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This paper presents a new inhomogeneous solid modeling paradigm for engineering

Ying He design. The proposed paradigm can represent, model, and render multidimensional
physical attributes across any volumetric objects of complicated geometry and topology.
Hong Qin A modeled object is formulated with a trivariate simplex spline defined over a tetrahedral

decomposition of its three-dimensional domain. Heterogeneous material attributes asso-
ciated with solid geometry can be easily modeled and edited by manipulating the control
vectors and/or associated knots of trivariate simplex splines. We also develop a feature-
sensitive fitting algorithm that can reconstruct a compact, continuous trivariate simplex
spline from measured, structured, or unstructured volumetric grids of real-world inho-
mogeneous objects. In addition, we propose a fast direct rendering algorithm for inter-
active data analysis and visualization of the simplex spline volumes. Our experiments
demonstrate that the proposed paradigm augments the current engineering design tech-
niques with new and unique advantage®Ol: 10.1115/1.1881352

Computer Science, Stony Brook University

1 Introduction and Motivation order to retain its regular structure. Attractive properties such as

. . . . . cal adaptivity and multiresolution are rather difficult to achieve.
R_e al-world objects are active, responsive, and anisotropic. CS?'To overcome the above difficulties, we propose an integrated
tentimes, they are of arbitrary topology and complex geometrg

The fundamental objectives in engineering design are to una’ﬁzproach for representing, modeling, and rendering of multidi-

. - : X . X . ensional physical attributes across any volumetric object. Our
plgu0u§ly model physwal vqu_metrlc O.bJeCtS’ |ntera_ct|vely VISUagoal is to demonstrate that the trivariate simplex spline is a prom-
IoZL?sIthe;rngleg(ren etLr:eCiral?i(rjle?r:}gtsiécﬂn?jttrtljbl;t:meéoﬁgmfsé a\?\ﬁthngthls'ing primitive for both visualization and modeling in engineering

y y y : g%sign tasks, especially for representing and visualizing heteroge-

advent of ever-increasing computing power and more advancr? ous models of physical objects and their material properties.
data acquisition technologies, solid geometry has quickly gain

. o ; r model makes use of a more general and flexible tetrahedral
popularity as an intuitive and natural paradigm for these purposes,

New and powerful solid representations underpin the success tmain and offers a compact, continuous representation because it
h - P Lo P >ida piecewise polynomial of the lowest possible degree and the
solid modeling and relevant applications. To date, the vast maj

v of | lid deli h ! ighest possible continuity everywhere across the entire tetrahe-
ity of popular Soild modeling approacnes, as well as Commonyea qomain, It unifies geometry and attribute properties over do-
used solid modeling systems, are built upon the following ge

. . > . Hains of complex topology. It is possible to represent a compli-
metric foun(_jatlons. constructive solid geome@@w' boundary cated heterogeneous object with a single trivariate simplex spline
representatioriB-rep9, and cell decomposition. When our goal

h dels of ohvsical obi vithout any additional operations of trimming or patching, while
are to reconstruct heterogeneous models of physical objects WitR ¢0ometry of the object is explicitly represented by the spline.

continuous properties and further model and visualize the objeqt_-%r example, given a degreefor the trivarite DMS-spling5]
prior representations and the current state of the art in engineerwgich uses éimplex spline as basis functions, the represe,ntation
design fall short in of'ferin_g designers an ?ntegrated paradig heme can achiev@™ ! continuity over smootﬁ regions. Mean-
to represent com_plex SO“d geometry, f?“b'“ar_y topology, a”-Ehile, by placing control points and their associated knots in cer-
continuously varying material attributes in a single frameworigi, ocations, variable continuity is readily accomplished includ-
simultaneously. ing a C® continuity that defines sharp features. This property is
eal for data reduction when reverse engineering a continuous
Piine model from the discretized data inputs.
X ; . Since we develop the trivariate simplex spline for both solid
Nonetheless, modeling with B-splines or NURBS has sevega,mery and the ngaterial attributes asF,)sociaFed with the solid ge-
shortcomings. lts modeling scope is extremely constrained Hy,ery simultaneously, it facilitates the modeling of heteroge-
terms of geometric, topological, and attribute aspects. Firgleqys objects. The feature-sensitive fitting algorithm that we de-
B-spline and NURBS are defined over a regular, tensor-prodyglion can reconstruct a more compact trivariate simplex spline
domain. A single B-spline or NURBS cannot represent volumes g, m 4 structured or arbitrary unstructured volume measured from
complex topology without patching or trimming operations. Fulihe real world. It reconstructs the geometry and the associated
thermore, patching multiple B-splines or NURBS to form COMgateria| attributes simultaneously. TI@* continuity and C°
plex topology is not easy to control. Second, tensor-produghntinyity can both be modeled with ease using simplex splines.
splines are essentially smooth everywhere. Itis difficult to mode},cp, fiexibility allows us to model continuously varying material
high-frequency features. Third, when refining a region of interegfstripytion. It may be noted that, in our framework, we use time-
in a tensor-product spline patch, it will introduce too many extrgyying knots instead of fixed knots, which offer more freedom
degrees of freedom in other less interesting regions nearby 4Rq improve accuracy for approximation. The knots are explicitly
and automatically determined by optimizing a specific objective
Contributed by the Engineering Simulation and Visualization Committee for putF—“mCtlon' This representation can also enable the strong multireso-

lication in the ®URNAL oF COMPUTING AND INFORMATION IN SCIENCE ENGINEERING, Uti(_)n mOd_e”ng Capab”ity_ thrOUgh interactively SUbdiVidir_'g any
Manuscript received September 3, 2004; Revised January 21, 2005. Guest Editdiegion of interest, allocating more knots and control points ac-

continuity, techniques based on splines such as B-splines or N
Uniform Rational B-Spline§NURBS) [1-4] are frequently used.
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cordingly. In addition, we propose a fast direct rendering algo- 3

rithm for interactive data analysis and visualization of the simplex M(U|Ug, *** ,Upea) = E Aj(u\W)M(UIV \{uh 1)

spline volumes. When visualizing this type of solids, the resam- j=0 !

pling or interpolation process is no longer necessary at all. It 3 _ 3 _

(including position, derivative, etccan be evaluated anywhereWhereEJFO)‘J@|W)_1_ a”_dEFO)‘J(U‘W)“_kh‘”'

analytically and computed efficiently for volume rendering. ~_ 'he directional derivative a1 (u |V) with respect to a vector
is defined as follows:

1.1 Related Work. Research on volume modeling using

B-splines or NURBS has received much attention in the modeling

community in recent years. Raviv and Eljé} presented a three- DM(U[V) =n>) ui(v]W)M(u[V Mugh) 2

dimensional(3D) interactive sculpting paradigm that employed a i=0

set of scalar uniform trivariate B-spline functions as object reerherev:Ej:O,uj(v\W)uk. andEjszo,u]-(v|W):o_ In the interest of
sentations. Schmitt and Pasj&} presented an approach for con-qnserving space, we leave more theoretical discussions to other

structive modeling of Function Representation FRep solids dggaiments of simplex splines in the references and elsewhere.
fined by real-valued functions using four-dimensioin@D)

uniform rational cubic B-spline volumes as primitives. Hua and 2.2 Trivariate DMS-Spline Volumes. In [5], Dahmen, Mic-

Qin [2] presented a haptics-based direct manipulation and expihelli, and Seidel presented a multivariate B-spline scheme called
ration of scalar B-spline volumes. Martin and Coliéhpresented DMS-spline, based on blending functions and control vectors. The
a completed mathematical framework for representing and exdrface scheme is also called a triangular B-spline, which has
tracting volumetric attributes using trivariate NURBS. been studied if7-10,13.

Multivariate simplex splines for approximation theory have We apply the trivariate DMS-spline to represent both solid ge-
been extensively investigated in mathematical science for maogetry and its associated physical attributes in engineering de-
years. Motivated by an idea of Curry and Schoenberg for a gegign. To the authors’ best knowledge, we pioneer the use of
metric interpretation of univariate B-splines, de B6f first pre- trivariate DMS-spline in solid modeling and visualization. (&t
sented a brief description of multivariate simplex splines. Sinde an arbitrary proper tetrahedralization v or some bounded
then, their theoretical aspects have been explored extensivelymainD C R3. Here, “proper” means that every pair of domain
From the point of view of blossoming, Dahmen et[&ll proposed tetrahedra are disjoint, or share exactly one vertex, one edge, or
triangular B-splines. In contrast to the theoretical advances, tbee face.
application of multivariate simplex splines has been underex-To each vertext of the tetrahedralization, we assign a knot
plored. Greiner and SeidgT] demonstrated the practical feasibil-cloud, which is a sequence of poirts,ty, - ,t,] wherety=t.
ity of multivariate B-spline algorithms in graphics and shape de=or every tetrahedroh=(p,q,r,s), we require
sign. Pfeifle and Seidel proposed a fast evaluation technique for
quadratic bivariate Dahmen, Micchelli, Seid@IMS)-spline sur-  « gl of the tetrahedrfip;, q;, 1, ] with i +j+k+l<n are non-
faces[8] and demonstrated the fitting of triangular B-spline sur- degenerate !
faces to scattered data through the use of least squares and op{j- e set
mization techniqued9]. Qin and Terzopoulo§10] presented
dynamic triangular NURBS, a free-form shape model. He and Qin interior(N+jsr<nlPi, 0, Mo S 1) # @ (3
[11] presented an approach for reconstructing a triangular B-§pllne, if | has a boundary triangle, the knots associated to the
surface from a set of scanned 3D points. To the authors’ best boundary triangle must lie outside 6f
knowledge, there is no existing research work that applies multi-

variate simplex splines to represent solid geometry, model its hetyys then define. for each tetrahedroandi +j+k+1=n (in the

erogeneous material attributes, and reconstruct continuous V%\Towing we uses to denote 4-tupldi, j,k,1)), the knot sets
metric splines from discretized volumetric inputs via data fitting. ' A

3

V|: REERIN o BEEEIN o [ SOREEEIN S¥R NI 4
2 Trivariate DMS-Spline Volumes ’ [Po . Piflo qJ. oK N .S'] @
The basis functions of normalized simplex splines are then de-

Analogous to a tensor product, trivariate B-spline volyhd], fined as
we can instead use simplex splines to model volumetric objects. | |
To motivate our rationales, we have detailed some major advan- Ng(u) =[d(p;, G}, $) M (u[Vyp) (5)
tages of multivariate_ simplex spl_ine volpmes over Convemion@x}here|d(pi,qj,rk,s|)| is six times the volume ofp;,q;.r.S)-
tensor-product B-spline volumes in Section 1. Like the ordinary tensor-product B-spline, a trivariate simplex

2.1 Trivariate Simplex Splines. Throughout this paper, we spline volume of degree over an arbitrary tetrahedral domain is
employ a trivariate simplex spline to represent and extract batie combination of a set of basis functions with control vecu;rs
solid geometry and its volumetric attributes. Now, we shall review
the formulation of the trivariate simplex splines and summarize s(u)= 2 > cNy(u) (6)
their analytic and geometric properties. 1eQ[gl=n

A degreen trivariate simplex splineM(u|ug, -+, Uns3), canbe | ke B-splines, the non-negative basis functions of simplex
defined as a function af e R3 over the half-open convex hull of spline volume can be normalized to sum to unity. They have a
a point set,V=[ug,*,Uns3), depending on the+4 knots,u; number of nice properties, such as the convex hull property, local
eR8,i=0,---,n+3. The basis function of trivariate simplexsupport, and affine invariance. Shape design based on a trivariate
splines may be formulated recursively, which facilitates poifdDMS-spline volume includes the specification of a domain tetra-
evaluation and its derivative and gradient computation. Winenhedralization, knot sequences, and control points to generate an
=0, initial shape. The initial shape is then refined into the final desired
shape through interactive adjustment of domain tetrahedralization,

;’ uelug - us) control points, and knots. The geometric flexibility of simplex
M(ulug, -+ ,ug) =1 [Volga(ug, - ,ug)] T spline volumes provides great power on its shape editing. Figure 1
0 otherwise shows the volume rendering of 10 quadratic DMS-spline basis

_ functions, where the numbers are 4-tuples of vertices of a knot
and whem>0, select four pointsW ={uy, Uy, Uk,, Uk}, fromV  tetrahedron. Figure(d) shows a cubic trivariate DMS-spline solid
such thatW is affinely independent, then corresponding to a domain with a single tetrahedron. Note that our
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way, we shall generalize the DMS-spline technique from geomet-
A ric domains to visual or material domains. Typical material-
oriented examples include: mass, damping, stiffnéssch as

A strain and stregsand displacement for solid physics; or density,
y A velocity, and pressure for fluid mechanics, etc. These attributes
may be assigned at the control points or fitted by using both con-

trol vectors and knots. Other commonly used visual information

include: color, texture, intensity, opacity, transparency, etc. This

\_, flexibility permits our paradigm to be employed in a wide variety

¥ ol N of applications involving continuous domains, such as finite ele-

ment analysis, virtual sculpting, and computational fluid
Fig. 1 Volume rendering of 10 quadratic DMS-spline basis simulation.
functions Consider that control coefficiengg are associated with control
points pj; (g, may be a multidimensional vecorBesides solid

L | | eometry, a materigle.g., density function overs(u) can be si-
trivariate DMS volumes represent not only boundary geometr ultaneously defined as

but also interior solid geometry. They can represent physical or
material attributes over the entire solid as well. Figuii®) 2hows g g'ﬁ
scaled tetrahedra of the solid in order to emphasize its nonempty s ()= E p
solid interior geometry. : B

For a general trivariate DMS-spline volume, each domain teshereg can be color, texture, mass, temperature, or other visual
rahedronl has its own set of control point:iﬁ. However, in this or material functions as stated above. Visual and material model-
paper, we consider a more restricted class of volumes by sharing is indispensable for computerized virtual environments. Be-
respective control points along common triangles of two adjacesities commonly used material distributions in classical mechan-
tetrahedra in parametric tetrahedralization. Splines with sharied, it can be generalized to heat transfer, electricity, and beyond.
control points have a direct visual effect in geometric and solithe diverse set of these novel solid models are very powerful
modeling. More importantly, as proved by Dahmen et[8], a because they can potentially unify geometric, topological, kine-
degreen trivariate DMS-spline with shared control points can bgnatic, material, and dynamic properties.

}N'B(U) )

evaluated with the efficiency of a degree 1 spline. The field attributes can be modified by directly changing the
control coefficients stored at the control points. In addition, by

s(u) = E 2 (“:'B(u)N'ﬂ(u) moving the control points, we can perform free-form deformation

leQ|g=n-1 (FFD) of the underlying geometric space. As a result, this proce-

Al y—s3 Al . - 3 dure deforms the field properties and provides an alternate inter-
where C4(U) =2 eCp. (|1, ;.1 %) and €7=(8 iz, M action mechanism. The geometric space over which the field is

:0’1.'2 as the:oordingte_\_/ectors: defined can be of very complicated topology, which adds further
This property can significantly improve the software system f%rhape-editing flexibility.

rendering a DMS-spline volume. It also implies that the knots
{tinli € N} have no effect on the value sfu). . . .
Note that, for our trivariate DMS-spline volumes, the used teg MUItIreSOIUFlon MOdelmg_ _ _

rahedral domain does not need to undergo a separate parametéBased on flexible simplex splines, we can readily achieve mul-
ization process, because it is already conforming to the 3D phy#iesolution modeling of heterogeneous solid objects. The multi-
cal domain for material attributes. Tlgeneralizeccontrol vectors resolution capability is achieved by interactively subdividing any
are now(n+3) vectors, including control pointg*, p¥, p? for the region of interest and allocating more knots and control vectors
solid geometry, and control coefficientg®,--,g" for the at- accordingly.

tributes, wheren denotes the number of attributes associated with 3 1 |nteractive Tetrahedralization. We use Delaunay tetra-

the geometry. hedralization to construct a tetrahedral domain, which serves as
2.3 Coupling Solid Geometry and Physical Attributes.In the tetrahedral _domaln of the trivariate slmplex spline. '
our framework, we consider that a controi coefficiémtd possi- For constructing Delaunay tetrahedralization for a 3D point set,

bly other vector-based quantities wittcomponentis associated W€ make use of the incremental flip algorithm proposed in
with a corresponding control point and evaluated with the geo,{,l3,14]. The procedure to update a tetrahedralization is to insert

etry simultaneously based on the same tetrahedral domain. In {Pf§§¢ New vertex at each step. Then, a sequence of actions are
applied to modify the tetrahedralization locally. Each flip action

consists of replacing one, two, or three adjacent tetrahedra with
four, three, or two new tetrahedra, respectively. When the new
vertex lies either on a triangular face or on an edge of the current
tetrahedralization, other face flips may be needed. When perform-
ing Delaunay tetrahedralization, the user has an option to enforce
the quality constraintgincluding volume of tetrahedron, efc.

The user can also interactively specify boundary constraints
(such as points, edges, polygons, or gell&/e implement the
boundary-conforming Delaunay tetrahedralizatift6], which
tries to recover the missing boundary edges of the piecewise linear
complexes from its current Delaunay tetrahedralization by insert-
ing new points.

(a) {b)
3.2 Geometric Editing Using Control Points.With this flex-
Fig. 2 (&) A cubic trivariate DMS-spline solid corresponding to ible modeling technique, we can straightforwardly design solid
a single tetrahedral domain with 20 control points and (b) the ~geometric shapes with sharp features and associated high-
tetrahedra of the designed solid object are scaled to show the frequency material properties. Since the control vectors include
interior of the solid the position of control points and associated control coefficients,
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knots are generated around feature edges. By associating control
points with the defined domain, all of the features are preserved in
the resulting DMS solid of degree 4. Please refer to Fig).4

3.3 Attribute Editing Using Control Coefficients or Con-

trol Points. Besides modeling solid geometry, the user can easily
edit associated physical or material attributes as well. This is
achieved by editing control coefficients at the corresponding con-
trol points, because the underlying material distribution is, in fact,
a trivariate simplex spline defined over the same tetrahedraliza-
tion. In the most simple form, thémultidimensional control co-
efficients can be in one-to-one correspondence to their control-
point counterparts, which are used to define arbitrarily curved
solid geometry over the same parametric dom@vhich is the
initial tetrahedralization However, local refinements for material
modeling are frequently desirable in order to represent high-
frequency features in the material domgi®). In a nutshell, fea-
tures may include critical points, field discontinuity, high-
gequency regions, etc. During a design procedure, if we fix the

powerful modeling capabilities. Moving control points around caf€ometric shape of a solid object by not changing the positions of
directly lead to a desired deformation of the underlying mod&Pntrol points, we can edit the associated attribute field within the
easily. Usually when the number of control points is very large, ﬁolld_g_eome_try independently through changing attribute contr_ol
is tedious and relatively difficult to manipulate the control pointgoemcl'em.S in tr;]e cc;]ntrol vfec:}ors. blf we cllrlwgnge hthe ggometélc
individually. In our system we provide FFD tools to allow users tgontrol points, the shape of the object will be changed as de-
move control points. scribed in Sec. 3.2, and the associated attribute field defined by the

Based on our experiments, we observe that associating confijfiPute control coefficients will also change following the
points to a domain in such a way, locating control points at t ange of the geometric shapes. Therefore, by moving the control

edges of tetrahedra of the domain can well preserve the shape BRAijts, we can have an alternate interaction mechanism for editing
features represented by the original domain. The difference @é{rlbutes. . .

tween the geometry of the domain and the resulting DMS solicf(our system allows users to interactively sketch skeletons. Each
object is very small. For example, for a DMS-spline of degree skeletal element is then associated with a locally defined implicit

we place control points on all the vertices of its domain tetrahedrfé.'.n.cuon; |nd|V|duaI functions are blended using a polynomla!
In addition, we placen—1 control points on each edge of thewelghtlng function that can be controlled by the user. After speci-

domain tetrahedra, which divide the edge intequal-length line fying these, the scalar control coefficients of the DMS-spline solid
segments. Figure 3 shows an illustration. Figui@ & a tetrahe- are assigned as the evaluations of the blending of field functjons

dral domain. After associating control points as described abo, @ set of skeletong(i=1,---,N) at the positions of correspond-
the corresponding DMS-spline solid object can be evaluated ‘89 control points,
shown in Fig. 8b). The resulting solid model exhibits very com- N
plex topology, which is genus-20. _ ,

Figure 4 shows another example. The user first builds a 3D fxy.2 _E 9i(xy.2 ®)
piecewise linear complex as shown in Figa¥ then our system
generates its quality conforming Delaunay mesh. Badly shapetiere the skeletons can be any geometric primitive admitting a
elements from the mesh are eliminated and replaced with welell-defined distance function: points, curves, parametric sur-
shaped ones. This is done by automatically inserting additiorfaces, simple volumes, etc. The field functiajsare decreasing
points into the current mesh. From Figb#l we can see that more functions of the distance to the associated skeleton,

gi(x,y,2) = Gi(d(x,y,z5)) 9

whered(x,y,z,s) is the distance betwedx,y,z) ands, andG;

can be defined by pieces of polynomials or by more sophisticated
anisotropic functions. Therefore, the user may enforce global and
local control of an underlying scalar field in three separate ways:
(i) defining or manipulating of the skeleta(ii,) defining or adjust-

ing those implicit functions defined for each skeletal element, and
(ii ) defining a blending function to weight the individual implicit
functions.

Figure 4 shows an example where the user uses a mouse to
freely sketch a curve inside the engineering part and defines an
implicit function, f(d)=1/1+d? to associate with the skeleton.
Then the scalar control coefficients at the control points are as-
signed according to the skeleton function. The resulting material
distribution is shown in Figs.(4) and 4d).

By aligning knots along the feature lines/faces in the domain,
Fig. 4 (a) The piecewise linear boundary constraints that the features ir_l both geometric ar_1d _attribute fields_can be modeled. As
user specifies; (b) the multiresolution tetrahedralization con- we state in Sec. 3'2’. associating control points to the edges of
forming to the piecewise linear boundary constraints; (c) the tetrahedra of a domain can well preserve the shape and features

(a) (b)

Fig. 3 A DMS-spline solid object corresponding to the tetrahe-
dral domain: (a) a domain tetrahedralization and  (b) volume
rendering of the resulting solid model, which is genus-20

editing of control points and/or control coefficients offers mor

(

color map of material distribution of the designed object; and represented by the original domain. Let us see Fig. 4 as an ex-
(d) volume rendering of the designed object, where we can see ample. All of the geometric features shown in the original domain
that all the geometric shape features are preserved. are well preserved in the final resulting geometric object as shown
152 / Vol. 5, JUNE 2005 Transactions of the ASME

Downloaded 08 Oct 2007 to 141.217.11.95. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



minE =, (p; - 8(X,Y;,2))? (10

i=1

Our fitting algorithm treats both control vectors and knots as free
variables. In this way, it can greatly reduce the approximation
error given the same number of control vectors and knots. The
tight coupling of both geometry and attributes during data fitting
enables further editing on the continuous representation by means
of moving control points, FFD, or changing control coefficients as
(a) (b we discussed in Sec. 3, even after the fitting process is done.

We first give an overview of our fitting algorithm. Then we will
discuss some related issues in detail. Given a desired mean square

Fig. 5 (a) The tetrahedral domain of a geometrically smooth

object and (b) volume rendering of the designed object, where fitting error, e=1/NZL,(p;=s(X;,Yi,2))? whereN is the number
we can see the density discontinuities shown in different of samples,
colors

1. create a tetrahedral domain for the entire volume domain
that fully contains the fitted volumetric object
in Fig. 4(d). We can also model a continuous geometry with den- 2. solve Eq.(10) by treating control vectors as free variables
sity discontinuities. Figure 5 shows a geometrically smooth object3. for each node; of the tetrahedralization, if the mean square
that, however, exhibits density discontinuities. fitting error in its adjacent neighboring tetrahedra is greater
thane, solve Eq(10) by treating the knots associatedt{@s
" g free variables
4 Feature-Sensitive Data Fitting 4. for each tetrahedron, if its mean square fitting error is greater
To model data or attributes over the simplex spline based vol-  than ¢, subdivide it into four tetrahedra and repeat4)

ume, it is much more desirable to have a data-fitting tool in addi-  until the mean square fitting error of every tetrahedron is
tion to modeling tools as presented above. In this section, we |ess thare
propose a feature-sensitive data fitting algorithm. That means the
fitting algorithm can represent the data over the volume accuratelyThis algorithm will not stop until the fitting error in each tetra-
and recover the features with as few control vectors and basesagron is less than the user-specified error bound. Then the dis-
possible. Also, the geometry of the volume is recovered simultarete point set with the associated attribute field is converted to a
neously. Note that in the following section, we mainly discussontinuous spline-based volumetric implicit function, which can
how to fit an unstructured volume. In fact, it can be any formahe evaluated at an arbitrary sampling resolution and rendered with
consisting of a set of points with associated attributes., the direct volume rendering or the marching tetrahedra algorithm
(X,y,2,dg,"-+,dp)). Figure Ga) shows the spx model from the[17]. We will discuss the detail of these rendering algorithms in
fluid dynamics research community. In order better to show ti&ec. 5. The fitting algorithm is guaranteed to converge, since the
advantages of our fitting algorithm, we upsample the spx datasetmber of sampling points is finite. The number of tetrahedra
from 2,896 sampling points to 15,832 points. needed for fitting at the desired accuracy depends on the user-

4.1 The Fitting Algorithm. The problem of fitting volume specified error bound and the datasets.

data can be stated as follows: given a Bet{p;}\"; of pointsp; 4.2 Initial Tetrahedralization. As we can see from the fitting
=(x,Yi,z,d;) € R%, find a trivariate DMS volume: R3— R* that algorithm, a good initial basis Wi!l save a lot Qf time in performing
approximates. Unlike the existing fitting algorithms with para- récursive refinement and local fitting. More important, it can help
metric representations, which usually find a one-to-one mappify Preserve geometric features of the original volume datasets.
between the data points and the points in the parametric space, Bagentially, there should be more primary knots distributed in the
method skips this parameterization procedure. As stated befdi@gion containing features. Therefore, the dataset will undergo a
we first build up a tetrahedralization parametric domain that Rf€processing stage before fitting. o .
close to the original geometry of the to-be-fitted dataset. This First, we have to find the proper tetrahedralization of the point

domain serves for fitting both geometry and attributes. We use th@ts- We perform the Delaunay tetrahedralization of the point set.
position (x;,y;,z) of the data pointp; as its parametric value. NOW, we have to consider how to remove those tetrahedra which

Therefore, we need to minimize the following objective function®'€ outside the actual object. We place a ball at every point, whose
radius is equal to the shortest distance from this point to its adja-
cent neighboring vertices. Then, we perform the union of balls to
obtain an occupancy map, which can roughly indicate the bound-
ary of the actual object. Figurglf illustrates the occupancy map

of the samples of the spx dataset. Third, we check each tetrahe-
dron to see if all of the center points of its six edges are inside this
occupancy map. If not, this tetrahedron is clipped away. From Fig.
6(c), we can see that all of the outside tetrahedra are removed and
the final tetrahedralization of the point set is obtained. In this
paper, we consider the fact that the real datasets to be fitted are
usually densely sampled. This algorithm does not work well for
very scattered datasets. Note that this preprocessing is done to
produce a tetrahedral domain, not to generate the tetrahedraliza-

(a) ib) i) tion of the object. The domain tetrahedralization should be much
coarser than the tetrahedralization of the object, as shown in Fig.
Fig. 6 (a) The point view of the spx dataset, where the color 6(c). . .
indicates the density difference,  (b) occupancy map of the In order to let the generated tetrahedral domain faithfully reflect
point set, and (c) the final tetrahedralization after removing the the nature of the object, the features should be considered in tet-
outside tetrahedra rahedralization. Essentially, we have two types of features, since
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we consider both the geometry and physical attributes. Geomefidce area formed by projecting each point on the face not contain-
features are one category and field features belongs to anotimgrpy to a unit sphere centered p§. An equation for the com-
category. Geometric features mean those regions wbmonti- putation of solid angley; is given by Liu et al.[18]: sin(«;/2)
nuity occurs. =12u/\/H1<i<j<<3[(|i0+Ijo)z—lﬁ], wherev is the volume ofT,

We use an efficient algorithm to classify the boundary verticeandhj is the length of the edge connecting Vertimgndpj_ The
The boundary vertices are identified as corner vertex, curve veplid anglea at the vertexp, is the sum of the solid angles in all
tex, and general boundary vertex. The classification algorithmtistrahedra incident at,. For an interior vertex, the solid angle is
based on the solid angle at each vertex. The solid anglef 4+, while the boundary vertex is less thaar.dWe identify the
tetrahedrorl (pg,p1,P2,P3) at vertexpg is defined to be the sur- type of py as follows[19]:

. . K
po is a corner boundary vertex if < > ordr-—a<

N

. ; 3w 3T
Po is a curve boundary vertex g <a< oy <4r-a< =

otherwise,p, is a general boundary vertex

structed initial tetrahedralization.

So far, the initial tetrahedralization has already considered the
explicit geometric features of the object. Next, we need to take
into account the features of its attribute field. Ideally, these fea-
tures should be explicitly represented for constructing an initial
tetrahedralization. However, it is still a challenging research prob-
lem in computer vision to explicitly find all of the high-level
features such as surfaces, field discontinuity, etc. That research
topic is beyond the scope of this paper. In practice, we simply
employ a very straightforward method. We allocate more primary
knots, in the region where the deviation of gradients is high, in the
following way. Based on the tetrahedralization constructed ac-
cording to the geometric information, we calculate the deviation
of gradients for each tetrahedron. If the deviation is greater than a

(a) (b) threshold(the threshold can be determined through analysis of the
gradient histogram we insert a new vertex into the tetrahedron,

Fig. 7 (a) Geometric features of the spx dataset and  (b) the  \yhere the gradient magnitude is maximal in this tetrahedron.
finally constructed initial tetrahedralization Then, we split the tetrahedron locally to incorporate the vertex.
After several iterations of such split operations, the final initial

tetrahedralization is constructed. Therefore, the physical features
are implicitly identified in the constructed, initial tetrahedraliza-

Once the vertices are classified, we can extract feature lifdh. Since we have further optimization in later steps, the physi-
from those corner boundary vertices and curve boundary vertic€8! features can be well reconstructed as well.
Starting from a corner vertep;, we can link adjacent edge verti- 4 3 Trivariate DMS-Spline Fitting With Free Knots. If

ces by examining each of its neighbor vertices, which are eithggyy the control vectors are treated as variables in(EQ), it falls
corner boundary vertices or curve boundary vertices, and segnfy g very special category of nonlinear programming, i.e., un-

they have similar normal orientations constrained convex quadratic programming
[IN(p) = N(p)ll <A 1
for some angular threshol. We usually seA as 25 deg consid- E= EXTQX +elx+f

ering noise in the dataset. Once the link is established, we start to
traverse the neighbor ong;, until it reaches another corner h
boundary point or it cannot proceed. The sharp feature lines of the
spx dataset are shown in Figay in red.

We sample the feature lines based on their curvature and a
user-specified sampling rate. As a result, all of these feature lines /"
are well preserved as the piecewise linear boundary of the initial Q=| - 22 Nlﬁ(xi’yi'zi)Nﬂ’(Xi‘yi'Z‘)
tetrahedralization to represent the shape of the to-be-fitted object. =1
We also check the curvature of boundary surfaces according to the
classified general boundary vertices to determine the placement of
primary knots on those boundary surfaces for the initial tetrahe- ( m )T

c=

— | T
erex-(...,cﬁ,...) ,

m

dralization. For the interior vertices, we can distribute the initial - 22 p-N' (X0 VinZ), -

primary knots according to the density of the original sampling LS PRI an

points of the dataset. After all of the primary knots have been

determined, we can perform constrained tetrahedralization to and f=3", (i[>

tain the initial tetrahedralization. Figure(lj shows the con-  Note thatQ is a positive definite, symmetric, and sparse matrix.
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The interior-point method can solve this problem very efficiently.

When considering the knots as free variables in @€), we
need to calculate the gradient with respect to knots. Similar to the
bivariate casé11], the directional derivative of trivariate DMS-
spline s(u) with respect to a knot,; (pe N,0<I<n) along the
directionv is as follows:

Dy, w8(U) = DyG(u) +H(u,v) 11
where
1 - (a) (b)
Gu=-—= > 2 ¢y NUlVp
N+ 1) Qi=p = pe g
Huv= X 3 wvIXcN(ulVy)
1eQ,ij=p |l=n;=!
and

Vig={...tpor - tpintpntontpen -t -}

Note thati; in the above equation is thigh element of 4-tuple
=(ip, ... i), which represents the vertex indices of a tetrahedron (c) (d)
l.

We also need to pay special attention to the positions of knog. 8 The fitting results for the spx dataset:  (a) and (b) fitting
To describe clearly, we classify the knots into two categories: thiéth control vectors only  (front view and side view ) and (c) and
primary knots{ts o|se N} and the subknotfts |se N,1<I<n}. (d) fitting with both control vectors and knots (front view and

The primary knots must yield valid tetrahedralization(irand ~ S'd€ View, respectively )
the subknots must satisfy E(B). Especially, the subknots on the
boundary must lie outside dd. To prevent degeneracy, we also ) " e .
set the rgstriction to the minimal d?stance betg\JNeen ar¥y two knoﬁgows the final f'tt'ng result, which is fitted usm_g_both control
(either primary knots or subknotsTherefore, Eq(10) is a typical vectors and knots. Figure<d and 9d) show the fitting of two

large-scale constrained nonlinear programming problem. It is usﬁa_parated engineering par_ts. F!gp(e)%hows the o_rigi_nal da_ta
allfll very time consuming to solvepthig kind ofgp?ObIem. To simet: Figure &d) shows the final fitting result, which is fitted with

plify our implementation and improve the performance, we sol\}%oth control vectors and knots.
this problem “locally,” i.e., for each nodg of the tetrahedraliza- . L .

tion; if the mean square fitting error in its adjacent neighboring Visualization Techniques
tetrahedra is greater than the desired valuéhen we solve Eq.

(10) by treating the knots associatedttas free variables. Since solid object can be visualized in a number of ways; for example,

all other knots are fixed, we can deal with a subproblem qu color contours on a two-dimension&D) slice, or by a po-

Egnélld(zrelg which only {pj|p; is an adjacent neighbor af; are |ygonal approximation to a contour surface. Direct volume render-

5.1 Direct Volume Rendering.Attribute distribution on a 3D

4.4 Local Adaptive Refinement.The above volume data fit-
ting procedure attempts to minimize the total squared distance of
the volume data points; to the DMS-splines. For some regions
with dense points or sharp features, it is often desirable to intro-
duce new degrees of freedom into the spline representation in
order to improve the fitting quality. Therefore, we subdivide any
domain tetrahedron whose fitting error is greater than the desired
mean square fitting errar. Intuitively, local adaptive refinement
is a further action for allocating tetrahedra around the feature
parts. Error characterization and evaluation is an important issue
at this step. In the adaptive refinement, both geometric features
and field features are considered.

For attribute data fitting, a new knot is inserted at the location
where the gradient magnitude is largest inside the tetrahedron. For
solid geometry fitting, a new inserted knot should be placed on the
feature line. During the optimization, the primary knots can only
move along the sharp feature. This is explicitly enforced since the
feature lines have been detected. The subknots must lie on the
feature line segment between two adjacent primary knots.

Figure 8 shows the fitting results for the spx model. A quadratic () (d)
simplex spline model is used in the fitting. Figurgs)8and &b) ) ) N o
show the fitting with control vectors only, while Figs(cB and Fig- 9 Simplex spline-based fitting examples: (&) the original
8(d) show the final fitting results with both control vectors anzgr;gﬁf:t\'/;?uué_er' (Ilr;)plfi)tltri]rt‘l V'sv"i‘{h"‘ghoet:]eégﬁtrcooll‘zlzgg'r‘;aﬁf dtTj\ ;ts'
knolts. Apparently, adjusting knots can reduce the fitting error a e final res’ult is rendegred using our marching tetrahedra al—.
achieve a better effect. » gorithm. (c) the original dataset, crosscube, in point view,

Figures 9a) and 9b) show the fitting results for a smooth en-yhere the color indicates the attribute value; and  (d) fitting with
gineering part, a router. Quadratic simplex spline models are usgsih control vectors and knots. The final result is rendered us-
in the fitting. Figure @) is the original data set. Figure(t® ing the direct volume rendering algorithm.
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from the volume data, without intermediate constructs such a tz M(dc)M(Xc+tdC|V\{uk-})dt:Ef tDg M(x, +tdV)dt
contour surface polygons. Among the direct volume renderindo j=o : nJo °°

techniques, the ray casting approach typically casts rays from pix-
els in the screen into a volumetric dataset. The quantity that is
accumulated for each ray originating in each pixel is converted
into color or intensity and is assigned to the pixel. It assumes that
datasets scatter, occlude, generate, and reflect light. Volume ren- 1fL

ing refers to techniques that produce a projected image direct}L 3 L

L

1
=tM (Xc +td V)5 - ﬁf M(x + tdV)dt
0

dering enhances 3D visualization of imaged tissue by providing =-=] M(x.+tdV)dt (14)

translucent rendering. In addition to the standard 3D image analy- 0
sis tools, volume rendering aIIowg th.e user to ir)teractively deﬁ’?@eplacing Eq.(14) in Eg. (13), we can obtain the following
thresholds for opacity, color application, and brightness. Translgquation:
cent rendering of volumetric data provides more information
about a spatial relationship of different structures than standard (* n ° L
3D surface rendering. Direct volume rendering affords us the ca- f M (e + tdc|V)dt= —— > )\(XC)J M(u(®|V \{u, hdt

o ; . ; . : . n+1% J
pability to quickly isolate tissue of interest, and quickly provides ~0 =0 0
3D spatial information for enhanced diagnostic confidence, im- (15)
proves surgical and treatment planning, and aids in education. |
the proposed approach, we only consider the absorption nature’#e€nn=0,
the dataset. That is to say, that the object is visualized by integrat- L
ing the density of the trivariate simplex functions along the path f
of each casted ray as ifR0]. The intensity of light passing
through translucent material decreases exponentially. Therefore

L
I(a,b):exp<— > X gNL(u()dt

M(x + tdV)dt=

L
o Vol (V)

' With Eq. (15), we can efficiently evaluate the integral of den-
sities along a casted line. Besides the x-ray volume rendering, we
can also perform general ray casting. Since the solid object is

0 1eQ[g=n represented by a single trivariate DMS-spline, our ray casting
L avoids resampling and interpolation problems.
=exp - > X glﬁj NIB(U(U)dt) 5.2 Marching Tetrahedra Isosurfacing. Since the resulting
1eQ |B=n 0

heterogeneous solid object consists of tetrahedra, it is easy to
The proposed direct rendering of scalar simplex spline fungerform marching tetrahedra isosurfacing to extract an isosurface
tions is able to incrementally update complex volumetric data sk its associated field. It is important to note that, based on the
at interactive rates of several frames per second. Assume thaiegmetry of the primary knots, the samples may be spaced at
control coefficientg; changes withAgl;. Then, the new intensity nonunit intervals or distributed very irregularly. Our approach
of the pixel will be does not require resampling onto a regular voxel raster, which
would introduce error. Furthermore, along tetrahedron edges, the
L process of isosurface extraction employs the original trivariate
_ | | DMS-spline interpolation, which has the potential to avoid intro-
1"*(a,b) = 1°%(a, b)exp(— Agﬁf Nﬂ(u(t))dt) (12 qucing sampling artifacts. Since traditional voxel-based sculpting
0 systems employ trilinear interpolation, they exhibit aliasing when
Since NIB(U('[))=|d(pi,q]‘,rk,s|)|M(u(t)|Vlﬁ) as shown in Eq. the voxel grid is scaled or deformed. Aliasing must then be elimi-
(5), the problem becomes how to evaluef@JI(u(t)N'ﬁ)dt effi- nated by filtering most or all of the voxel grid. \f\{e avoid this
ciently. Grounded on the theory of simplex splines, we derive t¥oblem by using what is essentially a higher-or@8r" trivariate
following analytic solution to compute the integral in a recursivéPline. If the material distribution of an object modeled by our
fashion. In the following derivation, the notation has the sanféPProach is originally smooth, it will remain smooth even if the
meanings as in Section 2.1. In order to save space, we abbrevRQBtrol lattice is arbitrarily scaled or even deformed, as long as
VIB to V. Suppose thai(t) =x.+td., wherex, andd, are constant there is notﬁelf-lr}tertsectlonsllobccurred. If %contalr;ls a discontinu-
vectors that denote the starting point of a casted ray and the d%{eglon, ese Teatures will be preserved as weil.

o : ; : key aspect of isosurface extraction is normal vector compu-
direction of the ray, respectively. Then whei 0, using the lin- . : . . .
ear decomposition, we can obtain tation. With our polynomial-based approach, it can be determined

analytically. Furthermore, the local evaluation can lead to multi-
resolution isosurface extraction. When a tetrahedron of the object

L L3 is determined across the isosurface of its associated field, and its
j M(u(t)|V)dt= E)\(xc+tdc)M(u(t)|V\{uk_})dt size is larger than a specified threshold, we can evaluate the
0 0 j=0 J trivariate DMS-spline and upsample it locally to increase the reso-

L/ 3 lution and then perform isosurfacing on those smaller cells.
-| ( A0 | .
0 \j=0 6 Implementation and Discussion

3 We have implemented a prototype system on a PC with
+t M(dc)>M(u(t)|V\{uk_})dt 3.0 GHz P4 CPU and 2 GB of RAM. The system is written in
i=0 ] C++ and OpenGL. Table 1 shows the statistics of the perfor-
mance of our fitting algorithm on several datasets, where the fit-
By Eq. (2) and ting error is the mean square error.
As one can see, we couple geometric and attribute representa-

tion together in order to provide a unified paradigm to explicitl
) AMU)|V) g p p g phicity

D MUV =dT V MUV = ——2Y) 13) Model geometry, topology, a_nd associateo_l at@ribute properties.

de UON) =de LN dt (13 However, one weakness of this representation is that, if the geo-

metric features and attribute field features are not conforming to

then performing integration by parts, we can obtain, each other, we have to select the higher resolution to model both,
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Table 1 Statistics of data fitting

Model Data pts Domain tetra  Control pts  Knots  Geometric fitting error  Field fitting error
SpX 15832 1914 3335 992 8.21121x 1077 7.78170< 1074
Cubecross 24128 2245 3294 858 1.25994% 1076 1.97281x 1074
Router 34744 2812 4239 1236 1.13400x 10°© 1.52832x 1074

even though it might not be necessary for one of them to havent state of the knowledge in modeling and visualizing heteroge-
such a high resolution. A potential solution for this case is toeous models of physical objects and their material properties in
decouple geometric and attribute representations. Thus, it offersgineering design. In the near future, we plan to pursue other
more flexibility to construct a different resolution of tetrahedralapplication directions, including material editing and reconstruc-
ization of a domain to fit the geometry and attribute distributiortion, dynamic simulation, and analysis of multiresolution, hetero-
respectively. But special care must be taken in aligning the bourgkneous objects, etc.

aries of two domains exactly the same, or else some locations of

the geometric object may not have attribute properties, or attribifgferences

_propertles are_a55|gned to the_ locations ou_ts!de the _geometrlc O?I] Raviv, A., and Elber, G., 1999, “Three Dimensioinal Freeform Sculpting Via
ject. When using the decoupling scheme, it is possible to model ~ zero Sets of Scalar Trivariate Function®foceedings of the 5th ACM Sym-
any number of attribute properties over the geometric object. ggiium on Solid Modeling and Applicatigmsnn Arbor, MI, USA, pp. 246
Complicated be represented at the resolution that best suits the : . - . e -
The gain may be a large savings in storage and execution timeTZ] Hua, 3. and Qn, garﬁggf'e'::&'f&;ﬁe; Dynamic implicit Solid Madeling,
Furthermore, noise is an important variable in any visualization[s] schmitt, B., Pasko, A., and Schlick, C., 2001, “Constructive Modeling of FRep
involving measured data. Simplex splines generally provide a ro- Solids Using Spline Volumes, Proceedings of the 6th ACM Symposium on
bust representation for a signal containing moderate noise. Com-_ Selid Modeling and Applicationsinn Arbor, MI, USA, pp. 321-322.

. ; . . 4] Martin, W., and Cohen, E., 2001, “Representation and Extraction of Volumet-
pared with polygons, or higher-dimensional analogues such a ric Attributes Using Trivariate Splines: a Mathematical FramewoR«gceed-

voxels, simplex splines generally represent a smooth function ings of the 7th ACM Symposium on Solid Modeling and Applicatians
with fewer points. However, with our knots manipulation tech-  Arbor, MI, USA, pp. 234-240.

nique, they can represent higher-frequency features as well. [5] Dahmen, W., Micphelli, C., and Seidel, H., 1992, “Blossoming Begets
B-spline Bases Built Better by B-patches,” Math. Comp&9(199), pp. 97—
. 115.
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: : : mation Theory Il Academic Press, New York, pp. 1-47.
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