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Abstract 
Implicit functions characterized by the zero-set of 
polynomial-based algebraic equations and other 
commonly-used analytic equations are extremely powerful 
in graphics, geometric design, and visualization. But the 
potential of implicit functions is yet to be fully realized due 
to the lack of flexible and interactive design techniques. 
This paper presents a haptic sculpting system founded 
upon scalar trivariate B-spline functions. All the solids 
sculpted in our environment are semi-algebraic sets of 
volumetric implicit functions. We develop a large variety 
of sculpting toolkits equipped with an intuitive haptic 
interface to facilitate the direct manipulation of implicit 
functions in real-time. To facilitate multiresolution editing 
and different levels of details, we employ three techniques: 
hierarchical B-splines, CSG-based functional 
composition, and knot insertion. Our experiments 
demonstrate that our algorithms and haptics-based 
techniques can greatly overcome the modeling difficulties 
associated with implicit functions. The novel modeling 
techniques and their haptics-based design principle are 
extensible to the design of arbitrary implicit functions. 
Keywords: Geometric Modeling, B-splines, Implicit 
Function, Volume Sculpting, Marching Cubes Rendering, 
Haptic Interface.

1. Introduction and Motivation 

The efficiency and flexibility of shape modeling are 
vital to the success of graphics, geometric design, and 
virtual environments. Despite the prevalence of parametric 
forms in visual computing fields, the traditional 
representation of geometric entities such as commonly-
used analytic shapes comes from implicit functions 
because of many of their attractive properties [1]. It can be 
shown that the set of implicit algebraic surfaces or solids 
is actually larger than that of rational parametric surfaces 
or solids. This set is also closed under certain geometric 
operations. Every rational parametric curve/surface/solid 

can be represented by an implicit algebraic equation, but 
not vice versa [13]. In contrast with parametric forms, 
implicit functions have a number of advantages such as 
point classification, intersection computation, unbounded 
geometry. Consider polynomial-based algebraic equations 
for example, the simplest form for implicit functions is the 
power basis expression of degree n
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Despite their representation potential, existing 
techniques associated with implicit functions have certain 
severe shortcomings. First, effectively digitizing and 
rendering an implicit function are oftentimes far from 
trivial. It is extremely difficult to control the shape of 
implicit solids while re-rendering the modified regions fast 
enough for their use within an interactive environment. 
Second, a designer often has no intuitive understanding of 
the effect of altering polynomial coefficients or 
adding/deleting components. Consider (1), the coefficients 
provide neither direct and natural geometric interpretation 
nor intuitive insight into the underlying shape. Third, there 
are no convenient tools for the intuitive shape control of 
this type of algebraic solids. Moreover, general implicit 
functions usually have a property of global control. In 
contrary, a large number of techniques and tools have been 
developed to afford global and local control of 
conventional parametric surfaces or solids. Yet, flexible 
and direct modeling techniques for implicit solids are 
under-explored. 

We propose a novel modeling approach and a haptics-
based sculpting principle that can integrate implicit 
functions with parametric representation such as piecewise 
scalar B-splines, which permit interactive and direct 
manipulation of implicit solids in real-time. Local control 
of the implicit solids can also be easily accomplished. This 
will enable designers to benefit from the low degree and 
computational efficiency of implicit functions. Ultimately, 
our endeavor should make it possible to achieve the full 
potential of implicit functions in commercial design 
systems. 



Commonly used graphics systems often rely upon 2D 
mouse-based interfaces for 3D interaction. Direct 
operations on virtual objects with a 2D mouse are not as 
natural and intuitive as interaction via a 3D interface. To 
ameliorate this, we offer users a haptic interface for the 
intuitive and natural sculpting of volumetric implicit 
functions. 

Haptics provides users a hand-based mechanism for 
intuitive, manual interactions with virtual environments 
towards realistic tactile exploration and manipulation. 
Haptics-based interaction has emerged as a critical 
metaphor in the fields of medicine, education, industry, 
entertainment, and computer arts. Our objective is to allow 
users to reach toward an object, feel the physical presence 
of its shape and manipulate it. With a standard haptic 
device, our approach permits users to interactively sculpt 
virtual materials having realistic properties and feel the 
physically realistic presence with force feedback 
throughout the design process. Using haptics in a virtual 
environment, designers are able to feel and sculpt real 
objects in a natural 3D setting, rather than being restricted 
to depend on 2D projections for input and output. Force 
feedback provides additional sensory cues to designers. 
This tactile exploration can afford designers to gain a 
richer understanding of the 3D nature. The use of haptics 
in a virtual design environment promises to increase the 
bandwidth of information between designers and the 
synthetic modeling world. 

Prior research is primarily focused on haptic rendering 
(i.e. the feeling of rigid surfaces/solids). In contrast, our 
haptic sculpting system allows designers to interactively 
sculpt implicit solids in real-time. Our volumetric implicit 
functions are well suited for integration with a haptic 
approach because of the properties of implicit functions. 
In particular, the modeling of implicit functions simplifies 
the complicated computation of collision detection and 
depth penetration between implicit solids and points in 
3D. 

Throughout our system, the sculpted object is evaluated 
as a level set of a volumetric implicit function defined 
over a three-dimensional working space. Although we 
employ uniform or non-uniform B-splines as the 
underlying function, constituent functions may be of 
arbitrary type with or without the local control property. 
We further enhance scalar B-spline functions with 
additional features such as hierarchical decomposition and 
CSG-based operation. Through the knot insertion, our 
system takes advantage of both uniform and non-uniform 
B-spline functions so that the knot distribution will 
influence the local shape. Rather than indirectly modifying 
the coefficients associated with the volumetric implicit 
function as exhibited in prior work, our sculpting tools 
support the direct manipulation of implicit functions' 
scalar values. Our algorithms can automatically determine 
all of the unknown control coefficients and effectively 

reconstruct a new volumetric implicit function after the 
local/global modification. Our system offers a wide array 
of intuitive sculpting tools responsible for the effective 
construction of various complicated geometric shapes with 
diverse topologies. This allows designers to interactively 
and directly sculpt implicit solids with ease. The use of 
piecewise B-splines facilitates the rapid modification on 
arbitrary, localized regions. It may be noted that the 
integration of a haptic interface and volumetric implicit 
modeling should be of interest to much broader 
communities. 

2. Background Review 

2.1 Volume Sculpting 

Galyean and Hughes [4] first introduced the concept of 
volume sculpting and developed a system with simple 
tools in 1991. Later, Wang and Kaufman [9] presented a 
similar sculpting system with sculpting tools of carving 
and sawing. In order to achieve real-time interaction, the 
system reduced the complex operations between the 3D 
tool volume and the 3D object to primitive voxel-by-voxel 
operations. Barentzen [11] proposed to use octree-based 
volume sculpting. The possibility to support 
multiresolution sculpting and its advantages were 
discussed at length. In a nutshell, the aforementioned 
sculpting systems were all dependent on the simple, voxel-
based operation. The sculpted objects and the sculpting 
tools are represented using a discrete characteristic 
function. Unfortunately, only C0 continuity could be 
achieved. In order to avoid the object spatial aliasing, the 
sculpted objects and sculpting tools need to undergo an 
appropriate filtering operation. 

Recently, Raviv and Elber [5] presented a 3D 
interactive sculpting paradigm that employed a set of 
scalar uniform trivariate B-spline functions as underlying 
representation. The sculpted object was represented as the 
zero set of the trivariate functions. Users can indirectly 
sculpt objects to a desirable shape by directly modifying 
relevant scalar control coefficients of the underlying 
functions with tools. This work pioneers the use of a 
continuous characteristic function in 3D sculpting. 

2.2 Implicit Functions 

Blinn [3] demonstrated that implicit functions are well 
suited for both scientific visualization and the modeling 
tasks in computer graphics. Typical techniques include 
forcing an algebraic surface to interpolate a set of (regular 
or scattered) points or a network of spatial curves, and 
using piecewise algebraic patches to form a complex 
shape satisfying certain continuity requirements across 
patch boundaries. Sederberg [14][15] discussed the 
modeling techniques for cubic algebraic surfaces. 



Hoffmann [16] systematically reviewed the implicit 
function techniques including the implicitization, 
parameterization, and the parametric/implicit conversion 
in CAGD. Bajaj and Ihm [17] presented an efficient 
algorithm to implement Hermite interpolation of low-
degree algebraic surfaces with C1 or G1 continuity. Note 
that, neither point nor curve interpolation is an attractive 
mechanism for defining an implicit surface because it is 
difficult for designers to predict the surface behavior 
beyond interpolating curves and points. 

Implicit functions can also be used to represent a solid. 
Commonly-used, yet simple solids such as spheres, cubes, 
cylinders, and tori are oftentimes used as primitives. To 
create more interesting shapes, primitive solids can be 
collected into a hierarchical organization with the help of 
Boolean operations. More complicated operations through 
the use of functional composition are also possible to 
generate more interesting shapes. The common feature 
essential to all implicit solid modeling methods [18][19] is 
the creation of an oriented three-dimensional boundary 
surface which partitions the entire 3-space into two 
distinct regions, namely the one occupied by the solid 
interior and the one outside of the defined solid.  

2.3 Haptic Rendering 

Haptic rendering is the process of applying forces 
through the use of force-feedback devices and augmenting 
a virtual environment with a haptic interaction. Haptic 
rendering requires: (1) sensing the position of the user's 
finger; (2) locating the contact point; and (3) appropriately 
generating a force to be applied to the finger. Thompson et 
al. [6] derived efficient intersection techniques that can be 
applied to nearly any type of haptic interface. Dachille et 
al. [20] developed a haptic interface to permit the direct 
manipulation of dynamic surfaces. McDonnell et al. [7] 
employed haptic toolkits to explore the dynamic 
subdivision solids. Avila et al. [8] presented a haptic 
interaction that is suitable for both volume visualization 
and modeling application. Despite the widespread 
application of haptics in visual computing areas, haptics-
based interaction was mainly applied to parametric 
representations for shape sculpting. We integrate the 
principle of haptic modeling with the direct manipulation 
of implicit solids. 

3. Volumetric Implicit Functions 

3.1 Tensor-Product Scalar B-splines 

Throughout this paper, we utilize scalar trivariate B-
spline functions as the underlying shape primitives for 
object representation. The use of implicit B-spline 
functions for solid modeling is strongly inspired by their 
attractive properties including simplicity, generality, local 

control, etc. The generic B-spline functions are of the 
following form: 
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where ),,( wvus  represents the scalar value at position 
(u, v, w) in parametric domain. u, v, w change from 0 to U,
V, W, which represent the size of sampling points along 
three dimensions of parametric domain. ijkp  are the scalar 
control coefficients with the domain of I, J, K that are [0,
l-1], [0, m-1], [0, n-1], respectively. In addition, )(, uB ri ,

)(, vC sj  and )(, wD tk  are the basis functions 
corresponding to ijkp , evaluated at (u, v, w). The degrees 
of the three basis functions are r-1, s-1, and l-1,
respectively. To simplify the mathematical notation, (2) 
can also be expressed as the following matrix form: 

pDCBs )( ⊗⊗=                          (3) 
where ⊗ denotes Kronecker Product, and  

]),0[],,0[],,0[(],,[ WkVjUis T
ijk ∈∈∈= ��s

])1,0[],1,0[],1,0[(],,[ −∈−∈−∈= nkmjlip T
ijk ��p

B, C, and D are matrices composed of the sampling of 
basis functions. They are of the following forms: 
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)( DCB ⊗⊗  could be precomputed in order to save 
runtime computation and improve real-time performance. 

3.2 Implicit Solids 

The implicit function can be generally characterized as: 
}0),,(|),,{( =zyxFzyx                   (4) 

The bounding surface defined by an implicit function is 
a level-set 
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By collecting all the level sets whose return values are 
greater (or smaller) than a given threshold, we could 
define a implicit solid.  
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    The advantages of implicit forms have been briefly 
documented in Section 1. In principle, the modeling 
schemes founded upon implicit forms are much more 



powerful than that of parametric-driven geometric 
modeling. However, modeling techniques based on 
implicit functions are not yet widespreadly explored due to 
the lack of direct manipulation mechanism. Our modeling 
system can bridge the large gap towards the full 
realization of all the modeling power of implicit functions. 

3.3 Volumetric Implicit Functions 

We shall collect different B-spline patches defined over 
the 3D working space to form a volumetric implicit 
function that can be collectively used to represent objects 
of complicated geometry and arbitrary topology. Note 
that, significantly different from commonly-used 
parametric B-splines, implicit B-spline functions 
formulate the scalar value distribution in 3D where 
implicit solids are uniquely defined as semi-algebraic 
point sets. Raviv and Elber [5] used a similar 
representation to implement a freeform sculpting system. 
In our system, we further enhance the B-spline 
representation power by incorporating the modeling 
advantages from hierarchical splines, generalized CSG-
based Boolean operations, and non-uniform knot insertion. 

3.3.1 Hierarchical Organization 
Let us assume users have defined N B-spline patches 

over the sculpting working space, which are located at any 
location and with any orientation. In general, these patches 
may be formulated by different number of control 
coefficients in order to achieve the goal of multiresolution 
analysis and level-of-details control. Then the scalar value 
at the location (x, y, z) can be computed as 
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where iT  is an affine transformation from the Euclidian 
space to the parametric domain of patch is . Since the 
trivariate B-spline has the affine invariance property, this 
transformation can be easily implemented. For each 
different patch is , there is a corresponding transformation 

iT . Now ),,( zyxF  becomes a new volumetric implicit 
function defined over the 3D working space. Without loss 
of generality, we make use of cubic B-splines with 
nonperiodic knot vectors. In order to make the boundaries 
of different trivariate patches achieve 1C  continuity, the 
first and last 4 layer control coefficients along three 
principal directions of the parametric domain should be set 
to zero.

3.3.2 CSG-based Operations 
Users may intend to sculpt implicit solids to form sharp 

features over their boundaries or change the continuity 
requirements across their smooth boundaries. Feature-
based sculpting tools can significantly improve the system 
performance. In light of this demand from users, our 

system provides CSG-based operations on any user-
defined trivariate patche in order to facilitate the rapid 
construction of complicated models satisfying many 
feature-oriented requirements. Therefore, complicated 
geometry is readily available in our system through the 
use of 
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where Ω  is a Boolean operation such as Union, 
Intersection, or Difference. In addition, iT  and is  have 
the same geometric meaning as those appeared in (7). In 
our system, the Boolean operation information will be 
stored in a tree structure in order to speedup the data 
query. 

3.3.3 Non-uniform Knot Distribution 
The use of uniform knots to model sophisticated objects 

may result in a extremely large number of knots and 
control points. This will lead to information redundancy 
and deformation difficulty as many degrees of freedom 
must be employed in any localized small region. However, 
the use of non-uniform knot sequences affords additional 
shape control and the modeling of a much larger class of 
shapes than what the uniform knot vectors can offer. 
Furthermore, the use of non-uniform B-splines can 
overcome certain modeling difficulties associated with 
uniform B-splines. For example, it is almost impossible 
for B-splines with uniform knot vectors to interpolate 
highly unevenly spaced data points without the unwanted 
scenario of oscillations or loops [2]. 

Our system allows users to specify a non-uniform 
vector during the initialization phase of the object design 
session. In addition, users could insert more knots 
anywhere into current knot vector at any time after the 
sculpting manipulation is underway. When new knots are 
inserted, the system will generate corresponding control 
coefficients and the sculpted object will be reevaluated 
upon the refined knot vector. In our system, the knot 
spacing is proportional to the distances of the data points: 

11 ++ ∆
∆

=
∆
∆

i

i

i

i

x
x

where i∆  represents the spatial difference between the 
(i+1)th knot and ith knot, ix∆  represents the spatial 
difference between the (i+1)th data point and ith data 
point. Thus, the underlying model represented by 
volumetric implicit functions is essentially a non-uniform 
B-spline. 

Through the different combination of these three 
techniques, our system could offer users a large array of 
modeling operations and enhance the already-powerful 
shape variation of implicit B-splines with the additional 
flexibility in a hierarchical fashion. 



4. System Description 

The sculpted object of an implicit B-spline function is 
discretized into a voxel raster in our system for rendering 
purpose. Every voxel contains a scalar value, called 
density value, sampled at a grid point. The volumetric 
implicit function described in Section 3 is employed to 
assign the density value to the sample points to indicate if 
the location has material. The function will be used to 
formulate the density distribution over the 3D working 
space and represent the sculpted object by a given level 
set. Fig.1 (see the color page) shows voxel maps in 2D 
space and 3D space, respectively. 

This voxelmap defines a function, where the solid 
particles (colored in red) denote locations in which 
material exists and the empty particles (colored in gray) 
denote locations in which there is no material. Although 
we use binary material distribution in Fig.1 to illustrate the 
concept, however, in our system the characteristic function 
is not a binary function, rather it is a continuous function. 

When a sculpting tool is used to sculpt the object, the 
density values of the working space inside the tool volume 
will be modified correspondingly. Then the system will 
reconstruct the volumetric implicit function to represent 
the new, modified object undergoing deformation. By 
using local Marching Cubes technique [12][21], the 
isosurface of the object could be displayed interactively. 

The haptic interface of our system allows users to reach 
toward an object, feel the physical presence of its shape, 
and sculpt it with force feedback. Through the use of 
many haptic tools available in our system, users can obtain 
both intuitive feeling and better understanding of the 
virtual sculpting. The feedback forces are computed 
directly based on the object representation. 

4.1 Octree-based Data Structure 

Since the sculpted object is discretized in a voxel raster, 
usually there are many homogeneously empty regions 
outside the object of interest. If those regions could be 
quickly separated from the sculpting region, it will 
significantly reduce the memory consumption and speed 
up the volume rendering and modeling tasks. Therefore, 
an octree-based data structure is employed in our system, 
similar to the scheme used in [11]. 

The working space is recursively subdivided until either 
the subdivided volume is empty, or the subdivision has 
reached a pre-defined maximal subdivision depth. In the 
first case, the subdivided volume is an empty leaf node, 
while the second situation means that the current location 
is not empty and the material property at that location 
should be recorded. Every time the sculpted object is 
modified by a sculpting tool, the octree data structure 
could locate where the modification is performed and only 
needs to locally update the volumetric implicit function for 

efficiency purpose. Our system uses Marching Cubes 
technique to render the isosurface of the sculpted object. 
This local update property can speed up the Marching 
Cubes rendering by only conducting the reevaluation task 
of the modified parts. 

4.2 Volume Sculpting 

4.2.1 Tool Modeling 
Tools are represented by any 3D implicit function 

),,(0 zyxGw = . It is easy to determine whether a 
location is inside the tool volume by simply evaluating the 
function. In order to prevent object spatial aliasing, a 
filtering operation must be used inside the tool volume. 
The filtering algorithm used in our system is similar to the 
one in [4][9]. Given a location (x, y, z), the shortest 
distance from (x, y, z) to the boundary of the tools is 
computed using the evaluation function. Then this shortest 
distance is used to filter the density values at the location 
(x, y, z). Here we use a linear filter. The minimal density 
value is assigned to the boundary and the maximal one is 
assigned to the center of the tool. The density values at the 
intermediate locations are linearly interpolated. So the 
density value at (x, y, z) is proportional to the shortest 
distance to the boundary. Later we will explain how to 
further generalize this concept in haptic interface to obtain 
realistic force feedback. 

4.2.2 Tool-Object Interaction 
When users assign a sculpting tool to a new location, 

the tool is mapped to the coordinate system, which 
contains the sculpted object. The boundary box of the 
tools is then computed. And the density values at the 
locations inside the tool volume are modified as described 
in Section 4.2.1. If the tool is to add material, those 
density values should be greater than the object iso-value. 
If the tool is to remove material, those density values 
should be less than the iso-value. After this initial 
modification on material distribution, we have to 
reconstruct the volumetric implicit function of B-splines 
according to the new density distribution. Currently, our 
system only allows single operation to modify exactly one 
patch at any time during the session of volume sculpting. 
So only control coefficients that belong to one B-spline 
patch need to be modified at every time of sculpting. Real-
time performance with realistic haptic feedback can be 
easily achieved. The mathematics of B-spline 
manipulation is formulated as follows:

newnew spDCB =⊗⊗ )(                (9) 
where news  represents the new density distribution over 
the sculpted patch region and newp  are new control 
coefficients, B, C, D are sampling matrices of basis 
functions as shown in Section 3.1. Because of the local 
support property of B-splines, only a very small subset of 



the control coefficients needs to be modified. Hence, we 
only need to solve this system of linear equations within 
the tool sculpting region. Therefore, (9) can be further 
simplified into: 

modmod)'''( spDCB =⊗⊗                (10) 
where mods  and modp  only come from the modified 
region. B', C' and D' are small sets of the original basis 
matrices, which are corresponding to the local modified 
region. 

Now, in essence the problem of volumetric sculpting is 
equivalent to a typical data fitting application: Given a set 
of points ),,( kji zyx  in the parametric domain, and the 
density value dijk at every point, find the best possible 
solution that fits the data set either through interpolation 
(when one unique solution exists) or approximation (when 
the system becomes over-constrained). Usually the 
number of control coefficients is less than the hardware-
permitted resolution of 3D working space. So we employ 
the Mean Square Error for data approximation: 
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where LMN represents the total number of data points that 
have been modified using certain sculpting tools. 
Therefore, it is necessary to seek a function s(x ,y ,z) that 
minimizes the mean square error.  It is convenient to use 
matrix algebra to symbolically formulate the solution to 
the preceding problem. Using the matrix forms, the Mean 
Square Error can be written as: 

[ ]2
mod)'''(1 pDCBd ⊗⊗−=

LMN
MSE         (12) 

where d  is a vector of density values whose elements are 
ijkd . Differentiating with respect to the elements of 
modp , and setting the derivative to zero leads to the 

solution: 
[ ] dDCBDCBDCBp TT )'''()'''()'''( 1

mod ⊗⊗⊗⊗⊗⊗= −  (13) 
which is equivalent to the least-square fitting. 
    After the new control coefficients are generated, the 
system uses the Local Marching Cubes algorithm to render 
the modified part to generate the new isosurface of the 
deformed object. 

4.3 Haptic Feedback 

In order to enhance the realism of the virtual sculpting, 
our system offers haptic interactions, which can give users 
a realistic feel of the virtual objects. Thus, users can gain a 
richer understanding of their sculpted model. Our work 
significantly extends the notion of simply touching 
compliant objects (i.e., haptic rendering) to interactively 
and directly sculpting of virtual solids (i.e., haptic 
modeling). 

From the standpoint of volume sculpting, the following 
problems must be addressed in order to provide 
meaningful force feedback for haptic interaction: 
� Force computational rate: the computational rate 

must be high and latency must be low. Inappropriate 
values can cause an improper feel of the virtual 
environment. 

� Generation of contacting forces: this creates the 
"feel" of the object. Contacting forces can represent 
the stiffness of the object, damping, friction, surface 
texture, etc. 

� Fast data modification and rendering: this could 
make the sculpting operation consistent with the 
haptic force feedback. 

Since the sculpting could only be performed within a 
small region at every time step, it is natural to only allow 
the computation of haptic interactions to occur within a 
localized region, in order to meet the high frequency 
requirement set by the haptic device and make the 
sculpting consistent with the force feedback. In addition, 
oftentimes users' meaningful sculpting operations would 
not exceed the region limitation within a very tiny time 
step along time axis (e.g., only 1~2 ms in our system). So 
this assumption is reasonable and does not introduce any 
limitations in our volume sculpting system. In our system, 
we use a point contact force model [8]: 

)()( NSVRF +=                        (14) 
where V  is moving speed of a contacting point, )(VR  is a 
damping force that tends to resist motion along the 
opposite direction of the contacting point's movement, 

)(NS  is a stiffness force along the normal of the 
contacting point ( N ). F  is the feedback force to users, 
which is equal to the sum of the motion damping force and 
stiffness force. The force calculation should be very fast to 
meet the PHANToM update rate (i.e., greater than 1kHz). 
Otherwise, users would have uncomfortable feelings such 
as buzzing during the haptic interaction, hence, destroying 
the purpose of using haptics to augment realism. As we 
described in Section 4.2.1, the density distribution in our 
model is proportional to the distance map. So it is natural 
for us to use the density field instead of the distance field 
to calculate the force. The motion damping force and 
stiffness force are calculated, respectively, as follows: 

)()( dfVVR r−=                         (15) 

)()( df
N
NNS s=                        (16) 

where d is a density value, rf  and sf  are transfer 
functions, which map density values to force magnitudes. 
The transfer functions rf  and sf  that we are currently 
using in our environment are as follows: 

bddadf newr +−= )()(                  (17) 



)()( ddkdf news −=                    (18) 
where d is current density value at (x, y, z), dnew represents 
the new density value at ),,( zzyyxx ∆+∆+∆+ , which is 
the very next time step. a, b and k are control variables 
which can be interactively set up by users. Using different 
transfer functions, we could let users feel different force 
effects, increasing the flexibility of our haptic interaction.  
    In our system, the density distribution over the 3D 
working space is represented as a continuous volumetric 
implicit function of B-splines. This property can help to 
avoid the discontinuous force feedback, which leads to 
unrealistic feelings such as buzzing. Another advantage 
for integrating haptic interaction with implicit functions is 
that it is much easier to compute the contacting point and 
determine if the contacting point is inside the object to be 
sculpted. The density value at any location could be given 
by simply evaluating the volumetric implicit function. 
Therefore, the damping force and stiffness force could be 
computed efficiently to satisfy the high update rate of 
haptic interaction, 

))),,(),,((()( bzyxFzzyyxxFaVVR +−∆+∆+∆+•−=    (19) 
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where F is obtained from (7) or (8). The normal N  at
(x, y, z) can be computed analytically as ),,(
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5. Implementation 

Our system is implemented on a Microsoft Windows 
NT PC with a 550MHz CPU and 512 MB RAM. A 
PHANToM 1.0 3D Haptic input/output device from 
Sensable Technologies is employed to provide natural and 
realistic force feedback. The entire system is written in 
Microsoft Visual C++ and the graphics rendering 
component is built upon OpenGL. Fig. 2 (see the color 
page) shows the system interface. 

When using haptic tools, to reduce the latency and 
maximize the throughput, we resort to a parallel technique 
that can multithread the haptics, graphics, and sculpting 
processes with weak synchronization. This technique leads 
to the possible performance improvement and ultimately, 
the parallel processing of haptic sculpting given the high-
end multi-processor environment. Therefore, our system is 
readily available in many different configurations. Fig. 3 
shows the structure of the multithreads, where thick 
arrows represent data flow and thin arrows represent 
control flow. 

The haptic loop is implemented in a single thread. It 
maintains the haptic refresh rate which is no less than 
1KHz. This requirement is critical to the realistic feedback 
of haptic interaction. If the update rate is below the 

threshold of 1KHz, users would feel uncomfortably. In our 
system, the haptic thread has the highest priority. 

Fig. 3  The structure of multithreads  
The object sculpting loop is implemented in another 

thread. It controls the object sculpting. In order to keep up 
with haptic update rate, any sculpting operation within one 
time step is limited to a small region. As we specified in 
Section 4.3, usually users' sculpting operations would not 
exceed this limited region within a tiny time step. 

The graphics loop is developed to handle the rendering 
of volumetric objects. The rendering task makes use of 
local Marching Cubes algorithm and only update the very 
small region in order to achieve interactive speed and 
make graphics display consistent with sculpting operation 
and force feedback. 

6. Interactive Sculpting Toolkits 

Our system offers several haptic tools such as haptic 
iso-surface feeling, haptics-based probing, and haptics-
based driller.
    Besides feeling the boundary surface of a volumetric 

object, users can choose any iso-value 
from the allowable range of the 
volumetric implicit function and the 
system generates corresponding iso-
surfaces quickly. The figure on the left 
shows two different iso-surfaces with the 
wireframe display mode in order to make 

two surfaces visible at the same time. Users can feel 
different iso-surfaces of the sculpted object by moving the 
cursor and navigating over those iso-surfaces. This tool 
allows users to examine the smoothness of objects' surface 
and the interior structure tactilely. 

Through the use of the contacting force model described 
in Section 4.3, our system can afford users 
to feel the tiny difference of an object's 
stiffness (or density) while users move the 
cursor inside the object. When active, the 
probing tool exerts a force on the user's 
finger proportional to the local density 
values within a given radius of the tool. 

Sculpting thread 

Get cursor position

Haptic thread 

Object 
dataset 

Graphics thread 

Object sculpting

Update object

Get haptic input

Compute forces

Send back forces

Local Marching Cubes 

Update display



Using the haptics-based driller, user can make a drill to 
the object along any direction. In this process, users could 
feel the realistic force coming from the object's stiffness 
and the motion resistance. The driller could be any kind of 
shape such as spheres, cubes or stars. 

For tool operations, Fig. 4 (see the color page) shows a 
number of toolkits including sphere-based carving and 
addition tools, cylinder-based carving and addition tools, 
rectangle-based carving and addition tools, torus-based 
carving and addition tools, chisel tools, copy and 
composing tools, squirt tools, inflation and deflation tools, 
moving and bending tools, etc. Next we explain some tool 
configurations and their operations. 

When using copy and composing tools to build up a 
complicated scene with the same object, users can define a 
number of trivariate patches at any locations and along 
any directions. The collection of those patches is based on 
the union operation for CSG models. Through the use of 
the simple copy operation, the patch coefficients can be 
duplicated from one region to another region of interest, a 
set of similar objects of the same geometry could be easily 
created. In Fig. 4 where copy and composing operations
were undertaken, 33 ×  patches were created parallel to 
each other in the working space. When the chair sculpting 
was completed inside one patch, the coefficients of that 
patch were copied and loaded in other 8 patches to create 
the scene. 

The inflation and deflation tools cause a localized 
region to grow or shrink. Users can interactively define a 
region. When using a deflation tool, the coefficients of the 
scalar trivariate implicit function inside the region 
decrease in order to shrink the specified part of the object. 
For the inflation tool, those coefficients should be 
increased instead. In Fig. 4 where inflation and deflation 
operations were undertaken, the soccer player's head was 
inflated and one of his arms was deflated. 

The moving tool moves a selected region of the 
coefficients to other locations. The bending tool deforms a 
selected region of coefficients to new positions. In Fig. 4 
where moving and bending operations were undertaken, 
we first moved both arms up through the use of the 
moving tool, and then, bended the player to get the second 
gesture. 

7. Experimental Results 

We have developed a novel modeling system for haptic 
sculpting of the volumetric implicit function based on non-
uniform B-splines. The implicit solid can be generated 
with a variable number of control coefficients and with 
variable sampling rates. We have conducted a large 
number of experiments and recorded the running time for 
the sculpting of volumetric implicit functions. The 
experiments are based on a working space sampled at 

128128128 ×× . The tool size is given as the number of 

data points that the tool affects. The results are detailed in 
Table 1. 

Table 1: Run time of Tool-Object interaction 
Control coefficient 

resolution Tool size Update time 
(ms) 

101010 ×× 1
202020 ×× 9323232 ××
404040 ×× 69
101010 ×× 1.5
202020 ×× 11646464 ××
404040 ×× 92
101010 ×× 2
202020 ×× 20128128128 ××
404040 ×× 151

Within our implicit function modeling framework and 
without using any other external resource, we have created 
several interesting objects and scenes from scratch. Fig. 5 
(see the color page) shows a series of actions of a soccer 
player. They were sculpted with 326464 ××  uniform 
knots and control coefficients. Fig. 5(a) shows a standing 
one. We shall use this example to explain how to sculpt an 
object using our system. We began with a cubic block. By 
carving and haptically drilling the cubic block several 
times, a rectangular body was created. The neck was 
sculpted using cylinder-based addition. The head was 
placed on top of the neck using a sphere-based additive 
tool. By way of a rectangular tool, the shoulder part was 
sculpted. The two arms were created using cylinder-based 
addition. The two legs were obtained in a similar fashion. 
The feet were sculpted by adding rectangular materials 
and sculpting with sphere-based tools and the haptics-
based driller. Other motions of the soccer player are all 
based on the initialized model. Through the use of moving 
and bending operations, the animated sequences of models 
were subsequently created. Fig. 6 (see the color page) 
shows several characters mounted on a rectangular stone. 
The working space contains a single patch with 

326464 ××  non-uniform knots and 326464 ××  control 
coefficients. The region that contains all characters has 
much more knots and control coefficients than the flat 
region where no deformation is undertaken.  

Fig. 7, Fig. 8 and Fig. 9 (see the color page) show three 
scenes, which were sculpted entirely using our system 
(without resorting to any other external resource) and 
rendered using the commercial software of POV-Ray. For 
example, Fig. 7 shows a cartoon train running in a desert 
environment. The train was sculpted with nine 

646464 ××  patches. One patch was for sculpting the 
body of the train. And other eight patches were used for 
sculpting the eight wheels. The railroad was sculpted in a 

646464 ××  patch. Every cactus was sculpted in a 
323232 ××  patch. The collection of the patches in the 

working space was based on hierarchical organization and 
union operation. 



8. Conclusion 

We have presented a novel haptics-based volumetric 
sculpting environment that employs trivariate scalar non-
uniform B-splines as underlying representation. All the 
volumetric objects sculpted in our modeling system are 
characterized by piece-wise implicit functions. We have 
proposed a new approach that unifies implicit functions 
and parametric representations within a single haptics-
based sculpting system. We have developed a large variety 
of algorithms and toolkits that afford designers the 
mechanism of interactive and direct manipulation of 
implicit solids in real-time, augmented by a realistic and 
intuitive haptic interface. To facilitate multiresolution 
editing and direct control on different levels of details, we 
have also incorporated three popular modeling techniques: 
hierarchical B-splines, CSG-based functional composition, 
and knot insertion into our environment, making our novel 
implicit modeling techniques even more powerful and 
flexible to handle both complicated geometry and arbitrary 
topologies.  

Our experiments have demonstrated that our algorithms 
and direct editing techniques based on nonuniform B-
spline implicit functions can not only overcome the 
existing disadvantages associated with conventional 
modeling of implicit functions, but realize all the 
potentials exhibited in implicit functions in visual 
computing fields as well. More importantly, the powerful 
3D haptics-based interface of our system is more intuitive 
and natural than conventional 2D mouse-based interfaces, 
making it possible for our implicit function modeling 
system to appeal to a spectrum of users ranging from 
highly trained engineering designers, computer 
professionals, artists, to even computer illiterates. Our 
sculpting system permits designers to create real-world, 
complicated models in real-time. Finally, the novel 
modeling techniques and their haptics-based design 
principle are extensible to the design of arbitrary implicit 
functions. 
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                     Fig. 1  Voxelmap in 2D and 3D                                       Fig. 2  System Interface comprised of 
           on-screenGUI, a PHANToM device 

  Sphere-based carving and addition     Cylinder-based carving and addition   Rectangle-based carving and addition 

         Torus based carving and addition                             Chisel operation                    Copy and composing operation

                   Squirt operations                           Inflation and deflation operations           Moving and bending operations

Fig. 4  A set of typical toolkits and sculpted examples 



          (a)                         (b)                         (c)                           (d)                           (e)                              (f) 
(a) Model initialization, (b) Starting position, (c) Moving, (d) Kicking, (e-f) Celebrations 
Fig. 5  A motion series of a soccer player and his entire kicking actions (a, b, c, d, e, f)  

   Fig. 6  English letters mounted on stone plates                      Fig. 7  A Running Cartoon Train 

          Fig. 8  A corner of PG discussion room                                Fig. 9  PG conference room 


