on the domain, as shown in (e). Its gradient vector �eld is subsequently computed, as shown in (f). Finally, a dynamic diffeomorphic �ow
following the vector �eld direction is integrated over the time span of [0,1] on the domain, which gives rise to the proposed authalic parameterization
as shown in (g). (h) shows the statistics of the result in terms of area/angle distortion.

selection of initial parameterizations affects the numerical behaviors
of the present computational pipeline. On the other hand, since our
method can be performed upon any initial mapping, a wide range of
surface parameterization methods are possible for the initial step in
order to achieve particular functionalities relevant to the applications.
An extensive comparative study in this regard is beyond the scope of
this paper and will be conducted in the future.

4.2 Solving Δg = hΩ−hM

For the purpose of area-preserving parameterization, hM is always 1,
whereas hΩ is the per-vertex model/parameter area ratio at play. In
accordance with Eq. (1), hΩ is subject to a further normalization, such
that the integral of hΩ is equal to the total area of the domain.

Given a function f on the surface, its discrete version is a vector �g,
de�ned on the vertex set V . To solve Eq. (10) on a triangular mesh, the
discrete Laplace-Beltrami operator is linearly approximated at each
vertex. Therefore, Δg is estimated at vi as

Δg(vi) =
1
Ai

∑
j∈N1(i)

cotαi j + cotβi j

2
[g(v j)−g(vi)], (12)

where αi j and βi j are the two angles opposite to the edge ei j , respec-
tively. When considering all vertices of a mesh, Eq. (12) can be written
as a linear system:

Lx = b, (13)

where x =�g and b =�hΩ−�hM . The involved matrix L represents the
discrete Laplace-Beltrami operator, with its entries provided as fol-

lows:

Li j =

⎧⎪⎨
⎪⎩

∑k∈N1(i)
cotαik+cotβik

2Ai
if i = j,

− cotαi j+cotβi j

2Ai
if ei j ∈ E,

0 otherwise.

(14)

The matrix L is sparse. For this reason, Eq. (13) can be solved ef�-
ciently in linear time, e.g., using the preconditioned bi-conjugate gra-
dient method. In practice, we have observed that solving the normal
equations LT Lx = LT b yields more robust numerical behavior than di-
rectly solving Eq. (13). Fig. 1(e) shows the solved function g.

4.3 Computing ∇g

After the g is obtained, we can proceed to compute the corresponding
gradient vector �eld on the triangulated domain. We consider a face
fi jk with its three corners lying at vi, v j , vk in R3. Also, let n be a unit
normal vector perpendicular to the plane spanned by fi jk. Assuming
linear interpolation within each triangle, the gradient vector can be
easily computed by solving a 3×3 linear system:⎡

⎣v j−vi
vk−v j

n

⎤
⎦∇g =

⎡
⎣g j−gi
gk−g j

0

⎤
⎦ , (15)

for which an analytic solution exists. To obtain a unique vector at each
vertex, ∇g at vertex vi is de�ned as

∇gi =
1

∑ fi jk∈N1(i) α i
jk

∑
fi jk∈N1(i)

α i
jk∇g( fi jk), (16)

that is, an average of the gradients of the adjacent faces, weighted by
the incident angle α i

jk of each face fi jk at vi. The resulting vector �eld



is shown in Fig. 1(f).

4.4 Time Integration of V (t)

Recall that the Lie derivative is de�ned as the instantaneous change of
forms evaluated at φt(x), which is a dynamic de�nition (See Eq. (5)).
Besides time t, V (t) also depends on ∇g, which is in turn determined
by the current vertex positions. For this reason,V (t) needs to be updat-
ed at each step. Standard pathline computation is thus not applicable
for the integration of V (t). Instead, it is worth noticing that Eq. (9) can
be analytically integrated as

∫ 1

0
V (t)dt =

lnhΩ− lnhM

hΩ−hM
∇g. (17)

In particular, when hM = 1, we have

lim
hΩ→1

lnhΩ− lnhM

hΩ−hM
= 1, (18)

which means that, when hΩ is suf�ciently close to 1, the displacement
vector �eld can be properly approximated by ∇g. Our scheme is there-
fore motivated by keeping the analytical portion of the computation as
far as possible. Speci�cally, we divide the area-correcting process into
K sequential steps. At each step, the area element is only modi�ed by
an small amount δh towards the target setting in such a way that the
overall area adjustment is equal to Kδh. For each area increment of
δh, we let hΩ = 1+δh and hM = 1 as the input of the analytical inte-
gration (Eq. (17)), and the result gives the corresponding displacement
with a change of δh in the area element as expected. To prevent the
accumulation of numerical errors, in practice, we divide the remaining
area excess into K− k+ 1 equal allotments at step k and compute hΩ
based on the current factual progress as

hΩ = 1+
λk−1

K− k+1
, k = 1, . . . ,K, (19)

where λk is given by the current per-vertex surface/domain area ratio at
the beginning of step k. LetV (vi,k) denote the velocity �eld de�ned on
the vertex set V of mesh Σ, at step k and φ(vi,k) the induced mapping.
By the one-parameter group structure of diffeomorphisms, φ(vi,k) is
simply the sum of all induced displacements of vi plus the identity,
written as

φ(vi,k) = φ(vi,0)+
k

∑
i=1

∇gi, (20)

where φ(vi,0) denotes the initial parameterization of the original
mesh, and ∇gi the gradient of function g solved at step i. Note that
φ(V,K) gives the �nal discrete authalic map of mesh Σ at the end of
the �ow. The number of discrete steps is currently determined on a
test-and-re�ne basis. In general, a larger number of iteration step-
s result in more accurate approximations. Empirically, discretizing
this procedure into 50 steps can give satisfactory results for most mesh
models. As our method essentially differs from an optimization frame-
work, computation will not terminate until all the pre-determined steps
have been completed. At the moment, boundary vertices are �xed. In
the next section, we will show how this boundary condition can be re-
laxed. The �nal authalic parameterization of the cortical hemisphere
is shown in Fig. 1(g). Fig. 1(h) presents the statistics of the area (dark
red) and angle (blue) distortions; the employed metrics will be ex-
plained in Section 5.

The movement of vertices is in principle determined by the des-
ignated area changes. However, degenerate triangulation may under-
mine the discrete computation due to inaccurate approximation of the
Laplace-Beltrami operator. Before each step begins, we optimize the
underlying triangulation by performing combinatorial �ips to all �ip-
pable edges opposite to the straight angles. Note that, the geometry
of surfaces is realized by their R3 embedding. Throughout this pro-
cedure, the discrete sampling of the shape remains unchanged, but is
merely interpolated by a different triangulation.

4.5 Boundary Conditions
Recent advances in conformal surface parameterization [22, 20, 5, 31]
allow for a variety of rather �exible boundary conditions. Here, we
demonstrate how our method can adapt to these boundary conditions,
thus providing a seamlessly uni�ed computational framework for area-
preserving surface parameterization (�attening), in parallel with the
state-of-the-art conformal mapping techniques.

4.5.1 Circular Boundaries

For non-closed surfaces, possibly with holes, we typically map them
to certain canonical domains, such as disc or annulus, to facilitate var-
ious subsequent applications, such as 3D shape matching and regis-
tration [33, 36]. The centers and the radii of the boundary circles are
either determined by certain heuristics or by the geometries of the o-
riginal surface. It is therefore natural to restrict the boundary vertices
to the domain boundaries, while letting them slide with the �ow for
an authalic parameterization. This motion is in fact induced by the co-
variant derivative of V (t) in the tangential direction of domain bound-
ary ∂D. As a conventional practice, whenever the vertex moves away
from its inhabited space, it is subject to a projection along the radial
direction to bring it back to the track. Fig. 2 demonstrates an example
of applying the circular boundary condition to parameterizing surface
models homeomorphic to a disk.

4.5.2 Sphere

Many surfaces in real life, such as the brain surface, are often modeled
as a topological sphere, i.e., a closed surface of genus zero, thus is
preferred to be parameterized on a unit sphere (S2) without any topo-
logical changes. Our method can easily adapt to this case as well. To
achieve an initial parameterization of the surface onto the sphere, we
compute its conformal mapping using the method described in [12].
The Lie advection �owing to the area preservation is then performed
in the tangent spaces of such a spherical domain. To do so, we de-
compose the displacement vector �eld ∇g in each step into a normal
component ∇⊥g and a tangent component ∇T g. Let n denote the nor-
mal �eld of S2. For each vertex vi, the normal component ∇⊥g is
computed as

∇⊥g(vi) =< ∇g,n >vi n(vi), (21)

where < ·, ·> is a scalar �eld, with its pointwise value de�ned as the
inner product of two vectors in R3. Therefore, we also get its tangent
component by

∇T g = ∇g−∇⊥g. (22)

We call ∇T g the absolute displacement, since the domain is essentially
evolved by the tangent component. In practice, whenever a vertex
moves out of the unit sphere, it is pulled back by vi = vi/|vi|. Fig. 3
demonstrates an example in this case, using the model Bimba with
39994 remeshed triangles.

4.5.3 Virtual Cuts

A recent advance in surface parameterization is represented by a string
of conformal mapping techniques [22, 20, 5, 31] that allow global pa-
rameterizations of arbitrary surfaces via metric scaling within the class
of conformal equivalence. For the �nal �at metric to be embedded over
the Euclidean domain, a set of virtual cuts need to be introduced to the
abstract manifold to open it to a topological disk. However, the param-
eterization remains global and continuous in that both sides along the
cut can be perfectly adjoined under a rigid rotation and this property
is independent of the placement of the cuts. The resulting parameter-
ization is in fact a fundamental domain of the given surface, and the
necessary cut paths can be determined by a homology basis. Now we
demonstrate that an authalic counterpart sharing the same concept can
be conveniently obtained in this framework.

Suppose the “virtual” cut made to the original surface is spec-
i�ed as a subset ρ of edges in Σ. For each non-boundary edge
ei j ∈ ρ , it is split into two mated boundary edges e+i j and e−i j . A

vertex vi with n edges split in its 1-ring induces n equivalents {vk
i },

k = 0, . . . ,n− 1 in the resulting mesh. Given a pair of edge mates



(a) Model: Julius Caesar (b) Initial parameterization (t = 0) (c) Authalic parameterization (t = 1) (d) Area/angle distortion

Fig. 2. Authalic parameterization of a topological disk. (a) shows the Julius Caesar model containing 91780 triangles. This disk map (b) was
generated using the discrete Ricci �ow method [31]. The authalic parameterization is computed, as shown in (c), constrained by the circular
boundary condition. The statistics of the result is shown in (d).

(a) Model: Bimba (b) Initial parameterization (t = 0) (c) Authalic parameterization (t = 1) (d) Area/angle distortion

Fig. 3. Authalic parameterization of a topological sphere. Similarly, (a) shows the Bimba model with 39994 triangles, which is a closed genus
zero surface. Its spherical conformal parameterization is shown in (b). The corresponding authalic spherical parameterization is shown in (c). The
statistics of the result is shown in (d).

(a) Model: Rocker Arm (b) Initial parameterization (t = 0) (c) Authalic parameterization (t = 1) (d) Area/angle distortion

Fig. 4. Authalic parameterization of a genus one surface. (a) shows the Rocker Arm model with 40088 triangles, with genus one topology. The cut
paths are delineated in red. Its conformal parameterization is shown in (b). The corresponding authalic spherical parameterization is shown in (c).
The statistics of the result is shown in (d).

{e+i j ∈ N1(vk
i ),e

−
i j ∈ N1(v

k+1
i )} where N1(vk

i ) and N1(v
k+1
i ) denote the

respective 1-ring neighborhoods of vk
i and vk+1

i that share ei j in the
original mesh, a rigid motion T can be uniquely determined on the
planar domain, such that N1(vk

i ) coincides with T ◦N1(v
k+1
i ) exact-

ly at e+i j . Since
⋃n−1

k=0 N1(vk
i ) = N1(vi), the complete neighborhood

structure of vi can be reconstructed at vk
i with corresponding edges

perfectly aligned, pieced up in cyclic order by these partial 1-rings
{N1(vk

i )}, k= 0, . . . ,n−1, dispersed among vertex equivalents. When-
ever an operation is performed at vk

i other than the vertices assigned

with cone singularities, it is de facto treated as an ordinary vertex
within the mesh. Fig. 4 demonstrates an example of parameterizing
a genus one surface in the Euclidean 2D domain, in which the virtual
cuts are incorporated after parameterization. Ideally, the shapes of the
opposite boundaries should be identical by the nature of this treatment,
which can be easily zippered back to the original model with continu-
ity maintained across the cuts. Due to numerical errors induced in the
computation of T and its subsequent application to the remote 1-ring
pieces, those vertex equivalents fail to move consistently as time goes.
As a result, the continuity of the original model across virtual cuts is



impaired after the diffemorphic �ow. We are actively seeking better
treatment for the vertices along the cut boundaries, such that the con-
tinuity can be preserved.

4.6 Summary of Algorithm

Our algorithm is summarized in Algorithm 1 as follows:

Algorithm 1 Authalic Surface Parameterization using Lie Advection
Input: The original model M; the target domain Ω; and the number

of discretized steps n
1: Compute an initial parameterization f : M → Ω, e.g., using con-

formal mapping
2: for i = 0 to n do
3: Optimize triangulation (edge �ipping)
4: Compute the areal ratio factor (M/Ω→ λi)
5: Calculate hΩ for each discretized step, such that λi+1 = λi+δh
6: Solve the Poisson equation Δg = δh
7: Construct the gradient vector �eld ∇g
8: Apply the displacement �eld (approximated by ∇g) to the ver-

tex set V
9: Boundary regularization (if boundary constraints exist)

10: end for
Output: An automorphism ϕ : Ω → Ω, such that f ◦ϕ−1 gives the

�nal area-preserving parameterization

5 EXPERIMENTAL RESULTS

Our system is implemented on 64-bit Windows 7 platform using C++.
MATLAB computation engine is employed as a general purpose s-
parse linear solver and VTK/OpenGL for rendering and visualization.
The experiments are conducted on an Intel T6600 2.20GHz laptop
with 3GB RAM.

5.1 Numerics

Since �nite volume has been used to compute the area ratio hi, i =
M,Ω, we can reasonably expect good areal preservation in terms of
areas associated with vertices. To verify that the area element is pre-
served globally regardless of the triangulation, we instead build up our
distortion measures on their dual cells–triangular faces. To be speci�c,
we examine both the area distortion and the quasi-conformal distortion
per face over the mesh. The area distortion metric ϒ and the quasi-
conformal distortion metric Λ are computed respectively as follows:

ϒ = ln(γmax · γmin), Λ = ln
γmax

γmin
, (23)

where (γmax,γmin) are the larger and smaller eigenvalues of the Jaco-
bian of the af�ne transformation that maps the domain triangle to the
surface, normalized in such a way that the total area of the surface e-
quals that of the domain, as described in [28]. γmax and γmin represent
the largest and smallest local stretches among all possible direction-
s when mapping a non-zero vector from the domain to the surface.
For a conformal parameterization, we need γmax = γmin (Λ = 0), while
γmax · γmin = 1 (ϒ = 0) means area preservation. In both cases, a value
of 0 indicates no distortion at all. A mapping is isometric, if and only
if ϒ = Λ = 0. The advantages of using logarithmic values for the met-
rics include 1) the ideal (no distortion) is therefore uni�ed to the axis
origin (0); and 2) the bias between stretches along the two orthogonal
eigen-directions is eliminated.

The statistics of the area and the quasi-conformal distortions are
given for all the examples, respectively. The X axis denotes the val-
ues of distortion metrics ϒ and Λ, while the reading of Y axis denotes
the number of triangles that bear the corresponding distortion metrics.
As shown by the dark red histograms, the distribution of ϒ is highly
concentrated about zero, meaning that the area of triangles are well
preserved throughout all the experiments. For general surfaces with
non-trivial Gaussian curvature, it is in general impossible for a map-
ping to be both area-preserving and angle-preserving, i.e., isometric,

Table 1. Numerical Results of Examples Shown throughout This Paper

Fig. |F | Iter. Time Init. Map
1 (Brain Hemisphere) 48287 50 57s [24]
2 (Julius Caesar) 91780 50 2m:14s [31]
3 (Bimba) 39994 50 50s [12]
4 (Rocker Arm) 40088 150 2m:49s [31]
5 (Full Brain) 99738 200 8m:32s [24]

as theoretically con�rmed by the classical results from Riemannian
geometry. Hence, area preservation will inevitably induce angle dis-
tortion, which in fact is expectable after application of the aforemen-
tioned parameterization procedure. For this reason, the distribution of
Λ spans from 0 to 3 without any obvious patterns. However, as visual-
ly demonstrated by these examples, the induced angle distortion is not
signi�cant. From the experiments, we also notice that the severe dis-
tortion is concentrated at the boundary and spread very little inwards.
This is because, while constrained by each particular boundary con-
dition, boundary vertices cannot freely moves as directed by the area
restoring �ow (V (t)). Thus, the area manipulation is not fully enforced
on the boundary.

Table 1 summarizes the numerical results of our experimental im-
plementation, which is indexed by the �gure number (column 1) and
includes information about mesh sizes (column 2), the number of dis-
cretization steps (column 3), the computation times taken(column 4),
and the methods used for the initial parameterization (column 5). The
computation times only account for the procedure of authalic area cor-
rection based on the initial inputs. As we can see from Table 1, the
computation times scale linearly in accordance with mesh sizes and
the number of iterations.

5.2 Quantitative Surface-based Analytics

Although the presented method is applicable to general surfaces in
principle, of particular interest to us are its applications to brain imag-
ing modality visualization and analytics. Many neurological phenom-
ena can be indicated by changes in the various brain imaging mea-
surements. With a focus on the cerebral cortex, which plays a key role
in many aspects of human intelligence and is profoundly associated
with a variety of brain diseases and neurological disorders, we brie�y
introduce a visual analysis framework that is designed to integrate var-
ious complementing neuroimaging modalities from multiple sources,
so that quantitative assessments from individual modalities can be for-
malized into a uni�ed data structure to facilitate advanced data mining
and visualization.

In this application, surface parameterization (�attening) constitutes
a major means of visualizing highly convoluted anatomical surfaces,
allowing clear examination of many pathologies once deeply buried
within the folds [19]. Moreover, cross-subject analysis of brain cor-
tical structures and functions needs, as a prerequisite step, the align-
ment of homologous regions. By parameterizing brain surfaces on
a common domain, they are naturally correlated via homotopic pa-
rameter coordinates. Suppose M1 and M2 are two brain surfaces, and
ϕ1 : M1 → R2 and ϕ2 : M2 → R2 are the parameterizations, respec-
tively. Through the composition ϕ−1

2 ◦ϕ1 : M1 → M2, a one-to-one
correspondence is de�ned between M1 and M2. To simplify the pro-
cess, 3D surfaces can be represented as a shape vector image �g(u,v)
retained in a 2D domain [18], where the co-registered modalities are u-
niformly indexed by regular pixels. In this procedure, the brain surface
is sliced open along the medial plane at the bottom, without passing
any signi�cant anatomical features. The entire brain surface is then
mapped to a rectangle with the height/width ratio equal to 1:2. In al-
most all situations, the top and lateral portions of the brain surface,
where the most meaningful anatomies and functional regions reside,
are squeezed into a very small area of the domain after the conformal
mapping (Fig. 5(c)). With the uniform sampling through the entire do-
main, shape vector images turn out not to have enough samples, at the



locations with severely squeezed distortion, to capture the geometric
as well as neurological characteristics of the brain cortex. This issue is
well addressed by employing our newly proposed approach. As shown
in Fig. 5(d), now the surface sampling is much more evenly distribut-
ed. The shading effects are generated by using the original normals in
order to visualize the correspondence between the brain surface and
the rectangular domain.

Normal brain function is dependent on the interactions between
specialized regions of the brain which process information with lo-
cal and global neurological networks. To capture the statistics of ab-
normal brain activity, a suf�cient number of sampling points should
be grouped at certain resolution. Each unit forms a cortical element.
Since the surface of the brain is uneven and varies across human sub-
jects, the task of subdividing it into a set of equal geometric elements
is nontrivial. Instead, we can easily de�ne �nite homotopic cortical el-
ements in the parametric domain with simple isotropic grid, as shown
in Fig. 5(c) and 5(d). Then, the elements can be reversely mapped
back into the subject’s native space, probing any modalities of interest.
Note that, thanks to the area-preserving property of the proposed pa-
rameterization method, each element accounts for an identical amount
of portion in the original brain surface. For the purpose of compar-
ison, we also include a parametric domain generated by the confor-
mal parameterization. Two homotopic cortical elements are highlight-
ed in red and blue, respectively. Using conformal parameterization,
the element highlighted in red will be assigned with excessive cortical
area, while for the element highlighted in blue, little feature is covered.
This drawback is greatly eliminated by using the authalic parameter-
ization. As shown in Fig. 5(d), both elements can capture an equal
patch on the brain surface. With these well-de�ned equiareal cortical
elements, a variety of functional patterns can be readily quanti�ed on a
per element basis. In our experiment, the functional characteristics of
brain cortical activation is captured by Positron Emission Tomography
(PET), while the detailed structural information is obtained from Mag-
netic Resonance Imaging (MRI). In order to integrate PET and MRI
data, a normal fusion approach is performed in the native space of each
subject, as illustrated in Fig. 5(a). Typically, the PET tracer concen-
tration is calculated by averaging its measurement along the inverse
normal direction within 10mm from the cortical surface. The obtained
value is then mapped to the brain surface (Fig. 5(b)). Once normative
brain patterns for each element are derived from a group of control
subjects, whether a particular cortical element derived from a patient
falls into the abnormal can be subsequently determined according to
the comparison against the normative reference. The PET deviation
degree is the basis for the classi�cation of functional abnormality of
cortical elements. This framework allows consistent integration and
quantitative analysis of multiple functional brain patterns. The inclu-
sion of other imaging data such as gray matter thickness measured by
MRI is conceivable. Since in reality the deviation degrees of different
modalities rarely coincide, it is interesting and important to examine
the degree of agreement among several modalities and its statistical
signi�cance. We will explore along this direction in the future work.

6 CONCLUSION

In this paper, we have presented a surface parameterization methodol-
ogy that is rigorously area-preserving in its continuous theory. Given
an initial parameterization, an area-preserving one can be ef�ciently
and uniquely obtained via the Lie advection of area forms along the
domain. This approach can be easily extended to parameterize more
general surfaces as long as the initial parameterization is provided.
Our implementation strives to preserve the analytical ingredients of the
computation as far as possible. As a result, our method only involves
moderate computation and is stable in getting consistent results, as
opposed to an optimization approach. We have also demonstrated the
utility of our method by creating area-preserving maps of both cortical
hemispheres and the entire cortex. As shown in the �gures and the
statistics throughout the experiments, the property of preserving area
structure of the original surface may better facilitate present quantita-
tive analysis frameworks for various neuroimaging data.

A known limitation of the cotangent formulation of Laplace-

(a) MRI/PET integration (b) Cortical PET modality

(c) Conformal parametric domain

(d) Authalic parametric domain

Fig. 5. Application of quantitative surface-based analytics. (a) Integra-
tion of functional Positron Emission Tomography (PET) imaging data
and the structural Magnetic Resonance Imaging (MRI) imaging data;
(b) the brain surface mapped with the PET value. (c) the parametric
domain generated using conformal parameterization; (d) the parametric
domain generated using the proposed authalic parameterization.

Beltrami operator is that it deals not well with degenerate meshes.
Adaptive edge �ipping and subdivision may alleviate this problem to
some extent. Alternatively, more delicate and robust approximation
schemes of Laplace-Beltrami operator, such as the one recently pro-
posed in [4], could be used when presented with extremely skinny
triangles.

We have observed that long protrusions can result in severe squeez-
ing effects on a �at domain in areas approaching their bases. Because
for general manifolds, no isometric mapping exists except for a few
special cases, it is essentially a compromise at the expense of area
preservation. However, a rigorous area-preserving parameterization
technique is still of fundamental importance in both theoretical and
practical senses, as it answers the open problem left in [7] by showing
that, other than the conformal mapping, its authalic counterpart can be
practically found in a mathematically rigorous manner.

Besides surface parameterization, another potential area that may
bene�t from this work is point-based graphics [2, 1]. When it deals
with implicit surface and point set surface visualization, a major issue



is to redistribute sampling points within a surface to facilitate compact
and �exible modeling of 3D objects. The underlying computational
model is typically a dynamical particle system [26]. Based on some
local potential energy pro�les, the inter-particle forces determine the
�nal density and location of sampling points [23]. It is not surprising
that the involved computation is expensive. And similar to function-
al parameterization methods, it gives rise to the common pitfalls of
optimization-based approaches. Our method provides a radically dif-
ferent mechanism to control point samples and distribute them accord-
ing to the needs of applications, which is formulated in the language of
differential forms on the manifold. Exact sample spacing control can
be achieved via a prescription of area scaling factor. Unlike most clas-
sical methods, the computation is deterministic. The particle system
generated using our method can provide a uniform sampling densi-
ty over the surface from the parametric domain, but not isotropic in
general.

We believe the computational performance and runtime for this ap-
proach can still be improved. A multiresolution mesh representation,
e.g., [17], can be directly incorporated into our method, giving rise
to a hierarchical, coarse-to-�ne approach. Beside brain surface map-
ping, we also envision a broad range of applications of Lie advection
in graphics, geometric modeling and visualization, such as geometry
images [11], point-set surfaces [1], and glyph packing [23].

APPENDIX

A DIFFEOMORPHISM

Suppose M and N are two differentiable manifolds, a bijective map
f : M → N is a diffeomorphism if and only if f and its inverse f−1

are both differentiable. All diffeomorphisms of M to itself are called
the diffeomorphism group of M. Here we denote it as Diff(M). A
prominent advantage of diffeomorphisms, compared with other map-
s, is that the neighborhood structure is preserved, i.e., connected sets
remain connected while disjoint ones remain disjoint, and the coordi-
nates are transformed smoothly. For this reason, diffeomorphism has
become a major non-rigid deformation model used for image regis-
tration and comparison. Suppose Ω is the domain that sustains the
diffeomorphic transformation ϕ : Ω→Ω. Computation of ϕ typically
involves a smooth time-dependent vector �eld v : Ω× [0,1]→V where
V is a Hilbert space of smooth, compactly supported vector �elds on
Ω, such that ϕ is estimated as the end point of the �ow associated with
v(Ω, t), t ∈ [0,1]. More speci�cally, the evolution of a curve φ v in
the space of diffeomorphisms Diff(M) can be de�ned via a transport
equation

dφ v
t (x)
dt

= vt(φ v
t (x)). (24)

The function φ v
t (x) bears the one-parameter (time) group structure,

that is, φ v
s (φ v

t (x)) = φ v
s+t(x) with φ v

0 (x) = x for all s, t ∈R. Integrating
Eq. (24) over time t,

ϕ(x) = φ v
0 (x)+

∫ 1

0
φ v
t (x)dt, x ∈Ω, (25)

gives a diffeomorphism ϕ(x) = φ v
1 (x) with φ v

0 (x) = Id. In practice,
ϕ(x) can be ef�ciently computed in the Lagrangian frame. The dif-
feomorphic �ow is observed by following the streamlines of running
particles. Lagrangian-like schemes are known to be computationally
stable and provide good tolerance to numerical-accuracy related errors
for the choice of time step.

B DIFFERENTIAL FORMS

Differential forms are at the foundation of modern differential geom-
etry, which consistently express integral and differential equations on
smooth and curved spaces in a coordinate-independent way. More-
over, they often re�ect underlying geometric structures and invariants
in concise forms. Formally, let M be a smooth manifold. All tangential
vectors at a point p ∈M form a vector space TpM, namely the tangent
space to M at p. A k-form ωk is an anti-symmetric, covariant tensor

�eld of rank-k over M, such that at each point p ∈ M, ωk de�nes a
multi-linear map

ωk : TpM×·· ·×TpM→ R, (26)

which changes signs for odd permutations of the components. Note
that a sub-manifold of M naturally inherits a k-form from M by re-
stricting the linear map to the domain that is the product of tangent
spaces of the sub-manifold.

We consider surfaces as 2-manifolds embedded in R3. In such a
case, non-zero forms only exist for dimensions ranging from 0 and
2, which can be intuitively conceived as a scalar �eld for 0-form, a
tangent vector �eld for 1-form, and a bivector (induced by two copla-
nar vectors) �eld for 2-form. In turn, applying forms to vector �elds
amounts to

• 0-form: ω0(v)≡ ω0v;

• 1-form: ω1(v)≡ ω1 · v;

• 2-form: ω2(u,v)≡ ω2 · (u× v).

To facilitate formulation of how the authalic surface mapping is de-
rived, we also introduce a set of essential operators that are used to
manipulate differential forms:

• Exterior Derivative (d). It generalizes the notion of the differen-
tial of a function to forms. According to the rank k of the form
ωk, d corresponds to the gradient ∇, the curl ∇×, and the diver-
gence ∇·, when k = 0,1,2, respectively.

• Hodge Star (�). It maps a k-form to a complementary (n− k)-
form. According to the dimension of the form, we de�ne it as

� f = f du∧dv, �du = dv, �dv =−du, � f du∧dv = f .

• Wedge Product (∧). It constructs a higher degree form by ω i+ j =
ω i∧ω j, extending the notion of exterior product to forms. In R3,
the wedge product of two 1-forms, α and β , can be identi�ed via
the standard cross product as α ∧β ≡ α×β .

• Interior Product (iV ). It is de�ned to be the contraction of a dif-
ferential form with a vector �eld V . In our case, it can be com-
puted as

iV ω1 = ω1 ·V, iV ω2 = ω2×V.

• Lie Derivative (LV ). When de�ned on differential forms, it ex-
tends the notion of directional derivative, which instead estimates
the change of one form along the �ow of the given vector �eld
V . By Cartan’s homotopy identity, LV = d(iV )+ iV d.

Beware that our de�nition of operators is speci�c to surfaces. Care
should be taken when extending them to other spaces. We also re-
fer readers to [6] and references therein for a complete exposition of
differential forms in the context of computational modeling.

The area element indeed is a 2-form on the surface, which acts on
two tangent vectors u,v ∈ TSp given a point p, and returns the area
of the parallelogram spanned by them. Consider a diffeomorphism
f : M→ N with ωN being the area element on N. The pullback of ωN
is a 2-form on M, denoted as f ∗(ωN), and de�ned as

f ∗(ωN)(u,v) = ωN(d f (u),d f (v)). (27)
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