
Free-Form Deformations via Sketching and
Manipulating Scalar Fields

Jing Hua Hong Qin
Computer Science, SUNY @ Stony Brook

{jinghua|qin}@cs.sunysb.edu

ABSTRACT
This paper presents a novel Scalar-field based Free-Form Deforma-
tion (SFFD) technique founded upon general flow constraints and
implicit functions. In contrast to the traditional lattice-based FFD
driven by parametric geometry and spline theory, we employ scalar
fields as embedding spaces instead. Upon the deformation of the
scalar field, the vertices will move accordingly, which result in free-
form deformations of the embedded object. The scalar field con-
struction, sketching, and manipulation are both natural and intuitive.
By tightly coupling self-adaptive subdivision and mesh optimiza-
tion with SFFD, versatile multi-resolution free-form deformations
can be achieved because our algorithm can adaptively refine and
improve the model on the fly to improve the mesh quality. We can
also enforce various constraints on embedded models, which en-
able our technique to preserve the shape features and facilitate more
sophisticated design. Our system demonstrates that SFFD is very
powerful and intuitive for shape modeling. It significantly enhances
traditional FFD techniques and facilitates a larger number of shape
deformations.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling; I.3.6 [Computer Graphics]: Methodology and Tech-
niques—interaction techniques

General Terms
Algorithms, Design

Keywords
Deformations, Interaction Techniques, Scalar Fields

1. INTRODUCTION
Free-Form Deformation (FFD) is an important technique in shape

modeling, animation, and simulation. FFD-based techniques ap-
plied on an existing object are an appealing alternative to traditional
modeling since they are independent of objects’ representations.
Various FFD techniques have been proposed during the past two
decades [18, 5, 4, 12, 13]. However, there are several difficulties

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03, June 16–20, 2003, Seattle, Washington, USA.
Copyright 2003 ACM 1-58113-706-0/03/0006 ...$5.00.

(a) (b) (c)

Figure 1: An object (a) is embedded in a scalar field (b) and de-
formed by altering the scalar field (c). (b) shows a cross-section
of the entire scalar field (see the plane) and a single level set (see
the transparent surface). (c) shows the deformed object.

associated with current FFD techniques. First, performing deforma-
tions with complex control lattices is extremely time-consuming in
general. Although the axis-based FFD approaches and the directly
manipulated FFD approaches [4, 12] are relatively intuitive and ef-
ficient, those methods can only offer limited deformations. Second,
the control lattice is less flexible and cannot have arbitrary topology
easily. It is difficult to afford a large number of deformation types.
Third, the traditional FFD operation is generally a single operation
applied on static models. The refinement and optimization can only
occur before or after deformation. If a low curvature and low reso-
lution region is not subdivided prior to the deformation, the model
is no longer capable of representing the deformation accurately.

We propose a novel free-form deformation technique, or SFFD,
based on vertex flow constraints and implicit functions, which em-
ploys a scalar field as the embedding space. Users can interactively
sketch a scalar field of an implicit function via a mouse to embed
an entire model or a part of the model. The embedding space based
on scalar field is of diverse type, which implicitly defines a compli-
cated geometry and an arbitrary topology. Upon the deformation of
the embedding space (i.e., the modification of scalar field), the ver-
tices will move according to the enforced flow constraints, which
results in free-form deformations of the embedded object. The de-
formation velocity of each vertex on the model is very general and
can adopt any user-desired constraints easily. Our SFFD technique
generalizes traditional FFD technique and affords a larger number
of shape deformations. The scalar field construction, sketching, and
manipulation are more natural and easy-to-use than previous FFD
techniques.

Furthermore, in order to represent deformations more accurately,
the embedded models are equipped with self-optimization capabil-
ity. Adaptive subdivision and mesh optimization are tightly coupled
with SFFD, supporting versatile multi-resolution free-form defor-
mations. Since our SFFD can be an evolution process, it allows
self-adaptive refinement and mesh improvement to interleave with
shape deformation throughout the SFFD operation. Our algorithm
can adaptively subdivide the model in regions that require high reso-
lution. As the SFFD deforms an object, the curvature of the affected

surface is checked to see if subdivision is necessary. We also in-
corporate various constraints on embedded models, which enable
our technique to facilitate feature-based design. Our results demon-
strate that the proposed FFD technique is very useful and powerful
for shape editing and solid design.

2. RELATED WORK
Sederberg and Parry [18] pioneered the FFD concept on solid

geometry. However, FFD can be accomplished only with a par-
allelpiped lattice structure. Coquillart [5] developed the Extended
Free-Form Deformation, or EFFD, as an extension of Sederberg
and Parry’s technique, which uses non-parallelepiped 3D lattices.
MacCracken and Joy [13] presented a free-form deformation tech-
nique, which uses arbitrary lattices, namely, Catmull-Clark subdivi-
sion volumes. This technique allows a variety of deformable regions
to be defined, and thus a broader range of shape deformations can be
generated. However, the lattice space definition is time-consuming
and difficult. This technique requires a great deal of CPU time and
memory. Later, Jin et. al. [10] proposed a constrained local defor-
mation technique based on generalized metaballs. Singh and Fiume
[19] presented wires for interactive, geometric deformation. Crespin
[6] presented a free-form deformation technique with the use of de-
formation primitives. Note that, the combination of deformations
with the use of blending functions is counter-intuitive and need be
tuned for each different type of deformations. Our paper introduces
a new SFFD technique by establishing deformation methods defined
on scalar fields, which avoids parameterization process.

As for interactive design based on scalar field, Bloomenthal et.
al. [2] used skeleton methods to construct implicit surfaces. Blobby
model, also known as soft object [22], is another popular technique
for the design of implicit surfaces. Recently, Raviv and Elber [16]
presented a 3D interactive sculpting paradigm that employed a set
of scalar uniform trivariate B-spline functions as object representa-
tions. Schmitt and Pasko [17] presented an approach for construc-
tive modeling of FRep solids defined by real-valued functions using
4D uniform rational cubic B-spline volumes as primitives. Turk and
O’Brien [20] introduced new techniques for modeling with interpo-
lating implicit surfaces.

Our work is also related to level-set approaches. Osher and Sethian
first presented the level set methods [15]. Level set models are de-
formable implicit surfaces where the deformation of the surface is
controlled by a speed function in the level-set partial differential
equation. In graphics, Desbrun et. al. [7] and Breen et. al. [3] used
the level set methods for shape morphing. Most recently, Museth et.
al. [14] and Bærentzen et. al. [1] presented a level set framework for
interactively editing implicit surfaces. For level set methods, the es-
sential problem is to construct implicit functions or implicit models
based on application-oriented speed functions. Note that, models to
be deformed must be first converted into volumetric representation
and represented as a single iso-surface.

3. SFFD ALGORITHM
In general, surfaces expressed by an implicit form can be formu-

lated as {X ∈ � 3| f (X) = c}. The function f is called the implicit
function, or the field function, which defines a scalar field. The re-
lated level set (also called the iso-surface) is corresponding to an
iso-value c. The function f may be of any mathematical expres-
sion. It may also be an arbitrary procedural process (i.e., a black
box function) that produces a scalar value for a given point in space.

In our work, the scalar field can be used as FFD embedding space,
which wraps a to-be-deformed object. Note that, fundamentally dif-
ferent from traditional FFD space, the SFFD space is an implicit
function based on scalar field instead of a lattice-based geometric

object. Figure 2(a) shows a 2D implicit function and Figure 2(b) is
the scalar field corresponding to the function. Deforming the scalar
field to the one shown in Figure 2(c), an embedded 2D object is
deformed accordingly. Figure 1 shows a 3D deformation example.
The teacup model is embedded inside a 3D scalar field. After chang-
ing the scalar field, the teacup is significantly deformed.

(a) (b) (c)

Figure 2: (a) shows an implicit function graph and (b) shows
its corresponding scalar field. A 2D object (a free-form planar
curve) is embedded in the 2D scalar field as shown in (b) and
deformed by changing the embedding space as shown in (c).

Now let us overview our idea of applying scalar field of implicit
function to perform free-form deformations on existing polygonal
models. First we embed an entire model or a part of the model
into a scalar field and calculate the scalar values at all the vertices
of that embedded part. Then during the FFD process the vertices
are always constrained on the level sets where they originally reside
by enforcing vertex-flow constraints. Once users deform the scalar
field, the vertex will move accordingly, which results in free-form
deformation of the embedded object.

Since the SFFD enforces that the relocation position of a vertex
X(t) of the deformed object remains on the same level set when
scalar-field space is deformed, the trajectory of the vertex can be
represented as {X(t)| f (X(t),t) = c}. The derivative of f (X(t),t)
yields

d f (X(t),t)
dX

=
∂ f (X(t),t)

∂X
dX(t)

dt
+

∂ f (X(t),t)
∂t

= 0, (1)

where ∂ f (X(t),t)
∂X is the gradient at X. To simplify the notation, we

represent the gradient using ∇f, and abbreviate f (X(t),t) to f . There-
fore, (1) can be re-written as follows:

∇f · dX(t)
dt

+
∂ f
∂t

= 0. (2)

Note that dX(t)
dt and ∂ f

∂X are both vectors. Therefore, there is an
ambiguity and the solution for the vertex velocity from (2) is not

unique. Only from this flow constraint, the velocity dX(t)
dt could not

be uniquely solved. Dividing dX(t)
dt into (vn,vt,vw), where n = ∇f

‖∇f‖
represents the unit principle normal vector of the iso-surface of the
scalar field, t represents the unit tangent vector, and w represents the
unit binormal vector, we know that only the normal velocity, vn, is
perpendicular to the constraint line. So the dot product in (2) only
retains the item containing vn. Therefore, we can obtain the velocity
of the normal flow, vn = − 1

‖∇f‖
∂ f
∂t n. This normal flow scheme is

essentially the basis of level set methods, which has been widely
used in computer vision, and level-set based applications [7, 3] for
tracking the target objects. The normal flow scheme only considers
the evolution velocities along the normals of iso-surfaces. It is good
for minimizing the similarity between the active model and target
model. However, the intermediate deformations are not natural and
are not addressed in the aforementioned work. In essence, the main
task of level set methods is to design the normal velocities vn to
evolve the function f .

Instead, our objective is to provide a general FFD technique. We
compute vertex velocities v based on the change of f . The motion

of the embedded object inside the scalar field should be natural, ver-
satile, and without strong limitation. Therefore, we need to consider
the velocities along three linearly independent directions simultane-

ously. In this paper, we consider the general velocity dX(t)
dt along the

three coordinate axes, x,y,z, of the 3D space. The general velocity is
also represented using (vx,vy,vz) or v. In order to obtain the unique
solution from the flow constraint equation (2) and also maintain the
smooth motion of the deformed model during the SFFD process,
we add a smoothness constraint into the model. The vertex veloc-
ity variation inside a local region is minimized. This gives rise to
minimizing the following objective function:

E =
�

(∇f ·v+
∂ f
∂t

)2 +λ(‖∇v‖)2dx, (3)

where λ is a Lagrangian multiplier. By discretizing the above ob-
jective function, (3) can be minimized iteratively. Considering a
vertex k and its neighboring vertex set Qk in an optimized mesh,
Qk = { j|−→jk ∈ M}, where M denotes a set of all the edges of the
embedded model. Note that the mesh of the model will undergo an
optimization process as described in Section 4. The error of the flow
constraint approximation is as follows,

c(k) = (
∂ f
∂x

vx(k)+
∂ f
∂y

vy(k)+
∂ f
∂z

vz(k)+
∂ f
∂t

)2.

The smoothness of the motion of the local region can be computed
according to the velocity difference between the vertex, k, and its
neighboring ones, j ∈ Qk.

s(k) =
1

‖Qk‖ ∑
j∈Qk

[(vx(k)−vx(j))2 +(vy(k)−vy(j))2

+(vz(k)−vz(j))2],

where ‖Qk‖ denotes the number of vertices in Qk. Therefore,

E = ∑
k

(c(k)+λs(k)). (4)

The solution, satisfying ∂E
∂vx(k)

= 0, ∂E
∂vx(k)

= 0, and ∂E
∂vx(k)

= 0, can
minimize the above objective function E . That the derivative of E
with respect to vx(k), vy(k), and vz(k) is equal to zero yields the
following equations and (vx,vy,vz) can be solved afterwards.

(λ +(
∂ f
∂x

)2)vx(k)+
∂ f
∂x

∂ f
∂y

vy(k)+
∂ f
∂x

∂ f
∂z

vz(k) = λvx(k)− ∂ f
∂x

∂ f
∂t

,

(λ +(
∂ f
∂y

)2)vy(k)+
∂ f
∂x

∂ f
∂y

vx(k)+
∂ f
∂y

∂ f
∂z

vz(k) = λvy(k)− ∂ f
∂y

∂ f
∂t

,

(λ +(
∂ f
∂z

)2)vz(k)+
∂ f
∂x

∂ f
∂z

vx(k)+
∂ f
∂y

∂ f
∂z

vy(k) = λvz(k)− ∂ f
∂z

∂ f
∂t

,

where (vx(k),vy(k),vz(k)) is the average velocity v(k) of all the
neighboring vertices in Qk, v(k) = 1

‖Qk‖ ∑ j∈Qk
v(j). Solving the

above equation we can obtain the following iterative solution,

[vk+1
x ,vk+1

y ,vk+1
z]� = [vk

x,v
k
y,v

k
z]
�−µ[

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

]�, (5)

where µ= (∂ f
∂x vk

x + ∂ f
∂y vk

y + ∂ f
∂z vk

z + ∂ f
∂t)/(λ +(∂ f

∂x)2 +(∂ f
∂y)2 +(∂ f

∂z)2).
Based on the above formulations, we have designed a dynamic

continuous SFFD algorithm as follows. First generate a desired
scalar field that embeds a model to be deformed and initialize the
velocities (vx,vy,vz) at all the vertices as 0. Altering the scalar field,
the embedded model begins to deform. During the deformation pro-
cess, perform the following loop until all the vertices reach the level
set where they originally resided.

At each time step ∆t,

1. Update the scalar field f (X,t +∆t) at all the vertices X;

2. Deduce ∂ f
∂t = (f (X,t +∆t)− f (X,t))/∆t;

3. Calculate ∂ f
∂X with finite differences;

4. Compute v(k) according to current vertex velocities;

5. Deduce v(k +1) according to (5);

6. Update vertices’ positions by Xt+∆t = Xt + γ ·v(k +1) ·∆t;

7. Perform SFFD model optimization;

8. If f (Xt+∆t,t +∆t)≈ f (X,t), terminate; otherwise, advance to
next time step and repeat the above steps.

The SFFD can be an evolution process, which allows self-adaptive
refinement and mesh improvement interleaved with the model defor-
mation at each iteration. In this algorithm, the γ is a step size of the
vertex evolution, which can be specified by users. This parameter
controls how many iterations it takes to meet the stop conditions.
When γ is set to be 1, the loop almost meets the stop conditions
with only one time step. So the deformation is just like traditional
free-form deformation of the static model. If the model needs to
be extensively refined or optimized in order to represent the shape
deformation accurately during a single deformation operation, the
value of γ should be set much smaller. Thus, the model is more
likely to be refined and optimized during the deformation. Usually
we set γ as 0.1. Displaying the above sequence continuously, we can
get an animation showing the dynamic deformation process.

4. SFFD MODEL OPTIMIZATION
Existing adaptive subdivision methods propose to only add tri-

angles in high curvature areas and prevent subdividing low curva-
ture regions during deformation. While this is also the intent of our
method, those adaptive subdivision schemes apply the subdivision
on a static model. This means that if a low curvature region that was
not previously subdivided begins to deform, the model is no longer
capable of representing the deformation accurately.

We interleave shape evolution and self-adaptive refinement within
a single deformation. Therefore, it allows the embedded model to
represent the deformation more accurately during deformation. Our
method can generate additional triangles on the fly and only in re-
gions that require more subdivision. Low curvature regions that
were not previously subdivided still get chance to be refined dur-
ing the deformation. As the SFFD deforms an object, the curvature
of the affected surface is checked to see if subdivision is necessary.
Triangles are added only when this criterion is met. Thus, the lo-
cal, adaptive subdivision scheme used in this paper only adds the
triangles in regions that require additional subdivision and, in addi-
tion, all deformed regions are checked to ensure that subdivision oc-
curs on the appropriate regions. We also incorporate a complimen-
tary decimation process which merges faces in nearly planar areas
and thereby reduces the polygon-mesh complexity (i.e., the num-
ber of vertices, edges and faces). We trigger decimation by testing
the deviation between surface normals at edge endpoints. This self-
adaptive refinement strategy supports multi-resolution deformation
of existing models.

Since our free-form deformation can be a continuous evolution
process, we are able to control the dynamic model throughout the
deformation process. The mesh quality can be improved and main-
tained at each time step. In this paper we consider three issues: a
good vertex distribution, a proper vertex density, and a good aspect
ratio of the triangles. There is much research work [8, 21] conducted
in this field, producing several valuable algorithms.

We employ three mesh improvement operations, which include
edge-split, edge-collapse, and edge-swap. Conditions under which
the operations are valid are discussed in [8]. First, edge-split and
edge-collapse are used to keep an appropriate node density. An
edge-split is triggered if the edge is too long. Similarly, if any two
neighboring vertices are too close to each other, the edge connecting
these two vertices will be collapsed. Essentially, these two opera-
tions split long edges and delete crowded vertices to ensure a proper
vertex density. Then, edge-swap is used to ensure a good aspect ratio
of the triangles. We swap an edge if doing so will increase the min-
imum inner angle within its adjacent faces. Repeated applications
of this swap operation always keep increasing the minimum inner
angle and hence result in a Constrained Delaunay Triangulation at
the end of the procedure. We also try to keep vertices uniformly dis-
tributed by performing Laplacian smoothing over the triangulated
surface. In practice, these mesh optimization steps are interleaved
with the shape deformation iterations so that a good computational
mesh is always present. This also helps the iterative solver for min-
imizing the objective function (4).

Ordering the operations this way seems to produce the best mesh
at the end of the mesh improvement steps [21]. The edge-swap op-
eration can clean up after the simple edge-split and edge-collapse
operations, and the mesh-smoothing is then invoked to optimize
neighborhood shapes. The method of maintaining a good compu-
tational mesh over a triangulated surface is iterative and incremen-
tal, making it appropriate for use in our scalar-field based free-form
deformations, in which shape can change gradually over time. As
shown in the flow of the algorithm, interleaving shape evolution and
mesh optimization tends to equalize edge lengths, allowing vertices
to distribute themselves more evenly during a SFFD operation.

5. SFFD SPACE CONSTRUCTION
In order to let users easily use our SFFD technique to perform

free-form deformations on existing polygonal objects, our SFFD
technique is equipped with three approaches for scalar field con-
struction and deformation. We will detail them as follows.

Dynamic spline-based scalar fields [9] utilize scalar trivariate B-
spline functions as the underlying shape primitives. Different scalar
B-spline patches defined over the 3D working space are collected
to form a volumetric implicit function that can be used to represent
spaces of complicated geometry and arbitrary topology. In essence,
the function is a hierarchical organization of the N scalar B-spline
patches and has dynamic property since its coefficients are time-
varying. Users can directly manipulate the scalar values to evolve
the function. Please refer to [9] for the full detail about dynamic
manipulation of spline-based volumetric implicit functions. Figure
3 shows an example using dynamic spline-based implicit functions.

(a) (b) (c)

Figure 3: The teapot model (a) is embedded in the scalar field
defined by a dynamic spline-based implicit function (b) and de-
formed by changing the scalar field as shown in (c) (We only
show a single level set using coarse mesh in (b) and (c)).

Our system also allows users to interactively define skeletons,
then the skeleton-based scalar field is generated as blending of field
functions gi of a set of skeletons si, f (x,y,z)= ∑N

i=1 gi(x,y,z), where
the skeletons si can be any geometric primitive admitting a well de-

fined distance function: points, curves, parametric surfaces, sim-
ple volumes, etc. The field functions gi are decreasing functions of
the distance to the associated skeleton: gi(x,y,z) = Gi(d(x,y,z,si)),
where d(x,y,z,si) is the distance between (x,y,z) to si, and Gi can
be defined for instance by pieces of polynomials.

We can enforce global and local control of an underlying scalar
field in three separate ways: (1) defining or manipulating of the
skeleton, (2) defining or adjusting those implicit functions defined
for each skeletal element, and (3) defining a blending function to
weight the individual implicit functions.

We also employ the sketching technique for scalar field construc-
tion and modification. In this approach the manipulated scalar field
is actually a signed/unsigned distance field. The sketched contour
is the silhouette of the zero level set of the resulted distance field.
This sketching technique can greatly ease the editing of scalar fields
for designers. Strokes are gathered from the mouse as a collection
of points. In our system, the input strokes are 2D curves and can be
open or closed. If using open curves, the resulted distance field is
unsigned, neither interior nor exterior defined. The plane containing
the 2D curve is called the drawing plane. Our system extrudes the
contour along the perpendicular direction of the drawing plane until
it meets the bounding space or a user-specified bounding region.

In practice, we only store the 2D distance field on the drawing
plane since other slices of the 3D distance field along the perpendic-
ular direction are exactly the same. Therefore, to obtain the distance
value of any point in the space, we can simply project the point onto
the drawing plane along the perpendicular direction of the draw-
ing plane, then assign the perpendicular foot’s distance value to the
point. This method avoids to compute the entire 3D distance field.
The computational expense is greatly reduced. The Euclidean dis-
tance to a closed contour can be calculated and stored for each dis-
crete point in an image. We calculate the distance at each required
point using methods such as chamfer distance transforms and vector
distance transforms, which propagate known distances throughout
the image. An interpolation function is used to determine the dis-
tance from any point located within the quad bounded by distances
at known grid points. In practice, distance values within a quad are
reconstructed from the 4 corner distance values stored per quad us-
ing standard bilinear interpolation.

6. SFFD OPERATIONS
Given the novel SFFD technique and the simple, intuitive, and

efficient scalar field construction and deformation approaches, users
can easily perform various SFFD operations on existing models.

For bending operations, users may first draw a set of skeletons to
define the source scalar field. Figure 4(a)(b) shows a bending oper-
ation on a 3D nozzle model. In that operation, a curve skeleton is
used. The user just simply sketches a straight line segment near the
center of the object and a bending curve one to define two distance
fields. The object is then deformed according to the difference of
these two fields.

(a) (b) (c) (d) (e)

Figure 4: (a) Original model; (b) bending; (c) shrinking the mid-
dle part; (d) inflation on both ending parts; (e) shrinking the
part near the bottom and the top parts.

For shrinking and inflation, users can define two sets of skeletons

(namely, a source one and a target one) to define scalar fields. The
embedded object will inflate or shrink according to the field defor-
mation from the source to target one. Or users can just modify some
parameters of the source skeletons to perform the deformation. For
examples shown in Figure 4(c-e), the user employs Gaussian blobs
as skeletons, the nozzle model inflates or shrinks in several forms.

Users can perform tapering operations by simply sketching strokes.
As shown in Figure 5, the ship model is tapered on the front part.
The user first sketches an open stroke shown in red. Then the user
sketches another one shown in green. The source and target dis-
tance fields are generated locally based on these two strokes. Then
the localized front part is then tapered according to the field change.

(a) (b)

Figure 5: Tapering on the ship model.

For squeezing operations, users may first sketch a closed stroke
to define a distance field and then modified this distance field by
adding another stroke. In this operation, we only perform deforma-
tion on those vertices with positive distance values. For an example
as shown in Figure 6(a), the user first sketches a closed stroke (in
red) around the body of the dinosaur. The corresponding distance
field based on the sketched stroke is generated using the method
described in Section 5. Then the user sketches another stroke (in
green) to deform the distance field. The embedded dinosaur is then
squeezed as shown in Figure 6(b) according to the SFFD. Users can
also completely sketch another new stroke to define a target distance
field instead of creating it by modifying the existing stroke.

(a) (b) (c)

Figure 6: A dinosaur is deformed with the body squeezed (b),
the neck stretched (b), and the position of the neck moved (c).

For stretching, users can use force-based tools [9] to directly drag
the embedding scalar field, which is equivalent to drag the embed-
ded object directly. In essence, force-based tools alter the scalar
field along the force vector, which result in the stretching effect of
the embedding model along the force vector. For an example shown
in Figure 6, the user picks up a vertex around the bottom of the di-
nosaur’s neck then drags along the arrow to produce a stretching
deformation on the dinosaur’s neck.

Users can alter the part of an object to another location by using
moving operations. Please see Figure 6(b)(c) for an example. The
user sketches a straight line segment near the center line of the di-
nosaur’s neck, which defines a source distance field. Then the user
draws another stroke, with a small rotation, to define a target field.
The localized dinosaur’s neck is then moved as shown in Figure 6(c)
due to this field change.

Users can also apply embossing and engraving operations on an
object easily. In these operations, users can paint a grey scale image
or use an existing one to define an embedding space on the object.
Figure 7(a) shows an image of global map. A surface S is obtained

by projecting the sampling points along the object’s normals with
corresponding grey scale values. Our system then generate a local
distance field in the region of interest according to the surface. The
scalar values are the shortest distances to the surface. The image
is similar to the concept of displacement map [11]. The difference
is that we do not need to explicitly map the displacement to each
point of the base model. In embossing and engraving operations,
the source scalar field around the base model is initialized to zero ev-
erywhere. So the deformation based on the zero source scalar field
and the locally constructed distance field will produce embossing
and engraving effects on the embedded models. As shown in Fig-
ure 7(b), this image is embossed onto a ”soap” shape by using the
sketch-based space construction approach together with the SFFD
technique. If we reverse the distance field along the opposite direc-
tion, we can easily perform the engraving operations on the models.

(a) (b)

Figure 7: (a) shows a grey scale image, which is used to define a
scalar field. (b) shows the deformed object.

It is very easy to use SFFD to create sharp creases on the embed-
ded models, which is generally difficult when using traditional FFD.
Users can perform creasing operations by simply sketching strokes.
As shown in Figure 8, the user makes two shape creases on the both
sides of the deformed cup model. The user first localizes the region
where the creases will be formed. Then the user sketches two open
strokes (shown in red) for generating source distance fields. Two
unsigned distance fields are computed based on these two strokes
in the localized regions, which are near the side of the cup model.
Further, the user sketches other two open curves shown in green.
The target unsigned distance fields are generated based on these two
curves in the same regions. The SFFD forms the sharp creases ac-
cording to the field change from the source one to target one.

(a) (b) (c)

Figure 8: (a) shows the original model and the sketched strokes
around the both sides of the cup. The red ones are strokes for
generating the source distance field, while the green ones are
strokes for generating the target distance field. (b) shows two
sharp creases formed on the both sides of the cup. (c) Further
deformation using two analytic implicit functions.

We can locally perform the aforementioned SFFD operations on
polygonal models by only allowing the movement of the vertices,
where the scalar value evaluates within a specified scope of the iso-
values. For other vertices, they will not move during the deforma-
tion. Users can specify any implicit function to localize the part of
the models to be deform. In our prototype system, we provide users
three types of primitives to localize regions, which include rectan-
gular box, cylinder, and sphere. Combining these primitives, users
are able to localize any part of embedded models.

Our technique provides a general SFFD mechanism in the sense
that it can easily accommodate various geometric constraints. To

enforce constraints, we can simply augment the original objective
function E with the constraint energy Ec, En = E + γ ·Ec, where
En denotes the new, overall objective function and Ec denotes the
additional cost term introduced by added constraints. Note that Ec
can be a linear combination of several cost functionals. A standard
implicit iterative method is employed to numerically compute the
minimization of the overall objective function. The gradient used
in this minimization process is numerically approximated using the
central difference of the overall objective function for the current
position of the model vertex with a very small perturbation. The ad-
vantage of this approach is that it is relatively general and can offer
an accurate, stable solution even for very large systems, therefore, it
is well suited for our purpose in SFFD operations.

With all the available operations and constraints, we perform some
interesting deformations on the mannequin model as shown in Fig-
ure 9. During the deformations, some facial features are maintained
by enforcing constraints such as normal and curvature constraints.
In Figure 9(a)(b), we drop the smoothness constraints in (3) dur-
ing the deformation, only allowing the vertex velocities along the
specified directions, in order to produce a bump-like hair effect.

(a) (b) (c)

Figure 9: The mannequin model is deformed by using the avail-
able SFFD operations and enforcing constraints.

7. CONCLUSION
We have articulated a novel scalar-field based free-form deforma-

tion, or SFFD, methodology based on flow constraints and scalar-
field functions. The new SFFD paradigm is fundamentally different
from traditional FFD techniques because we employ scalar fields as
FFD embedding spaces. A scalar field based embedding space is
of diverse type and its space definition is much more simple, yet
both powerful and intuitive for solid modeling applications. In our
prototype system, we developed several easy-to-use techniques for
efficiently constructing and manipulating the space as well as flexi-
bly interacting with various geometric shapes. With SFFD method,
users can directly sketch a scalar field of an implicit function to
control the deformation of any embedded model. In addition, the
embedding space can be of complicated geometry and an arbitrary
topology. The deformation velocity for any model point can be
either very general or constrained subject to any user-specified re-
quirement. Therefore, our SFFD technique affords a larger number
of shape deformation types. Furthermore, the embedded model has
self-adaptive optimization capability throughout the SFFD process
in order to accommodate versatile deformations, maintain the mesh
quality, and preserve shape features. We have conducted a large
number of experiments which demonstrate that our new SFFD tech-
nique is powerful, flexible, natural, and intuitive for shape design in
solid modeling, animation, and interactive graphics.

8. REFERENCES
[1] J. Bærentzen and N. Christensen. Volume sculpting using the

level-set method. In Proceedings of International Conference
on Shape Modelling and Applications, pages 175–182, 2002.

[2] J. Bloomenthal and B. Wyvill. Interactive techniques for
implicit modeling. In Proceedings of 1990 Symposium on
Interactive 3D Graphics, pages 109–116, 1990.

[3] D. E. Breen and R. T. Whitaker. A level-set approach for the
metamorphosis of solid models. IEEE Trans. on Visualization
and Computer Graphics, 7(2):173–192, 2001.

[4] Y.-K. Chang and A. P. Rockwood. A generalized de casteljau
approach to 3D free-form deformation. In SIGGRAPH ’94,
pages 257–260, 1994.

[5] S. Coquillart. Extended free-form deformation: A sculpting
tool for 3D geometric modeling. In SIGGRAPH 90
Proceedings, pages 187–196, 1990.

[6] B. Crespin. Implicit free-form deformations. In Proceedings
of Implicit Surfaces ’99, pages 17–23, 1999.

[7] M. Desbrun and M. P. Cani. Active implicit surface for
animation. In Proceedings of Graphics Interface, pages
143–150, 1998.

[8] H. Hoppe, T. Derose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In SIGGRAPH ’93, pages
19–26, 1993.

[9] J. Hua and H. Qin. Haptics-based volumetric modeling using
dynamic spline-based implicit functions. In Proceedings of
IEEE Symposium on Volume Visualization and Graphics,
pages 55–64, 2002.

[10] X. Jin, Y. F. Li, and Q. Peng. General constrained
deformations based on generalized metaballs. Computer &
Graphics, 24(2):219–231, 2000.

[11] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to
dense polygon meshes. In SIGGRAPH ’96, pages 313–324,
1996.

[12] F. Lazarus, S. Coquillart, and P. Jancene. Axial deformations:
An intuitive deformation technique. Computer-Aided Design,
26(8):607–612, 1994.

[13] R. MacCracken and K. I. Joy. Free-form deformations with
lattices of arbitrary topology. In SIGGRAPH 96 Proceedings,
pages 181–188, 1996.

[14] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. Level
set surface editing operators. In SIGGRAPH ’02, pages
330–338, 2002.

[15] S. Osher and J. Sethian. Fronts propagating with
curvature-dependent speed: Algorithms based on
hamilton-jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

[16] A. Raviv and G. Elber. Three dimensioinal freeform sculpting
via zero sets of scalar trivariate functions. In Proceedings of
Solid Modeling ’99, pages 246–257, 1999.

[17] B. Schmitt, A. Pasko, and C. Schlick. Constructive modeling
of frep solids using spline volumes. In Proceedings of Solid
modeling ’01, pages 321–322, 2001.

[18] T. Sederberg and S. R. Parry. Free-form deformation of solid
geometric models. In SIGGRAPH ’86, pages 151–160, 1986.

[19] K. Singh and E. Fiume. Wires: a geometric deformation
technique. In SIGGRAPH ’98, pages 405–414, 1998.

[20] G. Turk and J. F. O’Brien. Modelling with implicit surfaces
that interpolate. ACM Trans. on Graphics, 21(4):855–873,
2002.

[21] W. Welch. Serious putty: Topological design for variational
curves and surfaces. PhD thesis, Carnegie Mellon University,
June 1995.

[22] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for
soft objects. The Visual Computer, 2(4):227–234, 1988.

