
Haptics-Based Dynamic Implicit Solid Modeling
Jing Hua, Student Member, IEEE, and Hong Qin, Member, IEEE

Abstract—This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid

Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our

modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface.

Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics,

hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets

as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous

implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and

geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints

afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to

easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic

interface for direct manipulation with force feedback.

Index Terms—Geometric modeling, physics-based modeling and sculpting, implicit functions, interaction techniques, haptic interface.

�

1 INTRODUCTION AND MOTIVATION

DURING the past two decades, solid geometry has been
rapidly gaining popularity as an intuitive and natural

paradigm for modeling, manipulating, and interacting with
3D objects in geometric design, graphics, visualization,
virtual environments, etc. This is primarily because a solid
model offers users a consistent and unambiguous shape
representation of a physical entity [1]. In contrast to popular
parametric geometry, implicit functions have a number of
solid modeling advantages such as point classification,
intersection computation, and unbounded geometry. Com-
paring with the discrete, voxel-based representations pre-
valently used in volumetric sculpting [2], [3], [4], [5], an
implicit solid object is evaluated as level-sets of volumetric,
continuous functions defined over a 3D working space,
where arbitrary topology and complicated geometry are
implicitly defined. Therefore, it is easy to handle topological
change and collision detection. The continuous functions
can be evaluated anywhere to produce a mesh at the
desirable resolution. Gradients and higher-order deriva-
tives are determined analytically. Multiresolution editing
and direct rendering are also easy to achieve.

Despite their representation potential, existing modeling

techniques associated with implicit functions have certain

severe shortcomings which hinder the widespread penetra-

tion of implicit functions into geometric modeling, inter-

active graphics, and virtual environments. Current

techniques [6], [7], [8] mainly depend on Boolean opera-

tions, blending, convolution, or interpolation of simple

primitives to generate implicit objects. Users essentially

must interact with solid geometry through tedious and

laborious operations on a large number of control coeffi-
cients. When the goals are to interactively sculpt implicit
objects in real-time, directly manipulate the implicit solid
geometry in a free-form manner, and conduct kinematic
and dynamic analysis of implicit objects with haptics, the
current state-of-the-art in implicit modeling falls short in
offering designers a unified framework and an array of
flexible and powerful modeling and sculpting tools. In
general, flexible and direct free-form modeling techniques
for implicit solids remain underexplored.

In this paper, we integrate implicit solid geometry,
powerful physics-based modeling, and a haptic mechanism
into a unique, graphical modeling framework, Haptics-based
Dynamic Implicit Solid Modeling, and systematically present
a modeling environment that can provide users with a wide
spectrum of haptic, geometric, and physical tools to
facilitate the creation and editing of dynamic solids. These
tools are both transparent to and independent of the
underlying representations.

Our solid geometry combines the benefits of conven-
tional implicit functions with those of popular spline-based
parametric representations [9]. The volumetric implicit
functions are defined by a 3D hierarchical and/or CSG-
based organization of the underlying constituent scalar
B-splines. Through knot insertion, our framework takes
advantage of both uniform and nonuniform B-spline
functions so that the knot distribution will control and
influence the local shape. Furthermore, by using a new
hierarchical fitting algorithm, our environment provides a
flexible mechanism for users to import different representa-
tions, such as point clouds and volumetric data sets.

Physics-based modeling attempts to overcome some of
the shortcomings of geometric modeling through the
integration of material attributes and physical behaviors
with geometric modeling techniques. For implicit surfaces
or solids, however, since their geometry is generated
indirectly from the zero-set of their function evaluation,
we cannot directly associate physics with the underlying

574 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

. The authors are with the Center for Visual Computing and the Department
of Computer Science, State University of New York at Stony Brook, Stony
Brook, NY 11794-4400. E-mail: {jinghua, qin}@cs.sunysb.edu.

Manuscript received 24 Mar. 2003; revised 14 Nov. 2003; accepted 17 Dec.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0017-0303.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

zero-set because it is implicitly defined and the zero-set
geometry has the time-varying nature. Note that this is
perhaps the greatest technical challenge that prevents the
integration of physics-based modeling and implicit repre-
sentations. We develop a feasible and powerful technique to
overcome this difficulty. Physical attributes and material
attributes are assigned inside the working space. The
dynamic behavior of our solid objects is controlled by a
novel mass-spring system and by differential equations of
Lagrangian mechanics. Our free-form solids respond
dynamically to applied forces in an extremely intuitive
and natural fashion. Therefore, instead of manually mod-
ifying the coefficients associated with the volumetric
implicit function as exhibited in [7], our sculpting tools
facilitate direct editing of implicit functions’ scalar values.
Geometric parameters of the volumetric implicit functions
can be hidden from users through the use of natural, force-
based interfaces that facilitate directly manipulated free-
form deformation of implicit solid objects. Comparing with
[10], which employed haptic toolkits to explore dynamic
subdivision solids, no special efforts need to be taken to
change the topology of modeled objects in our system.
However, in [10], the topological modification cannot be
directly performed with haptic tools during the physical
simulation. Our system synchronizes the geometric and
physical representations of modeled objects. The inherent
control coefficients of the implicit functions dictate the
shape geometry, while the physical attributes support direct
manipulation and dynamic behavior simulation. Our
unified formulation permits users to deform a solid object
quickly and easily in a physically plausible fashion. More
importantly, the dynamic modeling method makes it much
easier to define objects with inhomogeneous materials.

Haptics provides additional sensory cues to designers
which allow designers to gain a richer understanding of the
3D nature of virtual solids. With haptics, users can have a
hand-based mechanism for intuitive interactions. In our
environment, since both haptics and dynamic models
depend on real-world physical laws to govern the interac-
tion of dynamic objects and their realistic simulation, a
haptic interface is very valuable and intuitive for users to
fully interact with our models. We develop a haptic
interface and provide a suite of haptic sculpting tools to
further enhance physics-based modeling techniques. Haptic
feedback can be computed directly from geometric and
material properties. With a standard haptic device, our
approach permits users to interactively sculpt virtual
materials and feel the physically realistic presence with
force feedback throughout the design process. Fig. 1 shows
the haptics-based user interface of our modeling environ-
ment, where the user is using a PHANToM device to
manipulate a dynamic implicit solid.

This paper extends our previous work on haptic
sculpting [9] and dynamic modeling [11] of implicit objects.
The first paper [9] presented a sculpting mechanism on
volumetric implicit models with several haptic tools. In
later work [11], we derived dynamic implicit models with a
simple, explicit numerical solver and a few simple sculpting
tools. This paper broadens the accessibility and further
expands the capabilities of the sculpting system with a more

comprehensive and natural set of intuitive tools. It also
derives a more sophisticated, implicit solver, provides a
complete mathematical derivation of our physical and
geometric models, and describes in greater detail the
functionality and implementation of our haptics-based
modeling environment. We generalize the existing virtual
sculpting tools to handle real-world objects and develop
new capabilities for haptic interaction. Our modeling
methodology and the new environment aim to incorporate
physics in general and elasticity in particular into implicit
functions and to advance the state of the knowledge in the
effective integration of implicit functions, physics-based
modeling, and haptic sculpting.

2 RELATED WORK

2.1 Implicit Modeling

Blinn [12] demonstrated that implicit functions are well-
suited for both scientific visualization and modeling tasks
in graphics. In order to interactively create implicit surfaces
and gain more control over them, Bloomenthal [6] and
Bloomenthal and Wyvill [13] used skeleton methods to
construct implicit surfaces. Blobby models [12], also known
as soft objects [14], [15], are another popular technique for
designing implicit surfaces. Convolution surfaces [16], [17]
represent another method for designing implicit surfaces
through primitives. Hart et al. [18] proposed a method of
finding the critical points of implicit surfaces. Witkin and
Heckbert [19] used a physically-based particle approach to
sample and control implicit surfaces. Turk and O’Brien [8]
introduced new techniques for interpolating implicit sur-
faces. Implicit functions can also be used to represent a
volume. Raviv and Elber [7] presented an interactive
sculpting paradigm that employed a set of uniform
trivariate B-spline functions as the underlying representa-
tion. Martin and Cohen [20] presented a trivariate spline-
based mathematical framework to represent and extract
volumetric attributes. Schmitt et al. [21] presented an
approach for constructive modeling of FRep solids.

HUA AND QIN: HAPTICS-BASED DYNAMIC IMPLICIT SOLID MODELING 575

Fig. 1. Haptics-based user interface. The user is performing a bending

operation on the red lobster, reconstructed from a CT-scanned data set.

In other related work, the representation of sculpted
volumetric objects is primarily through discretization (e.g.,
voxels). Galyean and Hughes [2] first introduced the
concept of volume sculpting and developed a system with
simple tools. Wang and Kaufman [3] presented a similar
sculpting system with sculpting tools for carving and
sawing. These sculpting systems are dependent on simple,
voxel-based operations. Only C0 continuity can be
achieved. In order to avoid the spatial aliasing, the sculpted
objects and sculpting tools need to undergo an appropriate
filtering operation. Based on a similar idea, Ferley et al.
presented a rapid shape-prototyping system [22]. Perry and
Frisken [5] employed adaptively sampled distance fields
(ADFs) as volumetric shape representations for creating
digital characters. Most recently, Museth et al. [23] pre-
sented a level-set framework for interactively editing
implicit surfaces.

2.2 Physics-Based Geometric Design

Physics-based models produce smooth, natural motions
that are intuitive to control. Free-form deformable models
were first introduced to computer graphics by Terzopoulos
et al. [24] and further improved by Pentland and Williams
[25] and Metaxas and Terzopoulos [26]. Cani and Desbrun
[27] employed deformable implicit models for animating
soft objects. Despite the popular use of physics-based
models in animation, simulation, and graphics [28], [29],
[30], [31], less effort has been devoted to free-form dynamic
manipulation of manufactured objects, which is especially
useful for providing an intuitive interface for geometric
design. Szeliski and Tonnesen [32] introduced oriented
particle systems, which can be used to model flexible
surfaces. Qin and Terzopoulos [33] introduced D-NURBS
surfaces, an extension to traditional NURBS that permits
more natural control of the surface geometry. Mandal and
Qin [34] further generalized this model to any subdivision
scheme. Later, McDonnell et al. [10] extended the dynamic
subdivision techniques to solids.

2.3 Haptic Interaction

A good introduction to haptic rendering can be found in
[35]. Salisbury and his colleagues [36], [37] developed the
PHANToM haptic interface, which has resulted in many
haptic rendering algorithms. Morgenbesser and Srinivasan
[38] pioneered the concept of force shading. Salisbury and
Tarr [39] presented the research work for haptic rendering
of simple implicit surfaces. Kim et al. [40] presented a rather
different implicit-based haptic rendering technique. Avila
and Sobierajski [41] used the PHANToM in a haptic
scientific visualization process. Thompson et al. [42]
derived efficient intersection techniques that permit direct
haptic rendering of NURBS surfaces.

Despite the widespread application of haptics in visual
computing areas, haptics-based interaction was mainly
applied to touching compliant objects (i.e., haptic render-
ing), whereas haptic modeling allows designers to directly
manipulate objects with force feedback for the purpose of
modeling or deforming objects. Dachille et al. [43] devel-
oped a haptic interface that permits direct manipulation of
dynamic surfaces. Balakrishnan et al. [44] developed
ShapeTape, a curve and surface manipulation technique that

can sense user-steered bending and twisting motions of the
rubber tape. The FreeForm modeling system presented by
SensAble Technologies enables users to easily create
products with touch. However, this is purely a haptic
enhancement for a traditional system. Haptic feedback is
not based on the real dynamics of modeled objects. We
integrate the principle of haptic modeling with the direct
manipulation of dynamic implicit solids and employ force-
based, haptic tools to directly work on scalar fields.

3 VOLUMETRIC IMPLICIT FUNCTIONS

In our modeling environment, the sculpted object is
evaluated as level-sets of volumetric implicit functions
defined over a 3D working space. Throughout this paper,
we utilize trivariate scalar B-spline functions as the under-
lying shape primitives to build volumetric implicit func-
tions for object representation [9]. The use of scalar B-spline
functions is strongly inspired by their attractive properties,
including simplicity, generality, local control, etc. These
properties make them appropriate for our haptics-based
modeling system, which requires fast function evaluation
and relatively high smoothness of scalar fields.

3.1 Tensor-Product Scalar B-Splines

The generic B-spline functions are of the following form:

sðu; v; wÞ ¼
Xl�1

i¼0

Xm�1

j¼0

Xn�1

k¼0

pijkBi;rðuÞCj;sðvÞDk;tðwÞ; ð1Þ

where sðu; v; wÞ represents the scalar value (also called the
density value in this paper) at position ðu; v; wÞ in a
parametric domain. In (1), pijk are the scalar control
coefficients, Bi;rðuÞ, Cj;sðvÞ, and Dk;tðwÞ are the basis
functions corresponding to pijk, evaluated at ðu; v; wÞ.

3.2 Building Volumetric Implicit Functions

In general, surfaces expressed by an implicit form can be
formulated as: fðx; y; zÞjfðx; y; zÞ ¼ cg. The function f is
called the implicit function, which defines the scalar field
(or called the density field in this paper). Collecting all the
level-sets whose return values are greater (or smaller) than
a given threshold, we can define an implicit solid:

w ¼ fðx; y; zÞ
w > w0:

�
ð2Þ

In our work, we shall collect different B-spline patches
defined over the 3D working space to form a volumetric
implicit function that can be collectively used to represent
objects of complicated geometry and arbitrary topology.
Note that, significantly different from frequently used
parametric B-splines, scalar B-spline functions formulate
the density value distribution in a 3D space where implicit
solids are uniquely defined as semi-algebraic point sets. In
our environment, we enhance the scalar B-spline represen-
tation power by incorporating the modeling advantages
from hierarchical splines, generalized CSG-based Boolean
operations, and nonuniform knot insertion.

Consider N B-spline patches in the sculpting space,
which are located at any location and with any orientation.
In general, these patches may be formulated by different

576 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

numbers of control coefficients in order to achieve the goal

of multiresolution analysis and LOD control. Then, the

density value at the location ðx; y; zÞ can be computed as

fðx; y; zÞ ¼
XN
i¼1

siðTiðx; y; zÞÞ; ð3Þ

where Ti is an affine transformation from the Euclidian

space to the parametric domain of patch si. In essence, (3) is

a hierarchical organization of the N patches. Without loss of

generality, we make use of cubic B-splines with nonperiodic

knot vectors. In order to make the boundaries of different

trivariate patches achieve C1 continuity, the first and last

four layers of control coefficients along three principal

directions of the parametric domain should be set to zero.
Furthermore, our system provides CSG-based operations

on any user-defined trivariate patch in order to facilitate the

rapid construction of complicated models satisfying many

feature-oriented requirements. Therefore, complicated geo-

metry is available in our system through the use of

fðx; y; zÞ ¼ �N
i¼1siðTiðx; y; zÞÞ; ð4Þ

where � is a Boolean operation such as Union, Intersection,

or Difference. In our system, the Boolean operation

information will be stored in a tree structure in order to

speed up the data query.
Meanwhile, our system allows users to specify a nonuni-

form knot vector during the initialization phase of the object

design session. In addition, users can insert more knots into

the current knot vector during the sculpting process. When

new knots are inserted, the system will generate corre-

sponding control coefficients and the sculpted object will be

reevaluated upon the refined knot vector. Thus, the under-

lying model is essentially a nonuniform scalar B-spline.
Through the use of different combinations of the

aforementioned three techniques, our environment can

offer users a large array of modeling operations and

enhance the already-powerful shape variation of scalar

B-splines with the additional flexibility in a hierarchical

fashion.

4 HIERARCHICAL IMPLICIT FUNCTION FITTING

In order to allow users to edit existing solid objects, we wish

to transform discrete solid representations of modeled

objects to the continuous representation in our environ-

ment. We shall find a volumetric implicit function f , which

implicitly defines any user-specified solid. The volumetric

implicit function offers a compact functional description for

a set of discrete input data. In previous work, Muraki [45]

proposed the algorithm to reconstruct range data using the

blobby model. Turk and O’Brien [46] and Carr et al. [47]

used radial basis functions to reconstruct and represent

point clouds. Our reconstruction algorithm can handle

point clouds as well as volumetric data sets.
Let us first discuss the fitting and reconstruction of a

point cloud. This issue is essentially an interpolation

problem:
Find f such that

fðxi; yi; ziÞ ¼ 0; i ¼ 1; � � � ; n ðiso-surface pointsÞ;
fðxi; yi; ziÞ ¼ di; i ¼ nþ 1; � � � ; N ðoff-surface pointsÞ;

where fðxi; yi; ziÞji ¼ 1; � � � ; ng are points lying on the
surface and fðxi; yi; ziÞji ¼ nþ 1; � � � ; Ng are points lying
off the surface since the density values di 6¼ 0.

The iso-surface points are always given by the point cloud.
However, there is still a problem of how to generate the off-
surfacepoints and their corresponding di. Therehasbeena lot
of researchwork on this topic [46], [47]. One viable solution is
a signed-distance field, where the di is the distance to the
closest iso-surface point. In our system, points outside the
solid are assigned negative values, while points inside are
assigned positive values. It is not necessary to generate the
entire distance field. In our experiments, it is sufficient to
produce two off-surface points associated with each iso-
surface point, one outside and the other inside. We employ
the tagging algorithm recently proposed by Zhao et al. [48]
and slightly modify it to compute the required signed
distance field, then we make use of a least-square fitting to
obtain the volumetric implicit function, whose zero level-set
fits the given point cloud.

Generally, using a single B-spline to fit a large data set is
impractical since the required number of control coefficients
will be too large to handle and the fitting error will be
unacceptable. Our system utilizes the volumetric implicit
function, (3) or (4), to obtain a hierarchical implicit B-spline
representation for the object. An octree-based subdivision
scheme is employed to subdivide the working space
containing the solid object. Our recursively hierarchical
fitting algorithm is illustrated as follows:

1. Create an octree for the entire working space, which
contains the fitted object, and subdivide the root
node to eight child nodes according to the octree
subdivision.

2. Fit a single scalar B-spline to the region of each child
node using the least-square technique.

3. Evaluate the mean square error (MSE) at node i,

"i ¼
1

Ni

XNi

j¼1

ðdj � fðxjÞÞ2;

where Ni denotes the number of sampling points
inside the region of node i and dj is the density value
at the sampling point xj.

4. If "i is less than the user-specified error bound ",
then mark the node as a leaf node.

5. Else subdivide the node i to eight child nodes, go to 2.

This algorithm will not stop until all the child nodes are
marked as leaf nodes. Then, the discrete point cloud is
converted to a continuous spline-based volumetric implicit
function which can be evaluated at arbitrary sampling
resolution and rendered with the Marching Cubes algo-
rithm. Fig. 2 shows a hierarchical fitting structure. The red
color means the MSE at that region is greater than the error
bound and the region needs to be further subdivided and
fitted. Since the number of sampling points is finite, the
fitting algorithm will converge as long as enough leaf nodes
are generated. The number of leaf nodes needed for fitting
at the desired accuracy depends on the user-specified error
bound and the data sets.

HUA AND QIN: HAPTICS-BASED DYNAMIC IMPLICIT SOLID MODELING 577

Our fitting algorithm can handle several types of point
clouds, including scattered data sets, damaged data sets
with missing information, cross-sectional data sets, and
noisy data sets. Fig. 3 shows an example of fitting a
nonuniformly distributed point cloud. Besides point clouds,
our system can also transform volumetric data sets to the
spline-based volumetric implicit functions. In this case, we
treat the intensity value at a grid point ði; j; kÞ as dijk. Then,
the interpolation problem is essentially the same as the one
documented above. The fitting algorithm is also the same as
the one used in the fitting process for point clouds. Fig. 4
shows a volumetric object and its fitted implicit solid.

5 DYNAMIC IMPLICIT SOLIDS

Our dynamic implicit solids marry the level-set geometry
with physical attributes and other relevant material
quantities, offering extra flexibility and advantages in
modeling. In this section, we will discuss how to integrate
elasticity with implicit models, how to apply force to
manipulate implicit models, and how to simulate the
dynamic behavior of implicit models.

5.1 Integration of Elasticity with Implicit Solids

In order to incorporate physics into implicit solids, the
sculpted object of a B-spline-based implicit function is
discretized into a voxel raster. Every voxel contains a
density value, sampled at a grid point. The volumetric
implicit function described in Section 3 is employed to
assign the density value to the sampling points to indicate
the material attribute at that location. The function will be
used to formulate the density distribution over the
3D working space and represent the sculpted object using
a given level-set. Fig. 5 shows a simple sculpted object and
its corresponding voxelmap. Note that, in our system, the
characteristic function is not a binary function, rather it is a
continuous function.

In the discretized working space, we can discretize (3) or
(4) and make use of

d ¼ Ap ð5Þ

to formulate the density values associated with the
sampling points in a patch, where A is a sparse basis
function matrix that contains weights computed from our
spline-based volumetric implicit functions and p is a vector
of the scalar control coefficients. The discretized density
field is represented by d.

The discretized density field is then assigned other
material quantities such as mass, damping, and stiffness
distribution. These values are defined as functions
�ðu; v; wÞ, �ðu; v; wÞ, and �ðu; v; wÞ, respectively, which often
can be considered to be constant. However, these material
distributions are allowed to be modified by users inter-
actively and directly (see Section 6.3). The discretized field
can then be modeled as a collection of mass-points
connected by a network of springs across nearest neighbors.
Mass-points are located at sampled grid points. Besides the
aforementioned quantities, a mass-point mi;j;k has two other
attributes, the geometric position xi;j;k and the density value
di;j;k at the position. Here, we use a mass-spring model
because of its simplicity and the critical need of real-time
haptic volume sculpting. Fig. 6a shows the mass-spring
network in the vicinity of a point.

We refer to these springs as “density springs.” This is
because this new type of spring is unconventional in the
sense that they are fundamentally different from ordinary
springs commonly used in parametric deformable models,
where springs are employed to connect pairs of geometric
vertices and modify vertex geometry upon deformation. In
contrast, our special springs employed in implicit functions
do not intend to change the geometric position xi;j;k of the
mass-point mi;j;k at all. Instead, they only permit the

578 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

Fig. 2. An octree-based subdivision scheme and a hierarchical fitting

structure, where the red color denotes the node that needs to be

subdivided.

Fig. 3. (a) A point-sampled smooth tetrahedron with four holes. (b)

Cross-sectional view of the generated distance field. (c) The recon-

structed object represented by a volumetric implicit function.

Fig. 4. (a) Volume rendering of the original density field. (b) Fitting with

fewer octree layers and control coefficients. (c) The finally reconstructed

volume object represented by a volumetric implicit function.

Fig. 5. (a) A simple sculpted object. (b) A corresponding voxelmap. (c)

The density distribution along the red line.

magnitude change of the density di;j;k located in the mass-
point mi;j;k. Essentially, this new type of spring will only
attract/repel density values of neighbors. When users
manipulate the implicit solids, the density values are
changed by the mass-spring system. Fig. 6b shows the
density field changes from s1ðxÞ to s2ðxÞ due to the
movement of the density springs, where mass-points move
only along the density axis (i.e., the geometric positions of
the mass-points do not change). Consequently, this results
in the deformable behavior of the object’s shape modeled by
the level-set of the spline-based volumetric implicit func-
tion. Therefore, elasticity has been introduced to our
volumetric implicit objects and our implicit solids now
become deformable models, which we name dynamic
implicit solids. Note that, even though the geometry and
topology of the network of mass-points do not vary over
time, this approach has the capability to model arbitrary
topology and complicated geometry since the resulting
shape is generated by extracting an isosurface from the
density field rather than the geometric position of mass-
points. This novel approach affords a systematic mechan-
ism for users to directly manipulate arbitrary implicit
functions and their different level-sets without the need to
modify their associated control coefficients manually.

The motion equation of the density field associated with
all mass-points is formulated as a discrete simulation of
Lagrangian dynamics:

M€ddþD _ddþKd ¼ fd; ð6Þ

where M is a mass matrix, D is a damping matrix, K is a
stiffness matrix, and the force at every mass-point in the
working space is the summation of all possible external
forces: fd ¼

P
f ext. The internal forces are generated by the

connecting springs, where each spring has force f ¼
kðl� l0Þ according to Hooke’s law. l0 denotes the rest length
and l denotes the current length of the spring. They are
calculated as the 4D (i.e., 3D position plus 1D density)
distance between two mass-points that the spring connects.
In our system, the geometric positions of mass-points do not
move and only density values change. Hence, only the
component of forces along the density axis will be taken
into account in the dynamic simulation. The rest length of
each spring is determined upon initialization; however, it is
free to vary if plastic deformations or other nonlinear
phenomena are more desirable.

5.2 Response to Applied Forces

In principle, a deformable model is defined by a given

correspondence between applied forces and deformation. In

order to allow direct deformation of the implicit solids in a

force-based manner, we must address the important issue of

forcemapping, which defines how dynamicmodels respond

to applied forces. Note that the generated forces will be input

to the dynamic system as external forces andwill also be sent

to a haptic device in our system. Therefore, any force

mapping algorithm must be meaningful and suitable for

both the dynamic simulation and the haptic interaction. To

illustrate the concept clearly, we shall use a one-dimensional

implicit function to describe how to implement the force

mapping mechanism in our system. More complicated

situations in 3D can be trivially generalized.
For an arbitrary one-dimensional implicit function, the

zero-set is simply a set of points. As shown in Fig. 7,

consider that a user wants to move one point of the zero-set,

x0, to x1. Our system then automatically generates a series

of forces f applied on every mass-point between x1 and x0.

As a result, these forces will increase the density value from

s1ðxÞ to s2ðxÞ correspondingly at all the affected locations

within the interval. Eventually, the density value at x1 will

be zero and the density values between x0 and x1 will be

greater than zero. Hence, the iso-surface evolves from x0 to

x1, undergoing real-time deformation controlled by the

numerical integration of Lagrangian dynamics. To further

convey this idea, we can imagine that the above process is

equivalent to the lifting of the “density height” for every

affected mass-point via applied forces.
In our force mapping mechanism, the applied sculpting

force is calculated directly from the continuous representa-

tion by performing integration from the starting point to the

ending point along the direction dictated by the force

vector. In this one-dimensional example, the force vector is

simply a straight line-segment, therefore,

f ¼ �
Z x1

x0

s1ðxÞdx:

Because
R x1
x0

s1ðxÞdx is less than zero in this example, the

minus sign outside the integral operator makes the force

positive, matching the case shown in Fig. 7. In our system,

we define the following conventions to enforce consistency.

The positive force is to increase the density value and the

HUA AND QIN: HAPTICS-BASED DYNAMIC IMPLICIT SOLID MODELING 579

Fig. 6. (a) The mass-spring network in the vicinity of a point
P ðxi;j;k; di;j;kÞ, where xi;j;k represents the position of a mass-point mi;j;k

in 3D, di;j;k is the density at that position. (b) The density field changes
from s1ðxÞ to s2ðxÞ due to the movement of density springs. The
geometric positions of those density springs do not change.

Fig. 7. (a) Iso-surface changing from x0 to x1 via applied force f, which is

proportional to the gray area. (b) Close-up view of the mass-spring

network of s1ðxÞ, where f is applied on every mass-point between x0
and x1.

negative force is to decrease the density value. Note that f is

decreasing over time as x0 moves toward x1.
The force mapping mechanism of our system is very

general and can deal with iso-surface enlarging (as shown

above) as well as iso-surface shrinking with the same

formula for force calculation. In Fig. 7, suppose that the user

intends to move x1 to x0 instead. Then, the force calculation

will be f ¼ �
R x0
x1

s2ðxÞdx. In this case, f becomes negative,

which will decrease the density values between x0 to x1

from s2ðxÞ to s1ðxÞ correspondingly.
Now, we shall generalize our force mapping technique to

a 3D domain,

f ¼ ��

Z
C

sðu; v; wÞdc; ð7Þ

where C is any force vector which is used as the integration

path and sðu; v; wÞ is the density distribution function in the

3D working space. When f is input as external forces into

(6), the density field will be changed and this will result in

the deformation of the dynamic implicit solid. The propor-

tional factor � is often set to 1:0. However, if the user is

working on a “heavy” or “high-stiffness” model, � can be

increased to generate larger forces and quickly make

deformations.
In our system, the force vectors associated with force-

based, haptic tools can be along arbitrary directions, even

curved ones. Therefore, they may not pass the mass-points

of the density springs. We transform the sculpting force into

the eight mass-points of the cell through which the vector C

passes by filtering the shortest distance from the mass-point

to the force vector, as illustrated in Fig. 8. The transformed

forces at the mass-points that are closer to the force vector

are larger.

5.3 Numerical Integration and Simulation

To simulate the behavior of dynamic implicit solids in the

haptics-based environment, it is vital to design less costly

yet stable time integration methods that take modest time

steps. We have implemented both explicit and implicit

numerical solvers for the time integration. When extensive

user interaction is required, the explicit solver is used to

provide real-time update rates. The implicit solver can be

invoked when numerical stability is of more concern. In the

interest of space, we only describe the implicit solver. The

explicit solver can be derived straightforwardly.

Since all the discretized points and springs are con-
strained by the spline-based volumetric implicit function,
we shall formulate the motion equation of physical
behavior for all the control coefficients that define the
scalar B-splines. We augment the discrete Lagrangian
equation of motion with geometric and topological quan-
tities related to the volumetric implicit function. By multi-
plying each side with A> and substituting d with Ap (see
(5)), we obtain:

A>MA€ppþA>DA _ppþA>KAp ¼ A>fd: ð8Þ

The implicit solver is implemented based on backward
Euler integration. Discrete derivatives are computed using
backward differences:

€ppi ¼
piþ1 � 2pi þ pi�1

�t2
; ð9Þ

_ppi ¼
piþ1 � pi�1

2�t
: ð10Þ

We derive the time integration formula as follows:
To simplify notation, let fMM ¼ A>MA, eDD ¼ A>DA,eKK ¼ A>KA. Furthermore, we represent the forces acting
on p, fp, using fd: fp ¼ A>fd, then (8) becomes:

fMM€ppþ eDD _ppþ eKKp ¼ fp: ð11Þ

Substituting (9) and (10) into (11) yields:

fMM piþ1 � 2pi þ pi�1

�t2

� �
þ eDD piþ1 � pi�1

2�t

� �
þ eKKpi ¼ fpi

:

After multiplying both sides of the above equation by 2�t2

and with some additional algebraic manipulation, we arrive
at the hybrid equation of motion:

2fMMþ�teDDþ 2�t2 eKK� �
piþ1 ¼ 2�t2fp þ 4fMMpi

� 2fMM��teDD� �
pi�1;

ð12Þ

It is straightforward to employ the conjugate gradient
method to obtain an iterative solution for piþ1. To achieve
interactive simulation rates, we limit the number of
conjugate gradient iterations per time step to 8. We have
observed that two iterations typically suffice to converge
the system to a residual error of less than 10�4. More than
two iterations tend to be necessary when the physical
parameters are changed dramatically during interactive
sculpting.

The updated control coefficients piþ1 are further used to
update the discretized field defined by diþ1 ¼ Apiþ1. Note
that the simulation does not change the geometric position
of mass-points. It only updates the density value of every
mass-point. The volumetric implicit function can be
evaluated anywhere at arbitrary resolution once p is
known. After generating the new density field (or new
implicit representation), the new applied forces are calcu-
lated and will be applied in subsequent simulation steps.
Fig. 16 illustrates the simulation loop in more detail. This
new dynamic approach can continuously evolve the
implicit functions and, therefore, permit users to directly

580 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

Fig. 8. The force is distributed into mass-points of cells according to the

shortest distance from the mass-points to the force vector.

work on both the level-set geometry and the enclosed
material distribution with continuous visual feedback.

6 INTERACTION TECHNIQUES

Our modeling environment provides three primary types of
sculpting tools: 1) haptic tools, 2) geometric tools, and
3) constraint-based tools.

6.1 Haptic Modeling

In our system, the simple force-based, haptic tool allows the
user to grab the nearest mass-point in the solid. In addition,
our system allows users to grab a subset of the mass-points
in a nearby region simultaneously. The force is then
distributed among nearby points using a user-defined,
filtering function �ðx; y; zÞ, which can be constant, Gaussian,
spherical, cylindrical, conical, or any other distribution.

For sculpting with a point-based haptic tool, we can use
the parametric form fðuðtÞ; vðtÞ; wðtÞÞjt 2 ½t0; t1�g to repre-
sent a force vector C in (7), then we have

f ¼ ��

Z t1

t0

sðuðtÞ; vðtÞ; wðtÞÞ
ffi
_uu2ðtÞ þ _vv2ðtÞ þ _ww2ðtÞ

p
dt:

If we assume the force vector to be a straight line, then C
can be formulated as follows:

uðtÞ ¼ u0 þ ðu1 � u0Þt
vðtÞ ¼ v0 þ ðv1 � v0Þt
wðtÞ ¼ w0 þ ðw1 � w0Þt

8<
: t 2 ½0; 1�;

where ðu0; v0; w0Þ is the starting point of the force vector C
and ðu1; v1; w1Þ is the ending point. Then,

f ¼ �� � l
Z 1

0

sðuðtÞ; vðtÞ; wðtÞÞdt;

where l ¼
ffi
ðu1 � u0Þ2 þ ðv1 � v0Þ2 þ ðw1 � w0Þ2

q
. Fig. 9

shows two examples for point-based deformation.
In a more general case, if C is a spatial curve instead, a

general curve-based haptic tool can be provided in our
system without any additional difficulty. When the user
sculpts an object with a curve-based tool, the integral of
forces is along the curve force vector. The generated forces
are then applied on the object, more accurately, on all the
mass-points on or near the curve vector. Fig. 10a shows a
curve force-based deformation. Since we use the finger-
based haptic device, it cannot support full three-dimen-
sional force feedback. The direction of the force sent back to
the user has to be from the point that the user originally
select (we call it the reference point) to the current haptic

cursor point. For other more advanced area-based haptic
tools, users can predefine an arbitrary region and limit the
force generation only inside the specified region. Our
system discretizes the area into a set of sampled (straight
and/or curved) vectors, then performs integration along
every sampled vector, and results in a more sophisticated
deformation in any user-specified region. Fig. 10b shows an
area force-based deformation. In this example, the user first
defines a region, “S.” Then, the user applies forces
perpendicular to the region simultaneously to make
deformations. The force sent back to the user is the
aggregation of all the applied forces. Note that we divide
these tools into three categories, point-based, curve-based,
and area-based ones, purely based on their functionality of
deforming objects. From a computational point of view, the
differences among the tools are the types of integration
paths that are used. As for haptic feedback, users can only
feel a single linear force whose magnitude is equal to the
magnitude of the generated force for deforming objects,
while the direction of the haptic force is only limited from
the reference point to the current cursor point. Fig. 10c
shows a force-based joining, where a point-based haptic
tool is employed.

Using point-based, curve-based, and area-based haptic
tools, a wide range of haptic sculpting operations can be
performed, which includes drilling, extrusion, cutting, and
joining. If we associate the force vector with certain
constraints, then more interesting haptic tools can be
created, such as a haptic chisel, haptic squirting tool,
haptic sweeping tool, and so on. Fig. 11a shows an
operation performed with a haptic chisel, which controls
the tool-penetration depth at the contacting points to be a
small, constant value along the normal of the tool surface.
Therefore, the sculpting forces are generated by integrating
only along the array of specified, short force vectors
sampled over the trajectories of the tool path (i.e., “H” in
this example). The generated forces result in the chisel effect

HUA AND QIN: HAPTICS-BASED DYNAMIC IMPLICIT SOLID MODELING 581

Fig. 9. Deformation with point-based haptic tools, where (a) and (c) show

the original objects and the arrows denote the directions of the applied

forces. (b) and (d) show deformed shapes.

Fig. 10. (a) Free-form sculpting with a curve-based haptic tool. (b) Free-

form sculpting with an area-based haptic tool. (c) Joining with a point-

based haptic tool. The red arrows indicate the force vectors, where the

force generations happen.

Fig. 11. (a) Chisel operation. (b) Squirting operation. (c), (d) Haptic tools

allow users to sculpt solid interior without breaking the outer material.

along the trajectories of tool path. Fig. 11b shows a squirting

operation, where the generated sculpting forces are oppo-

site to chisel forces along the same trajectories. The haptic

sweeping tool allows users to create a sweeping shape

easily. The user employs the haptic cursor to pick up a

primitive solid object and freely sweep inside the working

space. A sweeping shape can be generated along the

freeform curve track. More importantly, our modeling

environment provides users with tools that can perform

more interesting tasks which are impossible to conduct in

real-world sculpting. For example, users can sculpt the

modeled object anywhere (not just adding/removing

material over the solid boundary). Fig. 11c and Fig. 11d

show an example that has undergone sculpting only in the

solid interior while maintaining its surrounding, boundary

material. In this example, the shape of the used haptic tool

is a small cube. The user applies it inside the solid sphere to

remove materials gradually. The computation of the feed-

back force is based on the technique presented in [9].
Our system also offers several other special, haptic tools

for haptic iso-surface rendering and haptics-based probing.

Through haptic iso-surface rendering, besides feeling the

boundary surface of a volumetric object, users can choose

any iso-value from the allowable range of the volumetric

implicit function and feel its shape. The haptic feedback is

generated from the polygonal representation of the iso-

surface using the Ghost APIs. Fig. 12a shows two different

iso-surfaces with a wireframe display in order to make two

surfaces visible at the same time. Users can feel different

iso-surfaces of the sculpted object by moving the haptics

cursor and navigating over those iso-surfaces. This tool

allows users to examine the objects’ boundary and their

interior structure in a tactile manner. For example,

designers can feel how smooth the iso-surface is at the

current design level and can also look for any surface

anomalies that might be hard to detect visually.
When performing haptics-based probing, users can feel

the tiny, tactile difference of an object’s stiffness while

moving the haptics cursor inside the object (see Fig. 12b).

When active, the probing tool exerts a force on the user’s

finger proportional to the local stiffnesses of the springs

within a given radius of the tool. A spring’s influence on the

aggregate force decreases linearly with increased distance

from the tool. The user feels a viscous-like force that

smoothly increases and decreases as the 3D cursor moves

into and out of regions of high and low stiffness,

respectively.

6.2 Geometric Tools

Geometric tools are represented by any 3D implicit function
c0 ¼ Gðx; y; zÞ. When users assign a sculpting tool to a new
location, the density values inside the tool volume are
modified. We construct a volumetric implicit function of
B-splines by using a least-squares fitting [9]. After the new
control coefficients are generated, the system uses a local
MarchingCubes algorithmto render themodifiedpart.Using
the geometric tools, users can create objects of complicated
geometry and arbitrary topology. The available geometric
toolkits include sphere-based carving, cylinder-based car-

ving, rectangle-based carving, and torus-based carving tools.
More importantly, our modeling environment also allows
designers todefine their owntools, called self-defined carving

tools, using any primitive implicit functions. Geometric tools
facilitate precise sculpting operations on volumetric models
with interactive speed, and can be negated to addmaterial to
the sculpture. Fig. 13 shows a number of examples sculpted
using our geometric toolkits.

6.3 Constraint-Based Tools

Our system can provide both physics-based constraints and
geometric constraints at the same time. Enforcing both
kinds of constraints offers additional intuitive control of a
shape during the design process. Constraining geometric
and physical properties of dynamic implicit solids can
facilitate feature-centered design, which can significantly
improve the system performance.

Our volumetric implicit function uses B-splines as
underlying constituents. Therefore, local support and local

sculpting can be easily accomplished. A designer can
specify the region R in which he/she wishes the deforma-
tion to occur. Control coefficients and mass-points outside
the specified region are not processed by the system and
remain fixed. For the localized region R, d

R
¼ A0p

R
, where

A0 is a small subset of the original basis function matrix.
The haptic device we are currently using requires a

1,000Hz refresh rate. This hardware constraint only permits
the real-time simulation of thousands of mass-points.
Therefore, local sculpting is much more accessible. Fig. 14a
shows localized regions with colored semi-transparent
boxes which limit physical operations within their bound-
ing boxes.

582 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

Fig. 12. (a) Haptic iso-surface rendering. (b) Haptics-based probing.

Fig. 13. Sculpted examples using geometric tools.

Through the use of physical property modification tools,
users can locally modify the mass distribution, spring
stiffness, or any spring’s rest length. Therefore, our virtual
material can actually have different physical properties
throughout the working space. In our sculpting system, we
use a painting metaphor to describe the process of assigning
or changing material properties. Using the haptic cursor,
springs within a user-supplied radius of the tool are slowly
“painted” with increasing or decreasing stiffness, based on
which tool is active. The rate at which a spring’s stiffness
changes decreases linearly with increasing distance from
the tool. This functionality allows the user to create smooth
transitions from regions of low stiffness to regions of high
stiffness. The stiffness distribution can be physically felt by
using the aforementioned haptics-based probing tool.
Stiffness modification can help users constrain certain parts
of a sculpted object subject to soft constraints. Users can fix
a region by increasing the stiffness of that part. This is
similar to the popular penalty method [43]. Therefore, the
applied deformation forces will have less effect on a high
stiffness region. Similarly, the user can locally modify the
masses or rest lengths through painting. Mass modification
allows users to control how quickly one part of a sculpture
can move in response to the external force. Regions of high
mass density tend to move slowly while less massive parts
respond quickly to a deformation force. Rest-length mod-
ification can make a specified region deflate or inflate. With
the decrease of the rest length, all the springs inside the
region generate contracting forces, which results in the
effect of solid shrinking. To produce an inflation effect, the
rest length is increased instead. Fig. 14b shows an inflation
operation on the head and a deflation operation on the left
arm of our clay puppet.

We provide a physical mechanism to enforce the linear
constraints. The constraints are implemented as additional
constraint springs, which transform constraints to external
forces and then add them to the modeled solids. This
method treats constraints as soft constraints, but it offers
better computation performance. Suppose that a user wants
to constrain the density value of a mass-point at ðx; y; zÞ, an
additional high stiffness spring is then attached between
ðx; y; z; dÞ and ðx; y; z; d0Þ, where d0 is the desired density
value. If we set d0 ¼ 0, then ðx; y; zÞ is lying on the iso-
surface. Otherwise, ðx; y; zÞ is lying inside the iso-surface if
d0 > 0 or outside the iso-surface if d0 < 0. Through the use of
point constraints, the user can let the iso-surface interpolate
a set of points. Curve constraints are implemented based on

the same technique used in point constraints. A user can
specify a curve using a parametric form or an implicit form.
Alternatively, the user can interactively sketch it. Then, the
curve is discretized to a set of points. Fig. 14c and Fig. 14d
show a constraint-based design example using additional
springs. In this design, after defining those springs, the user
starts to use force tools to add material inside the curve
boundaries. During the design process, the zero level set
will not grow outside the curve boundaries.

We also provide a way to enforce geometric constraints
as hard constraints. The linear constraints are expressed as
follows:

RgcðdÞ ¼ Ldþ b ¼ 0; ð13Þ

where d is the generalized coordinate vector. Usually, (13)
is an underdetermined linear system. Therefore, we can
eliminate those constrained variables and express d with
the other unconstrained variables h,

d ¼ Ghþ h0: ð14Þ

Replacingd in (6)with (14), thematrices and vectors in (6) are
reduced to a unconstrained set of generalized coordinates:

MG€hhþDG _hhþKGh ¼ fd �Kh0: ð15Þ

Defining mass, damping, and stiffness matrices of
the constrained dynamic system as: Mh ¼ G>MG,
Dh ¼ G>DG, Kh ¼ G>KG, c ¼ �G>Kh0, the discrete
Lagrangian equations of the constrained dynamic system
can be obtained from (15) as follows:

Mh
€hhþDh

_hhþKhh ¼ fh þ c: ð16Þ

In the constrained dynamic system, h has reduced size
compared with d. Hence, h ¼ A0p0, where A0 and p0 are
subsets of the original matrices, A and p. We can still use
the numerical technique described in Section 5.3 to solve
(16). This method treats those constraints as hard con-
straints. Fig. 15 shows a cross-sectional design using point
and curve constraints.

7 SYSTEM IMPLEMENTATION

Our environment is implemented on a PC with a 2.2 GHz
CPU and 1 GB RAM. A PHANToM 1.0 3D Haptic input/
output device from SensAble Technologies is employed to
provide a natural and realistic force feedback. Our
dynamic implicit modeling environment can easily handle

HUA AND QIN: HAPTICS-BASED DYNAMIC IMPLICIT SOLID MODELING 583

Fig. 14. (a), (b) Inflation and deflation operations performed inside the

colored bounding boxes. (c), (d) Shape design using constraint springs.

The red points denote off-surface points and the specified curves must

be on the iso-surface.

Fig. 15. A cross-sectional design using point constraints and curve

constraints. The green points denote on-surface points and the specified

curves must be on the iso-surface. The arrows denote the sculpting

forces.

complicated geometry with arbitrary topologies. The
system allows designers to create interesting objects in
real-time. Designers can start from scratch or from an
existing object through the use of our hierarchical fitting
algorithm to transform other data-types to continuous B-
spline implicit representations. Whenever a sculpting tool is
used to sculpt an object, the density values of the working
space at the affected regions will be modified correspond-
ingly. Then, the system will reconstruct the volumetric
implicit function to represent the new, modified object that
has undergone deformation. The iso-surface of the object
can be displayed interactively using the Marching Cubes
technique [49], [15], [50]. By integrating physics-based
modeling with a haptics interface, our force-based, haptic
tools further allow users to reach toward an object, feel the
physical presence of its shape, and sculpt free-form solids
with force feedback. Since the sculpted object is discretized
in a voxel raster, usually there are many homogeneously
empty regions outside the object of interest. Therefore, an
octree-based data structure is employed in our system (see
Fig. 2), which can locate where the modification is
performed and then only locally update the volumetric
implicit function.

When using haptic tools, to reduce the latency and
maximize the throughput, we resort to a parallel technique
that can multithread the haptics, graphics, and sculpting
processes with weak synchronization. This technique leads
to a significant performance improvement and, ultimately, a
parallel implementation of haptic sculpting, given high-end
multiprocessor computing resources. Therefore, our system
can be extended to many different configurations. Fig. 16
shows the communication between threads, where thick
arrows represent data flow.

The haptic loop is implemented in a single thread. It
maintains the haptic refresh rate, which is no less than
1 KHz. This requirement is critical to the realistic feedback
of haptic interaction. If the update rate were below the
threshold of 1 KHz, users would have an uncomfortable
feeling. In our system, the haptic thread has the highest
priority. It computes the haptic force and feeds it back to the
haptic device.

The simulation loop is implemented in another thread,
which controls the physical simulation. It continuously
computes the total internal forces and external forces, then
updates the physical states of a sculpted object as described

in Section 5.3. In order to keep up with interactive frame
rates, the physical simulation is limited to a small screen
region by using the techniques described in Section 6.3.
Usually, users’ design intention and their sculpting opera-
tions would not exceed this limited region during one
design cycle. In order to keep the simulation more stable,
we employ a simple adaptive method to adjust the
simulation time-step. Essentially, if €pp is greater than a
specified threshold, we shall use half of the previous time
step as the current simulation time step.

The graphics loop is developed to handle the rendering
of the volumetric objects. The rendering task makes use of
the Marching Cubes algorithm and only updates a very
small region in order to achieve interactive rendering rates
and keep the graphics display consistent with the sculpting
operations, physical simulation, and force feedback.

8 RESULTS AND TIME PERFORMANCE

We have conducted a large number of experiments and
documented the running time for the sculpting of dynamic
implicit solids. For sculpting with geometric tools, the
experiments are based on a working space sampled at
128� 128� 128. The geometric tool size is given as the
number of data points that the tool affects. The results are
detailed in Table 1.

Haptics-based deformation is time-critical. In this case,
sometimes we may need to sacrifice the simulation loop
speed and graphics loop speed in order to satisfy the
haptics device refresh rate. Currently, our system permits
the real-time simulation of thousands of mass-points. We
have recorded the timings for physical simulations using
various configurations of the control coefficients and the
discretized space samples (see Table 2). This table contains
the timings for one loop of the simulation thread and the
graphical update under the condition that the haptics loop
is always performed within 1ms.

Within our dynamic implicit modeling environment and
using all the available geometric, physical, and haptic tools
that we have developed, we have sculpted many interesting
objects and several virtual-world scenes (see Fig. 17).

584 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

Fig. 16. Our system is decomposed into three threads operating on the

implicit object.

TABLE 1
Timings of Object Interaction with Geometric Tools

TABLE 2
Timings of Physical Simulation and Graphical Update

9 CONCLUSIONS

We have presented a novel haptics-based dynamic implicit
solid modeling environment that employs trivariate scalar
nonuniform B-splines as its underlying representation. We
have proposed a new approach that unifies implicit func-
tions, parametric representations, and physics-based model-
ing within a single haptics-based solidmodeling framework.
We have developed a large variety of algorithms and toolkits
that afford designers the intuitive mechanism of interactive
anddirectmanipulationof implicit solidswith force feedback
in real-time. The novel force mapping technique along with
the concept of “density springs” (for dynamic modeling of
implicit functions) can be straightforwardly extended to the
haptic sculpting of any other types of implicit functions
without additional difficulties. Moreover, our physics-based
haptic tools can be directly employed to act on density-based
volumetric data sets as well as solids implicitly defined by
point clouds with the help of our hierarchical implicit
function fitting algorithm. To facilitate multiresolution
editing and LOD control, we have also incorporated three
popular modeling techniques, hierarchical B-splines, CSG-
based functional composition, and knot insertion, into our
environment, making our dynamic implicit solid modeling
techniques even more powerful and versatile to handle real-
world solids of both complicated geometry and arbitrary
topologies.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor,
Dr. Roger Crawfis, and the anonymous reviewers for their
careful and constructive reviews that have greatly helped
them to improve the quality of this paper. Also, the authors
would like to thank Christopher Carner and Kevin T.
McDonnell for proofreading the draft. This research was

supported in part by US National Science Foundation (NSF)
CAREER award CCR-9896123, NSF grant DMI-9896170,
NSF ITR grant IIS-0082035, NSF grants IIS-0097646, ITR IIS-
0326388, ACI-0328930, the Alfred P. Sloan Fellowship, and
the Honda Initiation Award.

REFERENCES

[1] A.A.G. Requicha and J.R. Rossignac, “Solid Modeling and
Beyond,” IEEE Computer Graphics and Applications, vol. 12, no. 5,
pp. 31-44, 1992.

[2] T.A. Galyean and J.F. Hughes, “Sculpting: An Interactive
Volumetric Modeling Technique,” Computer Graphics, vol. 25,
no. 4, pp. 267-274, 1991.

[3] S.W. Wang and A.E. Kaufman, “Volume Sculpting,” Proc. 1995
Symp. Interactive 3D Graphics, pp. 151-156, 1995.

[4] S. Frisken, R. Perry, A. Rockwood, and T. Jones, “Adaptive
Sampled Distance Fields: A General Representation of Shape for
Computer Graphics,” SIGGRAPH ’00 Proc., pp. 249-254, 2000.

[5] R.N. Perry and S.F. Frisken, “Kizamu: A System for Sculpting
Digital Characters,” SIGGRAPH ’01 Proc., pp. 47-56, 2001.

[6] J. Bloomenthal, Introduction to Implicit Surfaces, J. Bloomenthal
et al., eds. Morgan Kaufmann, 1997.

[7] A. Raviv and G. Elber, “Three Dimensional Freeform Sculpting
via Zero Sets of Scalar Trivariate Functions,” Proc. Fifth ACM
Symp. Solid Modeling and Applications, pp. 246-257, 1999.

[8] G. Turk and J.F. O’Brien, “Modelling with Implicit Surfaces that
Interpolate,” ACM Trans. Graphics, vol. 21, no. 4, pp. 855-873, 2002.

[9] J. Hua and H. Qin, “Haptic Sculpting of Volumetric Implicit
Functions,” Proc. Ninth Pacific Conf. Computer Graphics and
Applications, pp. 254-264, 2001.

[10] K.T. McDonnell, H. Qin, and R.A. Wlodarczyk, “Virtual Clay: A
Real-Time Sculpting System with Haptic Toolkits,” Proc. 2001
Symp. Interactive 3D Graphics, pp. 179-190, 2001.

[11] J. Hua and H. Qin, “Haptics-Based Volumetric Modeling Using
Dynamic Spline-Based Implicit Functions,” Proc. IEEE Symp.
Volume Visualization and Graphics 2002, pp. 55-64, 2002.

[12] J.F. Blinn, “Generalization of Algebraic Surface Drawing,” ACM
Trans. Graphics, vol. 1, no. 3, pp. 235-256, 1982.

[13] J. Bloomenthal and B. Wyvill, “Interactive Techniques for Implicit
Modeling,” Proc. 1990 Symp. Interactive 3D Graphics, pp. 109-116,
1990.

[14] B. Wyvill and G. Wyvill, Using Soft Objects in Computer Generated
Animation. New York: Springer-Verlag, 1986.

HUA AND QIN: HAPTICS-BASED DYNAMIC IMPLICIT SOLID MODELING 585

Fig. 17. Several sculptures and scenes created entirely within our haptics-based dynamic implicit solid modeling environment.

[15] G. Wyvill, C. McPheeters, and B. Wyvill, “Data Structure for Soft
Objects,” The Visual Computer, vol. 2, no. 4, pp. 227-234, 1988.

[16] J. Bloomenthal and K. Shoemake, “Convolution Surfaces,”
SIGGRAPH ’91 Proc., pp. 251-256, 1991.

[17] J. McCormack and A. Sherstyuk, “Creating and Rendering
Convolution Surfaces,” Computer Graphics Forum, vol. 17, no. 2,
pp. 113-120, 1998.

[18] J.C. Hart, A. Durr, and D. Harsh, “Critical Points of Polynomial
Meatballs,” Proc. Implicit Surfaces ’98, Eurographics/SIGGRAPH
Workshop, pp. 69-76, 1998.

[19] A. Witkin and P. Heckbert, “Using Particles to Sample and
Control Implicit Surfaces,” SIGGRAPH ’94 Proc., pp. 269-278, 1994.

[20] W. Martin and E. Cohen, “Representation and Extraction of
Volumetric Attributes Using Trivariate Splines: A Mathematical
Framework,” Proc. Seventh ACM Symp. Solid Modeling and
Applications, pp. 234-240, 2001.

[21] B. Schmitt, A. Pasko, and C. Schlick, “Constructive Modeling of
Frep Solids Using Spline Volumes,” Proc. Sixth ACM Symp. Solid
Modeling and Applications, pp. 321-322, 2001.

[22] E. Ferley, M.P. Cani, and J.-D. Gascuel, “Practical Volumetric
Sculpting,” The Visual Computer, vol. 16, no. 7, pp. 469-480, 2000.

[23] K. Museth, D.E. Breen, R.T. Whitaker, and A.H. Barr, “Level Set
Surface Editing Operators,” SIGGRAPH ’02 Proc., pp. 330-338,
2002.

[24] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically
Deformable Models,” Computer Graphics, vol. 21, no. 4, pp. 205-
214, 1987.

[25] A. Pentland and J. Williams, “Good Vibrations: Modal Dynamics
for Graphics and Animation,” Computer Graphics, vol. 23, no. 3,
pp. 215-222, 1989.

[26] D. Metaxas and D. Terzopoulos, “Dynamic Deformation of Solid
Primitives with Constraints,” Computer Graphics, vol. 26, no. 2,
pp. 309-312, 1992.

[27] M.P. Cani and M. Desbrun, “Animation of Deformable Models
Using Implicit Surfaces,” IEEE Trans. Visualization and Computer
Graphics, vol. 3, no. 1, pp. 39-50, Jan.-Mar. 1997.

[28] M. Kass and G. Miller, “Rapid, Stable Fluid Dynamics for
Computer Graphics,” SIGGRAPH ’90 Proc., pp. 49-57, 1990.

[29] D. Baraff and A. Witkin, “Dynamic Simulation of Non-Penetrating
Flexible Bodies,” SIGGRAPH ’92 Proc., pp. 303-308, 1992.

[30] N. Foster and D. Metaxas, “Modeling the Motion of Hot,
Turbulent Gas,” SIGGRAPH ’97 Proc., pp. 181-188, 1997.

[31] J.F. O’Brien, A.W. Bargteil, J.K. Hodgins, “Graphical Modeling
and Animation of Ductile Fracture,” SIGGRAPH ’02 Proc., pp. 23-
26, 2002.

[32] R. Szeliski and D. Tonnesen, “Surface Modeling with Oriented
Particle Systems,” SIGGRAPH ’92 Proc., pp. 185-194, 1992.

[33] H. Qin and D. Terzopoulos, “D-NURBS: A Physics-Based Frame-
work for Geometric Design,” IEEE Trans. Visualization and
Computer Graphics, vol. 2, no. 1, pp. 85-96, Mar. 1996.

[34] C. Mandal, H. Qin, and B.C. Vemuri, “A Novel Fem-Based
Dynamic Framework for Subdivision Surfaces,” Proc. Fifth ACM
Symp. Solid Modeling and Applications, pp. 191-202, 1999.

[35] J.K. Salisbury, D. Brocki, T. Massiet, N. Swarupf, and C. Zillest,
“Haptic Rendering: Programming Touch with Virtual Objects,”
Proc. 1995 Symp. Interactive 3D Graphics, pp. 123-130, 1995.

[36] J.K. Salisbury and C. Tarr, “Phantom-Based Haptic Interaction
with Virtual Objects,” IEEE Computer Graphics and Applications,
vol. 17, no. 5, pp. 6-10, 1997.

[37] C.B. Zilles and J.K. Salisbury, “A Constraint-Based God-Object
Method for Haptic Display,” Proc. Int’l Conf. Intelligent Robots and
Systems, pp. 3146-3152, 1995.

[38] H.B. Morgenbesser and M.A. Srinivasan, “Force Shading for
Haptic Perception,” Proc. 1996 ASME Int’l Mechanical Eng.
Congress and Exposition, Dynamic Systems and Control Division,
pp. 407-412, 1996.

[39] J.K. Salisbury and C. Tarr, “Haptic Rendering of Surfaces Defined
by Implicit Functions,” Proc. ASME Sixth Ann. Sympo. Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pp. 15-
21, 1997.

[40] L. Kim, A. Kyrikou, G.S. Sukhatme, and M. Desbrun, “An
Implicit-Based Haptic Rendering Technique,” Proc. IEEE/RSJ Int’l
Conf. Intelligent Robots, 2002.

[41] R.S. Avila and L.M. Sobierajski, “A Haptic Interaction Method for
Volume Visualization,” Proc. Seventh IEEE Visualization ’96,
pp. 197-204, 1996.

[42] T.V. Thompson, D.E. Johnson, and E. Cohen, “Direct Haptic
Rendering of Sculptured Models,” Proc. 1997 Symp. Interactive 3D
Graphics, pp. 167-176, 1997.

[43] F. Dachille, H. Qin, and A.E. Kaufman, “A Novel Haptics-Based
Interface and Sculpting System for Physics-Based Geometric
Design,” Computer-Aided Design, vol. 33, no. 5, pp. 403-420, 2001.

[44] R. Balakrishnan, G. Fitzmaurice, G. Kurtenbach, and K. Singh,
“Exploring Interactive Curve and Surface Manipulation Using a
Bend and Twist Sensitive Input Strip,” Proc. 1999 Symp. Interactive
3D Graphics, pp. 111-118, 1999.

[45] S. Muraki, “Volumetric Shape Description of Range Data Using
Blobby Model,” Computer Graphics, vol. 25, no. 4, pp. 227-235, 1991.

[46] G. Turk and J.F. O’Brien, “Shape Transformation Using Varia-
tional Implicit Surface,” SIGGRAPH ’99 Proc., pp. 335-342, 1999.

[47] J.C. Carr, R.K. Beatson, and J.B. Cherrie, “Reconstruction and
Representation of 3D Objects with Radial Basis Functions,”
SIGGRAPH ’01 Proc., pp. 67-76, 2001.

[48] H. Zhao, S. Osher, and R. Fedkiw, “Fast Surface Reconstruction
and Deformation Using the Level Set Method,” Proc. IEEE
Workshop Variational and Level Set Methods in Computer Vision,
pp. 194-201, 2001.

[49] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Computer Gra-
phics, vol. 21, no. 4, pp. 163-169, 1987.

[50] J. Wilhelms and A.V. Gelder, “Octrees for Faster Isosurface
Generation,” ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, 1992.

Jing Hua is a PhD candidate in computer
science at the State University of New York at
Stony Brook, where he is also a research
assistant in the SUNYSB Center for Visual
Computing (CVC). He received the BS degree
(1996) in electrical engineering from the Huaz-
hong University of Science and Technology in
Wuhan, People’s Republic of China. He re-
ceived the ME degree (1999) in pattern recogni-
tion and artificial intelligence from the Institute of

Automation, Chinese Academy of Sciences in Beijing, People’s Republic
of China. In 2001, he received the MS degree in computer science from
the State University of New York at Stony Brook. His research interests
include geometric and physics-based modeling, scientific visualization,
interactive 3D graphics, human-computer interaction, and computer
vision. He is a student member of the IEEE and ACM. For more
information see http://www.cs.sunysb.edu/~jinghua.

Hong Qin received the BS degree (1986) and
the MS degree (1989) in computer science from
Peking University in Beijing, People’s Republic
of China. He received the PhD degree (1995) in
computer science from the University of Tor-
onto. He is an associate professor of computer
science at the State University of New York at
Stony Brook, where he is also a member of the
SUNYSB Center for Visual Computing. From
1989-1990, he was a research scientist at the

North-China Institute of Computing Technologies. From 1990-1991, he
was a PhD candidate in computer science at the University of North
Carolina at Chapel Hill. From 1996-1997, he was an assistant professor
of Computer & Information Science & Engineering at the University of
Florida. In 1997, he was awarded the US National Science Foundation
(NSF) CAREER Award and, in September 2000, was awarded a newly
established NSF Information Technology Research (ITR) grant. In
December 2000, he received a Honda Initiation Grant Award and, in
April 2001, was selected as an Alfred P. Sloan Research Fellow by the
Sloan Foundation. He is a member of the ACM, IEEE, SIAM, and
Eurographics.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

586 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004

