
eering
sional
ology.
edral

s asso-
control
eature-

plex
inho-
inter-
iments
n tech-

Downlo
Jing Hua
Computer Science, Wayne State University

Ying He

Hong Qin

Computer Science, Stony Brook University

Trivariate Simplex Splines for
Inhomogeneous Solid Modeling
in Engineering Design
This paper presents a new inhomogeneous solid modeling paradigm for engin
design. The proposed paradigm can represent, model, and render multidimen
physical attributes across any volumetric objects of complicated geometry and top
A modeled object is formulated with a trivariate simplex spline defined over a tetrah
decomposition of its three-dimensional domain. Heterogeneous material attribute
ciated with solid geometry can be easily modeled and edited by manipulating the
vectors and/or associated knots of trivariate simplex splines. We also develop a f
sensitive fitting algorithm that can reconstruct a compact, continuous trivariate sim
spline from measured, structured, or unstructured volumetric grids of real-world
mogeneous objects. In addition, we propose a fast direct rendering algorithm for
active data analysis and visualization of the simplex spline volumes. Our exper
demonstrate that the proposed paradigm augments the current engineering desig
niques with new and unique advantages.fDOI: 10.1115/1.1881352g
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1 Introduction and Motivation
Real-world objects are active, responsive, and anisotropic

tentimes, they are of arbitrary topology and complex geom
The fundamental objectives in engineering design are to u
biguously model physical volumetric objects, interactively vis
ize their geometric and physical attribute properties, and r
ously analyze their kinematic and dynamic natures. With
advent of ever-increasing computing power and more adva
data acquisition technologies, solid geometry has quickly ga
popularity as an intuitive and natural paradigm for these purp
New and powerful solid representations underpin the succe
solid modeling and relevant applications. To date, the vast m
ity of popular solid modeling approaches, as well as comm
used solid modeling systems, are built upon the following
metric foundations: constructive solid geometrysCSGd, boundary
representationsB-repsd, and cell decomposition. When our go
are to reconstruct heterogeneous models of physical objects
continuous properties and further model and visualize the ob
prior representations and the current state of the art in engine
design fall short in offering designers an integrated parad
to represent complex solid geometry, arbitrary topology,
continuously varying material attributes in a single framew
simultaneously.

To model heterogeneous volumetric objects with high-o
continuity, techniques based on splines such as B-splines or
Uniform Rational B-SplinessNURBSd f1–4g are frequently used
Nonetheless, modeling with B-splines or NURBS has se
shortcomings. Its modeling scope is extremely constraine
terms of geometric, topological, and attribute aspects. F
B-spline and NURBS are defined over a regular, tensor-pro
domain. A single B-spline or NURBS cannot represent volume
complex topology without patching or trimming operations. F
thermore, patching multiple B-splines or NURBS to form co
plex topology is not easy to control. Second, tensor-pro
splines are essentially smooth everywhere. It is difficult to m
high-frequency features. Third, when refining a region of inte
in a tensor-product spline patch, it will introduce too many e
degrees of freedom in other less interesting regions near
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order to retain its regular structure. Attractive properties suc
local adaptivity and multiresolution are rather difficult to achie

To overcome the above difficulties, we propose an integ
approach for representing, modeling, and rendering of mu
mensional physical attributes across any volumetric object.
goal is to demonstrate that the trivariate simplex spline is a p
ising primitive for both visualization and modeling in enginee
design tasks, especially for representing and visualizing hete
neous models of physical objects and their material prope
Our model makes use of a more general and flexible tetrah
domain and offers a compact, continuous representation bec
is a piecewise polynomial of the lowest possible degree an
highest possible continuity everywhere across the entire te
dral domain. It unifies geometry and attribute properties ove
mains of complex topology. It is possible to represent a com
cated heterogeneous object with a single trivariate simplex s
without any additional operations of trimming or patching, w
the geometry of the object is explicitly represented by the sp
For example, given a degreen for the trivarite DMS-splinef5g,
which uses simplex spline as basis functions, the represen
scheme can achieveCn−1 continuity over smooth regions. Mea
while, by placing control points and their associated knots in
tain locations, variable continuity is readily accomplished inc
ing a C0 continuity that defines sharp features. This proper
ideal for data reduction when reverse engineering a contin
spline model from the discretized data inputs.

Since we develop the trivariate simplex spline for both s
geometry and the material attributes associated with the sol
ometry simultaneously, it facilitates the modeling of hetero
neous objects. The feature-sensitive fitting algorithm that we
velop can reconstruct a more compact trivariate simplex s
from a structured or arbitrary unstructured volume measured
the real world. It reconstructs the geometry and the assoc
material attributes simultaneously. TheCn−1 continuity andC0

continuity can both be modeled with ease using simplex sp
Such flexibility allows us to model continuously varying mate
distribution. It may be noted that, in our framework, we use ti
varying knots instead of fixed knots, which offer more freed
and improve accuracy for approximation. The knots are expl
and automatically determined by optimizing a specific objec
function. This representation can also enable the strong mult
lution modeling capability through interactively subdividing a
-

region of interest, allocating more knots and control points ac-rs.
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cordingly. In addition, we propose a fast direct rendering a
rithm for interactive data analysis and visualization of the sim
spline volumes. When visualizing this type of solids, the res
pling or interpolation process is no longer necessary at a
sincluding position, derivative, etc.d can be evaluated anywhe
analytically and computed efficiently for volume rendering.

1.1 Related Work. Research on volume modeling us
B-splines or NURBS has received much attention in the mod
community in recent years. Raviv and Elberf1g presented a thre
dimensionals3Dd interactive sculpting paradigm that employe
set of scalar uniform trivariate B-spline functions as object re
sentations. Schmitt and Paskof3g presented an approach for co
structive modeling of Function Representation FRep solids
fined by real-valued functions using four-dimensioinals4Dd
uniform rational cubic B-spline volumes as primitives. Hua
Qin f2g presented a haptics-based direct manipulation and e
ration of scalar B-spline volumes. Martin and Cohenf4g presente
a completed mathematical framework for representing and
tracting volumetric attributes using trivariate NURBS.

Multivariate simplex splines for approximation theory h
been extensively investigated in mathematical science for m
years. Motivated by an idea of Curry and Schoenberg for a
metric interpretation of univariate B-splines, de Boorf6g first pre-
sented a brief description of multivariate simplex splines. S
then, their theoretical aspects have been explored extens
From the point of view of blossoming, Dahmen et al.f5g proposed
triangular B-splines. In contrast to the theoretical advances
application of multivariate simplex splines has been unde
plored. Greiner and Seidelf7g demonstrated the practical feasib
ity of multivariate B-spline algorithms in graphics and shape
sign. Pfeifle and Seidel proposed a fast evaluation techniqu
quadratic bivariate Dahmen, Micchelli, SeidelsDMSd-spline sur
facesf8g and demonstrated the fitting of triangular B-spline
faces to scattered data through the use of least squares an
mization techniquesf9g. Qin and Terzopoulosf10g presente
dynamic triangular NURBS, a free-form shape model. He and
f11g presented an approach for reconstructing a triangular B-s
surface from a set of scanned 3D points. To the authors’
knowledge, there is no existing research work that applies m
variate simplex splines to represent solid geometry, model its
erogeneous material attributes, and reconstruct continuous
metric splines from discretized volumetric inputs via data fitt

2 Trivariate DMS-Spline Volumes
Analogous to a tensor product, trivariate B-spline volumef1,4g,

we can instead use simplex splines to model volumetric ob
To motivate our rationales, we have detailed some major ad
tages of multivariate simplex spline volumes over conventi
tensor-product B-spline volumes in Section 1.

2.1 Trivariate Simplex Splines. Throughout this paper, w
employ a trivariate simplex spline to represent and extract
solid geometry and its volumetric attributes. Now, we shall rev
the formulation of the trivariate simplex splines and summa
their analytic and geometric properties.

A degreen trivariate simplex spline,Msu uu0,¯ ,un+3d, can be
defined as a function ofuPR3 over the half-open convex hull
a point set,V =fu0,¯ ,un+3d, depending on then+4 knots,ui

PR3, i =0,¯ ,n+3. The basis function of trivariate simpl
splines may be formulated recursively, which facilitates p
evaluation and its derivative and gradient computation. Whn
=0,

Msuuu0, ¯ ,u3d = 5 1

uVolR3su0, ¯ ,u3du
, u P fu0, ¯ ,u3d

0, otherwise
6

and whenn.0, select four points,W =huk0
,uk1

,uk2
,uk3

j, from V

such thatW is affinely independent, then
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Msuuu0, ¯ ,un+3d = o
j=0

3

l jsuuWdMsuuV \ hukj
jd s1d

whereo j=0
3 l jsu uWd=1 ando j=0

3 l jsu uWdukj
=u.

The directional derivative ofMsu uVd with respect to a vectorv
is defined as follows:

DvMsuuVd = no
j=0

3

m jsvuWdMsuuV \ hukj
jd s2d

wherev=o j=0
3 m jsv uWdukj

ando j=0
3 m jsv uWd=0. In the interest o

conserving space, we leave more theoretical discussions to
treatments of simplex splines in the references and elsewhe

2.2 Trivariate DMS-Spline Volumes. In f5g, Dahmen, Mic
chelli, and Seidel presented a multivariate B-spline scheme c
DMS-spline, based on blending functions and control vectors
surface scheme is also called a triangular B-spline, which
been studied inf7–10,12g.

We apply the trivariate DMS-spline to represent both solid
ometry and its associated physical attributes in engineerin
sign. To the authors’ best knowledge, we pioneer the us
trivariate DMS-spline in solid modeling and visualization. LeV
be an arbitrary proper tetrahedralization ofR3 or some bounde
domainD,R3. Here, “proper” means that every pair of dom
tetrahedra are disjoint, or share exactly one vertex, one ed
one face.

To each vertext of the tetrahedralization, we assign a k
cloud, which is a sequence of pointsft0,t1,¯ ,tng where t0; t.
For every tetrahedronI =sp ,q ,r ,sd, we require

• all of the tetrahedrafpi ,q j ,r k,slg with i + j +k+ l øn are non
degenerate

• the set

interiorsùi+j+k+lønfpi,q j,r k,slgd Þ x s3d
• if I has a boundary triangle, the knots associated to

boundary triangle must lie outside ofV

We then define, for each tetrahedronI and i + j +k+ l =n sin the
following, we useb to denote 4-tuplesi , j ,k, ldd, the knot sets

Vb
I = fp0, ¯ ,pi,q0, ¯ ,q j,r 0, ¯ ,r k,s0, ¯ ,slg s4d

The basis functions of normalized simplex splines are the
fined as

Nb
I sud = udspi,q j,r k,slduMsuuVb

I d s5d

where udspi ,q j ,r k,sldu is six times the volume ofspi ,q j ,r k,sld.
Like the ordinary tensor-product B-spline, a trivariate simp
spline volume of degreen over an arbitrary tetrahedral domain
the combination of a set of basis functions with control vectorcb

I

ssud = o
IPV

o
ubu=n

cb
I Nb

I sud s6d

Like B-splines, the non-negative basis functions of sim
spline volume can be normalized to sum to unity. They ha
number of nice properties, such as the convex hull property,
support, and affine invariance. Shape design based on a triv
DMS-spline volume includes the specification of a domain t
hedralization, knot sequences, and control points to genera
initial shape. The initial shape is then refined into the final de
shape through interactive adjustment of domain tetrahedraliz
control points, and knots. The geometric flexibility of simp
spline volumes provides great power on its shape editing. Fig
shows the volume rendering of 10 quadratic DMS-spline b
functions, where the numbers are 4-tuples of vertices of a
tetrahedron. Figure 2sad shows a cubic trivariate DMS-spline so

corresponding to a domain with a single tetrahedron. Note that our
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trivariate DMS volumes represent not only boundary geom
but also interior solid geometry. They can represent physic
material attributes over the entire solid as well. Figure 2sbd shows
scaled tetrahedra of the solid in order to emphasize its none
solid interior geometry.

For a general trivariate DMS-spline volume, each domain
rahedronI has its own set of control pointscb

I . However, in this
paper, we consider a more restricted class of volumes by sh
respective control points along common triangles of two adja
tetrahedra in parametric tetrahedralization. Splines with sh
control points have a direct visual effect in geometric and s
modeling. More importantly, as proved by Dahmen et al.f5g, a
degreen trivariate DMS-spline with shared control points can
evaluated with the efficiency of a degreen−1 spline.

ssud = o
IPV

o
ubu=n−1

ĉb
I sudNb

I sud

where ĉb
I sud=om=0

3 cb+em
I

lmsu upi ,q j ,r k,sld and em=sdi,mdi=0
3 , m

=0,1,2 as thecoordinate vectors.
This property can significantly improve the software system

rendering a DMS-spline volume. It also implies that the kn
ht i,nu i PNj have no effect on the value ofssud.

Note that, for our trivariate DMS-spline volumes, the used
rahedral domain does not need to undergo a separate para
ization process, because it is already conforming to the 3D p
cal domain for material attributes. Thegeneralizedcontrol vectors
are nowsn+3d vectors, including control pointsspx,py,pzd for the
solid geometry, and control coefficientssg1,¯ ,gnd for the at-
tributes, wheren denotes the number of attributes associated
the geometry.

2.3 Coupling Solid Geometry and Physical Attributes.In
our framework, we consider that a control coefficientsand possi
bly other vector-based quantities withn componentsd is associate
with a corresponding control point and evaluated with the ge
etry simultaneously based on the same tetrahedral domain. I

Fig. 1 Volume rendering of 10 quadratic DMS-spline basis
functions

Fig. 2 „a… A cubic trivariate DMS-spline solid corresponding to
a single tetrahedral domain with 20 control points and „b… the
tetrahedra of the designed solid object are scaled to show the

interior of the solid
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way, we shall generalize the DMS-spline technique from geo
ric domains to visual or material domains. Typical mate
oriented examples include: mass, damping, stiffnessssuch a
strain and stressd, and displacement for solid physics; or dens
velocity, and pressure for fluid mechanics, etc. These attri
may be assigned at the control points or fitted by using both
trol vectors and knots. Other commonly used visual informa
include: color, texture, intensity, opacity, transparency, etc.
flexibility permits our paradigm to be employed in a wide var
of applications involving continuous domains, such as finite
ment analysis, virtual sculpting, and computational fl
simulation.

Consider that control coefficientsgb
I are associated with contr

points pb
I sgb

I may be a multidimensional vectord. Besides soli
geometry, a materialse.g., densityd function overssud can be si
multaneously defined as

Fg

s
Gsud = o

i
Fgb

I

pb
I GNb

I sud s7d

whereg can be color, texture, mass, temperature, or other v
or material functions as stated above. Visual and material m
ing is indispensable for computerized virtual environments.
sides commonly used material distributions in classical mec
ics, it can be generalized to heat transfer, electricity, and be
The diverse set of these novel solid models are very pow
because they can potentially unify geometric, topological, k
matic, material, and dynamic properties.

The field attributes can be modified by directly changing
control coefficients stored at the control points. In addition
moving the control points, we can perform free-form deforma
sFFDd of the underlying geometric space. As a result, this pr
dure deforms the field properties and provides an alternate
action mechanism. The geometric space over which the fie
defined can be of very complicated topology, which adds fu
shape-editing flexibility.

3 Multiresolution Modeling
Based on flexible simplex splines, we can readily achieve

tiresolution modeling of heterogeneous solid objects. The m
resolution capability is achieved by interactively subdividing
region of interest and allocating more knots and control ve
accordingly.

3.1 Interactive Tetrahedralization. We use Delaunay tetr
hedralization to construct a tetrahedral domain, which serv
the tetrahedral domain of the trivariate simplex spline.

For constructing Delaunay tetrahedralization for a 3D point
we make use of the incremental flip algorithm propose
f13,14g. The procedure to update a tetrahedralization is to i
one new vertex at each step. Then, a sequence of action
applied to modify the tetrahedralization locally. Each flip ac
consists of replacing one, two, or three adjacent tetrahedra
four, three, or two new tetrahedra, respectively. When the
vertex lies either on a triangular face or on an edge of the cu
tetrahedralization, other face flips may be needed. When per
ing Delaunay tetrahedralization, the user has an option to en
the quality constraintssincluding volume of tetrahedron, etc.d.

The user can also interactively specify boundary constr
ssuch as points, edges, polygons, or cellsd. We implement th
boundary-conforming Delaunay tetrahedralizationf15g, which
tries to recover the missing boundary edges of the piecewise
complexes from its current Delaunay tetrahedralization by in
ing new points.

3.2 Geometric Editing Using Control Points.With this flex-
ible modeling technique, we can straightforwardly design s
geometric shapes with sharp features and associated
frequency material properties. Since the control vectors inc

the position of control points and associated control coefficients,
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editing of control points and/or control coefficients offers m
powerful modeling capabilities. Moving control points around
directly lead to a desired deformation of the underlying m
easily. Usually when the number of control points is very larg
is tedious and relatively difficult to manipulate the control po
individually. In our system we provide FFD tools to allow user
move control points.

Based on our experiments, we observe that associating c
points to a domain in such a way, locating control points at
edges of tetrahedra of the domain can well preserve the shap
features represented by the original domain. The differenc
tween the geometry of the domain and the resulting DMS
object is very small. For example, for a DMS-spline of degren,
we place control points on all the vertices of its domain tetrahe
In addition, we placen−1 control points on each edge of t
domain tetrahedra, which divide the edge inton equal-length line
segments. Figure 3 shows an illustration. Figure 3sad is a tetrahe
dral domain. After associating control points as described ab
the corresponding DMS-spline solid object can be evaluate
shown in Fig. 3sbd. The resulting solid model exhibits very co
plex topology, which is genus-20.

Figure 4 shows another example. The user first builds a
piecewise linear complex as shown in Fig. 4sad, then our system
generates its quality conforming Delaunay mesh. Badly sh
elements from the mesh are eliminated and replaced with
shaped ones. This is done by automatically inserting addit
points into the current mesh. From Fig. 4sbd, we can see that mo

Fig. 3 A DMS-spline solid object corresponding to the tetrahe-
dral domain: „a… a domain tetrahedralization and „b… volume
rendering of the resulting solid model, which is genus-20

Fig. 4 „a… The piecewise linear boundary constraints that the
user specifies; „b… the multiresolution tetrahedralization con-
forming to the piecewise linear boundary constraints; „c… the
color map of material distribution of the designed object; and
„d… volume rendering of the designed object, where we can see

that all the geometric shape features are preserved.

152 / Vol. 5, JUNE 2005
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knots are generated around feature edges. By associating c
points with the defined domain, all of the features are preserv
the resulting DMS solid of degree 4. Please refer to Fig. 4sdd.

3.3 Attribute Editing Using Control Coefficients or Con-
trol Points. Besides modeling solid geometry, the user can e
edit associated physical or material attributes as well. Th
achieved by editing control coefficients at the corresponding
trol points, because the underlying material distribution is, in
a trivariate simplex spline defined over the same tetrahedr
tion. In the most simple form, thesmultidimensionald control co-
efficients can be in one-to-one correspondence to their co
point counterparts, which are used to define arbitrarily cu
solid geometry over the same parametric domainswhich is the
initial tetrahedralizationd. However, local refinements for mater
modeling are frequently desirable in order to represent h
frequency features in the material domainf16g. In a nutshell, fea
tures may include critical points, field discontinuity, hi
frequency regions, etc. During a design procedure, if we fix
geometric shape of a solid object by not changing the positio
control points, we can edit the associated attribute field within
solid geometry independently through changing attribute co
coefficients in the control vectors. If we change the geom
control points, the shape of the object will be changed as
scribed in Sec. 3.2, and the associated attribute field defined
attribute control coefficients will also change following
change of the geometric shapes. Therefore, by moving the c
points, we can have an alternate interaction mechanism for e
attributes.

Our system allows users to interactively sketch skeletons.
skeletal element is then associated with a locally defined im
function; individual functions are blended using a polynom
weighting function that can be controlled by the user. After sp
fying these, the scalar control coefficients of the DMS-spline s
are assigned as the evaluations of the blending of field functiogi
of a set of skeletonssisi =1,¯ ,Nd at the positions of correspon
ing control points,

fsx,y,zd = o
i=1

N

gisx,y,zd s8d

where the skeletonssi can be any geometric primitive admitting
well-defined distance function: points, curves, parametric
faces, simple volumes, etc. The field functionsgi are decreasin
functions of the distance to the associated skeleton,

gisx,y,zd = Gisdsx,y,z,sidd s9d

wheredsx,y,z,sid is the distance betweensx,y,zd andsi, andGi
can be defined by pieces of polynomials or by more sophisti
anisotropic functions. Therefore, the user may enforce globa
local control of an underlying scalar field in three separate w
sid defining or manipulating of the skeleton,sii d defining or adjust
ing those implicit functions defined for each skeletal element
siii d defining a blending function to weight the individual impl
functions.

Figure 4 shows an example where the user uses a mou
freely sketch a curve inside the engineering part and defin
implicit function, fsdd=1/1+d2, to associate with the skeleto
Then the scalar control coefficients at the control points ar
signed according to the skeleton function. The resulting ma
distribution is shown in Figs. 4scd and 4sdd.

By aligning knots along the feature lines/faces in the dom
features in both geometric and attribute fields can be modele
we state in Sec. 3.2, associating control points to the edg
tetrahedra of a domain can well preserve the shape and fe
represented by the original domain. Let us see Fig. 4 as a
ample. All of the geometric features shown in the original dom

are well preserved in the final resulting geometric object as shown
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in Fig. 4sdd. We can also model a continuous geometry with d
sity discontinuities. Figure 5 shows a geometrically smooth o
that, however, exhibits density discontinuities.

4 Feature-Sensitive Data Fitting
To model data or attributes over the simplex spline based

ume, it is much more desirable to have a data-fitting tool in a
tion to modeling tools as presented above. In this section
propose a feature-sensitive data fitting algorithm. That mean
fitting algorithm can represent the data over the volume accur
and recover the features with as few control vectors and bas
possible. Also, the geometry of the volume is recovered sim
neously. Note that in the following section, we mainly disc
how to fit an unstructured volume. In fact, it can be any form
consisting of a set of points with associated attributessi.e.,
sx,y,z,d1,¯ ,dndd. Figure 6sad shows the spx model from th
fluid dynamics research community. In order better to show
advantages of our fitting algorithm, we upsample the spx da
from 2,896 sampling points to 15,832 points.

4.1 The Fitting Algorithm. The problem of fitting volum
data can be stated as follows: given a setP=hpiji=1

m of points pi

=sxi ,yi ,zi ,didPR4, find a trivariate DMS volumes:R3→R4 that
approximatesP. Unlike the existing fitting algorithms with par
metric representations, which usually find a one-to-one map
between the data points and the points in the parametric spac
method skips this parameterization procedure. As stated b
we first build up a tetrahedralization parametric domain th
close to the original geometry of the to-be-fitted dataset.
domain serves for fitting both geometry and attributes. We us
position sxi ,yi ,zid of the data pointpi as its parametric valu
Therefore, we need to minimize the following objective funct

Fig. 5 „a… The tetrahedral domain of a geometrically smooth
object and „b… volume rendering of the designed object, where
we can see the density discontinuities shown in different
colors

Fig. 6 „a… The point view of the spx dataset, where the color
indicates the density difference, „b… occupancy map of the
point set, and „c… the final tetrahedralization after removing the

outside tetrahedra
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min E = o
i=1

m

spi − ssxi,yi,zidd2 s10d

Our fitting algorithm treats both control vectors and knots as
variables. In this way, it can greatly reduce the approxima
error given the same number of control vectors and knots.
tight coupling of both geometry and attributes during data fi
enables further editing on the continuous representation by m
of moving control points, FFD, or changing control coefficient
we discussed in Sec. 3, even after the fitting process is don

We first give an overview of our fitting algorithm. Then we w
discuss some related issues in detail. Given a desired mean
fitting error, «=1/Noi=1

N spi −ssxi ,yi ,zidd2, whereN is the numbe
of samples,

1. create a tetrahedral domain for the entire volume do
that fully contains the fitted volumetric object

2. solve Eq.s10d by treating control vectors as free variabl
3. for each nodet i of the tetrahedralization, if the mean squ

fitting error in its adjacent neighboring tetrahedra is gre
than«, solve Eq.s10d by treating the knots associated tot i as
free variables

4. for each tetrahedron, if its mean square fitting error is gr
than «, subdivide it into four tetrahedra and repeats2–4d
until the mean square fitting error of every tetrahedro
less than«

This algorithm will not stop until the fitting error in each tet
hedron is less than the user-specified error bound. Then th
crete point set with the associated attribute field is converted
continuous spline-based volumetric implicit function, which
be evaluated at an arbitrary sampling resolution and rendered
the direct volume rendering or the marching tetrahedra algo
f17g. We will discuss the detail of these rendering algorithm
Sec. 5. The fitting algorithm is guaranteed to converge, sinc
number of sampling points is finite. The number of tetrah
needed for fitting at the desired accuracy depends on the
specified error bound and the datasets.

4.2 Initial Tetrahedralization. As we can see from the fittin
algorithm, a good initial basis will save a lot of time in perform
recursive refinement and local fitting. More important, it can
to preserve geometric features of the original volume data
Essentially, there should be more primary knots distributed i
region containing features. Therefore, the dataset will unde
preprocessing stage before fitting.

First, we have to find the proper tetrahedralization of the p
sets. We perform the Delaunay tetrahedralization of the poin
Now, we have to consider how to remove those tetrahedra w
are outside the actual object. We place a ball at every point, w
radius is equal to the shortest distance from this point to its
cent neighboring vertices. Then, we perform the union of ba
obtain an occupancy map, which can roughly indicate the bo
ary of the actual object. Figure 6sbd illustrates the occupancy m
of the samples of the spx dataset. Third, we check each te
dron to see if all of the center points of its six edges are inside
occupancy map. If not, this tetrahedron is clipped away. From
6scd, we can see that all of the outside tetrahedra are remove
the final tetrahedralization of the point set is obtained. In
paper, we consider the fact that the real datasets to be fitte
usually densely sampled. This algorithm does not work wel
very scattered datasets. Note that this preprocessing is do
produce a tetrahedral domain, not to generate the tetrahed
tion of the object. The domain tetrahedralization should be m
coarser than the tetrahedralization of the object, as shown in
6scd.

In order to let the generated tetrahedral domain faithfully re
the nature of the object, the features should be considered

rahedralization. Essentially, we have two types of features, since
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we consider both the geometry and physical attributes. Geom
features are one category and field features belongs to an
category. Geometric features mean those regions whereC0 conti-
nuity occurs.

We use an efficient algorithm to classify the boundary vert
The boundary vertices are identified as corner vertex, curve
tex, and general boundary vertex. The classification algorith
based on the solid angle at each vertex. The solid angleai of

tetrahedronIsp0,p1,p2,p3d at vertexp0 is defined to be the sur-
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tain the initial tetrahedralization. Figure 7sbd shows the con-
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face area formed by projecting each point on the face not con
ing p0 to a unit sphere centered atp0. An equation for the com
putation of solid angleai is given by Liu et al.f18g: sinsai /2d
=12v /Îp1øi, j,ø3fsl i0+ l j0d2− l i j

2g, where v is the volume ofT,
andl i j is the length of the edge connecting verticespi andp j. The
solid anglea at the vertexp0 is the sum of the solid angles in
tetrahedra incident atp0. For an interior vertex, the solid angle
4p, while the boundary vertex is less than 4p. We identify the

type of p0 as followsf19g:
5p0 is a corner boundary vertex ifa ø
p

2
or 4p − a ø

p

2

p0 is a curve boundary vertex if
p

2
, a ø

3p

2
or

p

2
, 4p − a ø

3p

2

otherwise,p0 is a general boundary vertex
6

d the
take
fea-
itial
rob-
el
earch
mply

ary
the
ac-

tion
an a
f the
on,
ron.

rtex.
itial
tures

iza-
hysi-

un-
Once the vertices are classified, we can extract feature
from those corner boundary vertices and curve boundary ver
Starting from a corner vertexpi, we can link adjacent edge ver
ces by examining each of its neighbor vertices, which are e
corner boundary vertices or curve boundary vertices, and s
they have similar normal orientations

iNspid − Nsp jdi ø A

for some angular thresholdA. We usually setA as 25 deg consid
ering noise in the dataset. Once the link is established, we s
traverse the neighbor one,p j, until it reaches another corn
boundary point or it cannot proceed. The sharp feature lines o
spx dataset are shown in Fig. 7sad in red.

We sample the feature lines based on their curvature a
user-specified sampling rate. As a result, all of these feature
are well preserved as the piecewise linear boundary of the i
tetrahedralization to represent the shape of the to-be-fitted o
We also check the curvature of boundary surfaces according
classified general boundary vertices to determine the placem
primary knots on those boundary surfaces for the initial tetr
dralization. For the interior vertices, we can distribute the in
primary knots according to the density of the original samp
points of the dataset. After all of the primary knots have b
determined, we can perform constrained tetrahedralization t

Fig. 7 „a… Geometric features of the spx dataset and „b… the
finally constructed initial tetrahedralization
es
s.

er
if

to

he
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ct.
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structed initial tetrahedralization.
So far, the initial tetrahedralization has already considere

explicit geometric features of the object. Next, we need to
into account the features of its attribute field. Ideally, these
tures should be explicitly represented for constructing an in
tetrahedralization. However, it is still a challenging research p
lem in computer vision to explicitly find all of the high-lev
features such as surfaces, field discontinuity, etc. That res
topic is beyond the scope of this paper. In practice, we si
employ a very straightforward method. We allocate more prim
knots, in the region where the deviation of gradients is high, in
following way. Based on the tetrahedralization constructed
cording to the geometric information, we calculate the devia
of gradients for each tetrahedron. If the deviation is greater th
thresholdsthe threshold can be determined through analysis o
gradient histogramd, we insert a new vertex into the tetrahedr
where the gradient magnitude is maximal in this tetrahed
Then, we split the tetrahedron locally to incorporate the ve
After several iterations of such split operations, the final in
tetrahedralization is constructed. Therefore, the physical fea
are implicitly identified in the constructed, initial tetrahedral
tion. Since we have further optimization in later steps, the p
cal features can be well reconstructed as well.

4.3 Trivariate DMS-Spline Fitting With Free Knots. If
only the control vectors are treated as variables in Eq.s10d, it falls
into a very special category of nonlinear programming, i.e.,
constrained convex quadratic programming

E =
1

2
xTQx + cTx + f

wherex=s. . . ,cb
I , . . .dT,

Q =1
]

. . . 2o
i=1

m

Nb
I sxi,yi,zidNb8

I8 sxi,yi,zid . . .

]

2
c = S. . .,− 2o

i=1

m

piNb
I sxi,yi,zid, . . .DT

and f =oi=1
m ipii2.
Note thatQ is a positive definite, symmetric, and sparse matrix.
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The interior-point method can solve this problem very efficie
When considering the knots as free variables in Eq.s10d, we

need to calculate the gradient with respect to knots. Similar t
bivariate casef11g, the directional derivative of trivariate DMS
splinessud with respect to a knottp,l spPN,0ø l ,nd along the
directionv is as follows:

Dtp,l,v
ssud = DvGsud + Hsu,vd s11d

where

Gsud = −
1

n + 1 o
IPV,i j=p

o
ubu=n+1,b j l

cb−ej
I NsuuV̂b

I d

Hsu,vd = o
IPV,i j=p

o
ubu=n,b j=l

m jsvuXb
I dcb

I NsuuVb
I d

and

V̂b
I = h. . .,tp,0, . . . ,tp,l−1,tp,l,tp,l,tp,l+1, . . . ,tp,n, . . . ,j

Note thati j in the above equation is thej th element of 4-tupleI
=si0, . . . ,i3d, which represents the vertex indices of a tetrahe
I.

We also need to pay special attention to the positions of k
To describe clearly, we classify the knots into two categories
primary knotshts,0usPNj and the subknotshts,l usPN ,1ø l ønj.

The primary knots must yield valid tetrahedralization inV and
the subknots must satisfy Eq.s3d. Especially, the subknots on t
boundary must lie outside ofV. To prevent degeneracy, we a
set the restriction to the minimal distance between any two k
seither primary knots or subknotsd. Therefore, Eq.s10d is a typica
large-scale constrained nonlinear programming problem. It is
ally very time consuming to solve this kind of problem. To s
plify our implementation and improve the performance, we s
this problem “locally,” i.e., for each nodet i of the tetrahedraliza
tion; if the mean square fitting error in its adjacent neighbo
tetrahedra is greater than the desired value«, then we solve Eq
s10d by treating the knots associated tot i as free variables. Sinc
all other knots are fixed, we can deal with a subproblem
Eq. s10d, in which only hp j up j is an adjacent neighbor oft ij are
considered.

4.4 Local Adaptive Refinement.The above volume data fi
ting procedure attempts to minimize the total squared distan
the volume data pointspi to the DMS-splines. For some region
with dense points or sharp features, it is often desirable to i
duce new degrees of freedom into the spline representati
order to improve the fitting quality. Therefore, we subdivide
domain tetrahedron whose fitting error is greater than the de
mean square fitting error«. Intuitively, local adaptive refineme
is a further action for allocating tetrahedra around the fea
parts. Error characterization and evaluation is an important
at this step. In the adaptive refinement, both geometric fea
and field features are considered.

For attribute data fitting, a new knot is inserted at the loca
where the gradient magnitude is largest inside the tetrahedro
solid geometry fitting, a new inserted knot should be placed o
feature line. During the optimization, the primary knots can o
move along the sharp feature. This is explicitly enforced sinc
feature lines have been detected. The subknots must lie o
feature line segment between two adjacent primary knots.

Figure 8 shows the fitting results for the spx model. A quad
simplex spline model is used in the fitting. Figures 8sad and 8sbd
show the fitting with control vectors only, while Figs. 8scd and
8sdd show the final fitting results with both control vectors a
knots. Apparently, adjusting knots can reduce the fitting error
achieve a better effect.

Figures 9sad and 9sbd show the fitting results for a smooth e
gineering part, a router. Quadratic simplex spline models are

in the fitting. Figure 9sad is the original data set. Figure 9sbd
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shows the final fitting result, which is fitted using both con
vectors and knots. Figures 9scd and 9sdd show the fitting of two
separated engineering parts. Figure 9scd shows the original da
set. Figure 9sdd shows the final fitting result, which is fitted w
both control vectors and knots.

5 Visualization Techniques

5.1 Direct Volume Rendering.Attribute distribution on a 3D
solid object can be visualized in a number of ways; for exam
by color contours on a two-dimensionals2Dd slice, or by a po
lygonal approximation to a contour surface. Direct volume ren

Fig. 8 The fitting results for the spx dataset: „a… and „b… fitting
with control vectors only „front view and side view … and „c… and
„d… fitting with both control vectors and knots „front view and
side view, respectively …

Fig. 9 Simplex spline-based fitting examples: „a… the original
dataset, router, in point view, where the color indicates the at-
tribute value; „b… fitting with both control vectors and knots.
The final result is rendered using our marching tetrahedra al-
gorithm. „c… the original dataset, crosscube, in point view,
where the color indicates the attribute value; and „d… fitting with
both control vectors and knots. The final result is rendered us-

ing the direct volume rendering algorithm.
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Downlo
ing refers to techniques that produce a projected image dir
from the volume data, without intermediate constructs suc
contour surface polygons. Among the direct volume rende
techniques, the ray casting approach typically casts rays from
els in the screen into a volumetric dataset. The quantity th
accumulated for each ray originating in each pixel is conve
into color or intensity and is assigned to the pixel. It assumes
datasets scatter, occlude, generate, and reflect light. Volum
dering enhances 3D visualization of imaged tissue by prov
translucent rendering. In addition to the standard 3D image a
sis tools, volume rendering allows the user to interactively de
thresholds for opacity, color application, and brightness. Tra
cent rendering of volumetric data provides more informa
about a spatial relationship of different structures than stan
3D surface rendering. Direct volume rendering affords us th
pability to quickly isolate tissue of interest, and quickly provi
3D spatial information for enhanced diagnostic confidence,
proves surgical and treatment planning, and aids in educatio
the proposed approach, we only consider the absorption nat
the dataset. That is to say, that the object is visualized by inte
ing the density of the trivariate simplex functions along the
of each casted ray as inf20g. The intensity of light passin
through translucent material decreases exponentially. There

Isa,bd = expS−E
0

L

o
IPV

o
ubu=n

gb
I Nb

I sustdddtD
= expS− o

IPV
o
ubu=n

gb
I E

0

L

Nb
I sustdddtD

The proposed direct rendering of scalar simplex spline f
tions is able to incrementally update complex volumetric data
at interactive rates of several frames per second. Assume
control coefficientgb

I changes withDgb
I . Then, the new intensi

of the pixel will be

Inewsa,bd = Ioldsa,bdexpS− Dgb
I E

0

L

Nb
I sustdddtD s12d

Since Nb
I sustdd= udspi ,q j ,r k,slduMsustd uVb

I d as shown in Eq
s5d, the problem becomes how to evaluatee0

LMsustd uVb
I ddt effi-

ciently. Grounded on the theory of simplex splines, we derive
following analytic solution to compute the integral in a recurs
fashion. In the following derivation, the notation has the s
meanings as in Section 2.1. In order to save space, we abbr
Vb

I to V. Suppose thatustd=xc+ tdc, wherexc anddc are constan
vectors that denote the starting point of a casted ray and th
direction of the ray, respectively. Then whenn.0, using the lin
ear decomposition, we can obtain

E
0

L

MsustduVddt =E
0

L

o
j=0

3

lsxc + tdcdMsustduV \ hukj
jddt

=E
0

L So
j=0

3

lsxcd

+ to
j=0

3

msdcdDMsustduV \ hukj
jddt

By Eq. s2d and

Ddc
MsustduVd = dc

T ¹ MsustduVd =
dMsustduVd

dt
s13d
then performing integration by parts, we can obtain,
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E
0

L

to
j=0

3

msdcdMsxc + tdcuV \ hukj
jddt =

1

nE0

L

tDdc
Msxc + tdcuVddt

= tMusxc + tdcuVdu0
L −

1

nE0

L

Msxc + tdcuVddt

= −
1

nE0

L

Msxc + tdcuVddt s14d

Replacing Eq.s14d in Eq. s13d, we can obtain the followin
equation:

E
0

L

Msxc + tdcuVddt =
n

n + 1oj=0

3

lsxcdE
0

L

MsustduV \ hukj
jddt

s15d

Whenn=0,

E
0

L

Msxc + tdcuVddt =
L

VolsVd

With Eq. s15d, we can efficiently evaluate the integral of d
sities along a casted line. Besides the x-ray volume renderin
can also perform general ray casting. Since the solid obje
represented by a single trivariate DMS-spline, our ray ca
avoids resampling and interpolation problems.

5.2 Marching Tetrahedra Isosurfacing. Since the resultin
heterogeneous solid object consists of tetrahedra, it is ea
perform marching tetrahedra isosurfacing to extract an isosu
of its associated field. It is important to note that, based on
geometry of the primary knots, the samples may be spac
nonunit intervals or distributed very irregularly. Our appro
does not require resampling onto a regular voxel raster, w
would introduce error. Furthermore, along tetrahedron edge
process of isosurface extraction employs the original triva
DMS-spline interpolation, which has the potential to avoid in
ducing sampling artifacts. Since traditional voxel-based scul
systems employ trilinear interpolation, they exhibit aliasing w
the voxel grid is scaled or deformed. Aliasing must then be e
nated by filtering most or all of the voxel grid. We avoid t
problem by using what is essentially a higher-orderCn−1 trivariate
spline. If the material distribution of an object modeled by
approach is originally smooth, it will remain smooth even if
control lattice is arbitrarily scaled or even deformed, as lon
there is no self-intersections occurred. If it contains a discon
ity region, these features will be preserved as well.

A key aspect of isosurface extraction is normal vector com
tation. With our polynomial-based approach, it can be determ
analytically. Furthermore, the local evaluation can lead to m
resolution isosurface extraction. When a tetrahedron of the o
is determined across the isosurface of its associated field, a
size is larger than a specified threshold, we can evaluat
trivariate DMS-spline and upsample it locally to increase the r
lution and then perform isosurfacing on those smaller cells.

6 Implementation and Discussion
We have implemented a prototype system on a PC

3.0 GHz P4 CPU and 2 GB of RAM. The system is written
C11 and OpenGL. Table 1 shows the statistics of the pe
mance of our fitting algorithm on several datasets, where th
ting error is the mean square error.

As one can see, we couple geometric and attribute repre
tion together in order to provide a unified paradigm to explic
model geometry, topology, and associated attribute prope
However, one weakness of this representation is that, if the
metric features and attribute field features are not conformin

each other, we have to select the higher resolution to model both,
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Downlo
even though it might not be necessary for one of them to
such a high resolution. A potential solution for this case i
decouple geometric and attribute representations. Thus, it
more flexibility to construct a different resolution of tetrahed
ization of a domain to fit the geometry and attribute distribut
respectively. But special care must be taken in aligning the bo
aries of two domains exactly the same, or else some locatio
the geometric object may not have attribute properties, or attr
properties are assigned to the locations outside the geometr
ject. When using the decoupling scheme, it is possible to m
any number of attribute properties over the geometric ob
Complicated be represented at the resolution that best suits
The gain may be a large savings in storage and execution t

Furthermore, noise is an important variable in any visualiza
involving measured data. Simplex splines generally provide
bust representation for a signal containing moderate noise.
pared with polygons, or higher-dimensional analogues suc
voxels, simplex splines generally represent a smooth fun
with fewer points. However, with our knots manipulation te
nique, they can represent higher-frequency features as well.

7 Conclusion
In this paper, we have articulated a new integral approac

representing, modeling, reconstructing, and visualizing mu
mensional, physical attributes across any volumetric object
particular, we employ a trivariate simplex spline model tha
defined over a tetrahedral decomposition of any 3D domain
modeled volume can be of complicated geometry and topo
The trivariate simplex spline model ideally serves the pres
needs of modeling and visualization of inhomogeneous objec
engineering design. The model can offer a compact contin
representation. More importantly, it integrates geometry an
tribute properties over domains of complex topology, by mode
a complicated heterogeneous object with a single trivariate
plex spline, without any additional operations of trimming
patching. All of the above attractive characteristics result f
many appealing properties of trivariate simplex splines, suc
piecewise polynomials of low degree, high-order continuity,
sharp feature modeling through different knot placements. In
dition, we have developed a feature-sensitive fitting algorithm
can reconstruct a more compact trivariate simplex spline fro
structured or unstructured volume. It reconstructs the geom
and the associated material attributes simultaneously, satis
various continuity requirements set by the user. Such flexib
allows us to model continuous or discontinuous material dist
tion with ease.

Our new representation can also facilitate multiresolution, l
adaptive subdivision, free-form deformation, both isosurface
volume rendering, as well as other modeling and visualiza
functionalities. This is mainly because many of its nice analy
properties and associated computational tools. Based on o
tensive experiments on using the trivariate simplex spline

Table 1 Statisti

Model Data pts Domain tetra Control

spx 15832 1914 3335
Cubecross 24128 2245 3294

Router 34744 2812 4239
believe that our new paradigm can significantly advance the cu
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rent state of the knowledge in modeling and visualizing heter
neous models of physical objects and their material propert
engineering design. In the near future, we plan to pursue
application directions, including material editing and recons
tion, dynamic simulation, and analysis of multiresolution, het
geneous objects, etc.
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