
Haptics-based Volumetric Modeling
Using Dynamic Spline-based Implicit Functions

Jing Hua∗ Hong Qin†

State University of New York at Stony Brook

Abstract

This paper systematically presents a novel haptics-based volumetric
modeling framework, which is founded upon volumetric implicit
functions and powerful physics-based modeling. The volumetric
implicit functions incorporate hierarchical B-splines, CSG-based
functional composition, and knot insertion to facilitate multireso-
lution editing and level of details (LODs) control. Our dynamic
volumes are semi-algebraic sets of implicit functions and are gov-
erned by the principle of dynamics, hence responding to sculpting
forces in a natural and predictive manner. The versatility of our vol-
umetric modeling affords users to easily modify both the geometry
and the topology of modeled objects, while the inherent physical
properties can offer an intuitive mechanism for direct manipulation.
Moreover, we augment our modeling environment with a natural
haptic interface, in order to take advantage of the additional real-
ism associated with 3D haptic interaction. Coupling physics and
haptics with implicit functions can realize all the potentials exhib-
ited by volumetric modeling, physics-based modeling, and haptic
interface. Furthermore, in order to directly manipulate existing vol-
umetric datasets as well as point clouds, we develop a hierarchical
fitting algorithm to reconstruct and represent discrete datasets us-
ing our continuous implicit functions, which permit users to further
design and edit those 3D models in real-time using a large vari-
ety of haptic toolkits and visualize their interactive deformation at
arbitrary resolution.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; H.5.2 [Information Interfaces and Presen-
tation]: User Interfaces—Haptic I/O; I.3.m [Computer Graphics]:
Miscellaneous—Implicit function;

1 Introduction

Volumetric modeling is vital for interactive graphics, virtual envi-
ronments, and visualization. Despite many modeling advantages of
implicit functions over popular parametric geometry [Bloomenthal
1997][Bloomenthal and Wyvill 1990], there are still certain difficul-
ties such as the lack of flexible, interactive design techniques and

∗e-mail: jinghua@cs.sunysb.edu
†e-mail: qin@cs.sunysb.edu

fast, direct rendering methods which hinder the widespread pene-
tration of implicit functions into volume graphics. There are fewer
convenient modeling tools for the intuitive shape control of this type
of algebraic volumes. In general, flexible and direct modeling tech-
niques for implicit function based volumes remain under-explored.

To ameliorate it, we integrate volumetric implicit functions and
powerful physics-based modeling into one single framework:Dy-
namic Volumetric Modeling, and systematically present a haptics-
based volumetric modeling environment, which permits interactive
and direct manipulation of volumes characterized by implicit func-
tions in real-time and with realistic force feedback. Furthermore,
by using a new hierarchical fitting algorithm, our environment pro-
vides a flexible mechanism for users to interact with existing vol-
umetric modeling systems and their datasets of different represen-
tations, hence allowing users to manipulate and sculpt the existing
point clouds and volumetric datasets using a large number of toolk-
its available in our environment. Our modeling methodology and
the new environment aim to realize all the potentials offered by
volumetric modeling, implicit functions, physics-based modeling,
and haptic interaction.

Unlike the discrete volumetric object representation used in
[Galyean and Hughes 1991], [Wang and Kaufman 1995] and [Perry
and Frisken 2001], the modeled object in our system is evaluated
as a level-set of volumetric implicit functions defined over a 3D
working space. Arbitrary topology and complicated geometry are
implicitly defined by the functions. Therefore, it is easy to handle
topological change and collision detection. The continuous func-
tions can be evaluated anywhere to produce a mesh at the desirable
resolution. Gradients and higher-order derivatives are determined
analytically and are continuous, depending on the choice of basis
functions. In this paper, the volumetric implicit functions combine
the benefits of conventional implicit functions and popular paramet-
ric representations. They are defined by a 3D hierarchical organi-
zation of the underlying constituent scalar B-splines [Hua and Qin
2001]. Although uniform or non-uniform trivariate B-splines are
employed as the underlying function, constituent functions may be
of arbitrary type with or without the local control property. It should
be noted that in [Hua and Qin 2001] there are neither material quan-
tities nor dynamic behaviors in the system. The direct manipulation
was achieved by solving a static linear system. In order to define
material attributes and dynamic behaviors in the system and achieve
direct haptics-based manipulation, we employ a novel technique to
associate physics with implicit functions. Physical attributes are
assigned inside the working space, and haptic forces are computed
directly from material properties. Consequently, geometric param-
eters of arbitrary implicit functions are hidden from users through
the use of natural, force-based interfaces. Our system synchronizes
the geometric and physical representations of modeled objects dur-
ing the modeling process. Such dynamic and interactive approaches
can provide users with a natural, force-based interface as well as a
geometric interface at the same time.

Instead of modifying the coefficients associated with the volu-
metric implicit function as shown in [Raviv and Elber 1999], our
sculpting tools facilitate the direct editing of implicit functions’
scalar values. Our algorithm can automatically determine all of



the unknown control coefficients and effectively reconstruct a new
volumetric implicit function undergoing the local/global free-form
deformation. The additional constraints allow users to gain more
sophisticated control over the dynamic models and undertake cross-
sectional design tasks (i.e., generating volumes from a set of curve
profiles). Our system offers a wider array of intuitive sculpting tools
(especially the novel haptics-based tools) responsible for the ef-
fective construction of various complicated volumetric shapes with
distinct topological types. These tools are both transparent to and
independent of the underlying representations. With a standard hap-
tic device, our approach permits users to interactively sculpt virtual
materials having real-world properties and feel the physically real-
istic presence with force feedback throughout the design process. In
essence, haptics-based exploration provides additional sensory cues
to designers and can afford designers to gain a richer understanding
on the 3D nature of volumetric objects.

There is little work on integrating physics-based modeling with
volumetric implicit functions and applying haptic tools on volumet-
ric datasets and point clouds due to certain difficulties. Our work
aims to incorporate the physics in general and the elasticity in par-
ticular into volumetric models characterized by implicit functions
and advance the state of the knowledge in the effective integration
of volumetric modeling, implicit functions, physics-based model-
ing, and haptic interaction.

2 Prior Work

Implicit functions are well suited for both scientific visualization
and the modeling tasks in computer graphics [Blinn 1982]. In order
to design implicit surfaces interactively, [Bloomenthal 1997] and
[Bloomenthal and Wyvill 1990] used skeleton methods to construct
implicit surfaces. Each skeletal element is associated with a locally
defined implicit function. Individual functions are blended to form
an implicit surface using a polynomial weighting function that can
be controlled by users. Blobby model [Blinn 1982], also known as
soft objects [Wyvill et al. 1988], is another popular technique for
the design of implicit surfaces. Implicit functions are also used to
represent volumes. Commonly-used modeling techniques includes
Boolean operations and functional compositions.

Recently, [Raviv and Elber 1999] presented a 3D interactive
sculpting paradigm that employed a set of scalar uniform trivari-
ate B-spline functions as object representations. Users can indi-
rectly sculpt objects to a desirable shape by directly modifying rel-
evant scalar control coefficients of the underlying functions with
virtual sculpting tools. In other related work, the representation
of sculpted volumetric objects is primarily of discrete type (e.g.,
voxels). [Galyean and Hughes 1991] first introduced the concept
of volume sculpting and developed a system with simple tools.
[Wang and Kaufman 1995] presented a similar sculpting system
with sculpting tools of carving and sawing. In a nutshell, those
sculpting systems are dependent on the simple, voxel-based oper-
ation. The sculpted objects and the sculpting tools are represented
using a discrete characteristic function. Unfortunately, onlyC0 con-
tinuity can be achieved. In order to avoid the spatial aliasing, the
sculpted objects and sculpting tools need to undergo an appropri-
ate filtering operation. Based on the similar idea, Ferleyet al. pre-
sented a rapid shape-prototyping system [Ferley et al. 2000]. [Perry
and Frisken 2001] presented a sculpting system,Kizamu, for creat-
ing digital characters. This system employed adaptively sampled
distance fields (ADFs) as volumetric shape representations. [Mc-
Donnell et al. 2001] implemented a 3D sculpting system based on
dynamic subdivision-based solids. However, much effort has to be
taken to change the topology of subdivision-based sculptures.

Generally, each of aforementioned systems suffers from some of
the limitations. Traditional modeling techniques may be inconve-
nient for representing complicated volumes, because modelers are

faced with the tedium of indirect shape modification and refinement
through time-consuming operations on a large number of control
coefficients. In contrast, physics-based models respond to exter-
nally applied forces in a very intuitive manner. The dynamic for-
mulation marries the model geometry with time, mass and damping
distributions, and constraints via Lagrangian equations of motion.
Dynamic models produce smooth, natural motions that are intuitive
to control. In addition, they facilitate direct manipulation of com-
plex geometries and topologies.

Free-form deformable models were first introduced to computer
graphics by Terzopouloset al. [Terzopoulos et al. 1987]. They
employed elasticity theory to construct differential equations that
model the behavior of non-rigid curves, surfaces, and solids as func-
tions of time. Deformable models were further developed by [Pent-
land and Williams 1989], and [Metaxas and Terzopoulos 1992].
[Cani and Desbrun 1997] employed deformable implicit models
for animation. Despite the popular use of physics-based models
in graphics, less effort has been applied to free-form dynamic in-
teraction between designers and manufactured objects which is es-
pecially useful for volumetric modeling. Qin and Terzopoulos in-
troduced D-NURBS surfaces, an extension to traditional NURBS
that permits more natural control of the surface geometry [Qin and
Terzopoulos 1996]. Note that physical simulation can be used as
an effective, interactive tool for building and manipulating a wide
range of models.

Haptic rendering is a process of applying forces through the use
of force-feedback devices and augmenting a virtual environment
with a haptic interaction. [Thompson et al. 1997] derived efficient
intersection techniques that can be applied to NURBS-based rigid
surfaces. [Dachille et al. 2001] developed a haptic interface to per-
mit the direct manipulation of dynamic B-spline surfaces. Due to
the limits of parametric B-spline, it cannot handle arbitrary topol-
ogy and complicated geometry. [McDonnell et al. 2001] employed
haptic toolkits to explore the dynamic subdivision solids. [Avila
and Sobierajski 1996] presented a haptic interaction that is suit-
able for both volume visualization and modeling applications. De-
spite the widespread utilization of haptics in visual computing ar-
eas, haptics-based interaction was primarily applied to parametric
representations for shape modeling and sculpting. We integrate the
principle of haptic modeling with the direct manipulation of dy-
namic volumes and employ force-based, haptic tools to directly
work on density-centered volumetric datasets and surface geome-
try characterized by point clouds scattered over solid boundaries.

3 Volumetric Implicit Functions

An arbitrary implicit function in 3D can be generally characterized
as:

{(x,y,z)|F(x,y,z) = 0}. (1)

Collecting all the level-sets whose return values are greater (or
smaller) than a given threshold, we can define an implicit solid:

{
c = F(x,y,z)
c > c0

. (2)

In particular, this paper utilizes scalar trivariate B-spline func-
tions as the underlying shape primitives. We shall collect differ-
ent scalar B-spline patches defined over the 3D working space to
form a volumetric implicit function that can be collectively used
to represent objects of complicated geometry and arbitrary topol-
ogy. Note that, significantly different from frequently-used para-
metric B-splines, implicit B-spline functions formulate the scalar
value distribution in 3D where implicit solids are uniquely defined
as semi-algebraic point sets.



ConsiderN B-spline patches in the working space, which are
located at any location and with any orientation. In general, these
patches may be formulated by any scalar B-spliness(u,v,w) with
different numbers of control coefficients in order to achieve the goal
of multiresolution analysis and LOD control.u,v,w represent three
coordinates of the parametric domain. Then the scalar value at the
location(x,y,z) can be computed as

F(x,y,z) =
N

∑
i=1

si(Ti(x,y,z)), (3)

whereTi is an affine transformation from the Euclidian space to the
parametric domain of patchsi . For every different patchsi , there is
a corresponding transformationTi . Now F(x,y,z) becomes a new
volumetric implicit function defined over the 3D working space. In
essence, (3) is a hierarchical organization of theN patches. For
the details about scalar B-spline expressions and the spline-based
volumetric implicit functions, please refer to [Hua and Qin 2001].

4 Dynamic Volumetric Models

4.1 Integration of Elasticity with Implicit Solids

In order to introduce physics into our environment, the sculpted ob-
ject of a B-spline based implicit function is discretized into a voxel
raster. Every voxel contains a scalar value, called density value,
sampled at a grid point. The volumetric implicit function described
in Section 3 is employed to assign the density value to the sampling
points to indicate the material attribute at that location. The func-
tion will be used to formulate the density distribution over the 3D
working space and represent the sculpted object using a given level-
set. Figure 1 shows a simple sculpted object and its corresponding
voxelmap. This voxelmap defines a function, where the solid par-
ticles (colored in red) denote locations in which material exists and
the empty particles (colored in gray) denote locations in which there
is no material. Note that, in our system the characteristic function
is not a binary function, rather it is a continuous function.

(a) (b)

(c) (d)

Figure 1: (a) A simple sculpted object. (b) Its corresponding vox-
elmap. (c) The density distribution along the red line. (d) The vox-
elmap on a 2D cross-section.

In the discretized working space, we can discretize Equation (3)
and make use of

d = Ap (4)

Figure 2: The mass-spring network in the vicinity of a point
P(xi, j,k,di, j,k), wherexi, j,k represents the position of a mass point
mi, j,k in 3D space,di, j,k is the density at that position.

to formulate the density values associated with the sampling points
in a patch, whereA is a sparse basis matrix that contains weights
computed from our spline-based volumetric implicit functions and
p is a vector of those scalar control coefficients. The discretized
functional scalar field represented byd is also called ”density field”
in this paper.

The discretized density field is assigned material quantities such
as mass, damping, and stiffness distribution. These values are de-
fined as functionsµ(u,v,w), γ(u,v,w), andρ(u,v,w), respectively,
which oftentimes can be considered to be constant. However, these
material distributions are allowed to be modified by users interac-
tively and directly across the volumetric domain in real-time. The
discretized field is modeled as a collection of mass-points con-
nected by a network of springs across nearest neighbors. Mass-
points are located at sampled grid points. Besides the aforemen-
tioned quantities, a mass-pointmi, j,k has two other attributes, the
geometric positionxi, j,k, and the density valuedi, j,k at the position.
Here we use a mass-spring model because of its simplicity and the
critical need of real-time haptic volume sculpting. Figure 2 shows
the mass-spring network in the vicinity of a point.

We refer those springs as ”density springs”. This is because,
these springs are unconventional in a sense that they are signifi-
cantly different from ordinary springs commonly-used in paramet-
ric deformable models, where springs are employed to connect
pairs of geometric vertices and modify vertex geometry upon de-
formation. In contrast, our special springs for implicit functions
do not change the geometric positionxi, j,k of the massmi, j,k at all.
Instead, they permit the magnitude change of the densitydi, j,k of
the mass-pointmi, j,k. Essentially, this new type of springs will at-
tract/dispel density values of neighbors. When users manipulate the
implicit solids, the density values are changed by the mass-spring
system. Consequently, this results in the deformable behavior of
the object’s shape modeled by the spline-based volumetric implicit
function. So the elasticity has been introduced to our volumetric
implicit objects, and our implicit solids now become deformable
volumes, which we name asdynamic volumetric modelsor dynamic
implicit solids. Note that, even though the geometry and topology
of the network of mass-points do not vary over time, this approach
has the capability to model arbitrary topology and complicated ge-
ometry since the resulting shape is generated by extracting isosur-
face from the density field instead of from the geometric position
of masses. This novel approach affords a systematic mechanism for
users to directly manipulate arbitrary implicit functions and their
different level-sets without the need to modify their associated con-
trol coefficients manually.

The motion equation of the discretized density field is formulated
as a discrete simulation of Lagrangian dynamics:

Md̈+Dḋ+Kd = fd, (5)

whereM is a mass matrix,D is a damping matrix,K is a stiffness
matrix, and the force at every mass-point in the working space is the



summation of all possible external forces:fd = ∑ fext. The internal
forces are generated by the connecting springs, where each spring
has forcef = k(l− l0) according to Hook’s law. In our system the
geometric positions of mass-points do not move and only density
values change. So only the component of forces along the density
axis will be taken into account in the dynamic simulation. The rest
length of each spring is determined upon initialization, however, it
is free to vary if plastic deformations or other non-linear phenomena
are more desirable.

4.2 Response to Applied Forces

As we know, a deformable model is defined by a given correspon-
dence between applied forces and deformation. In order to allow
direct deformation of dynamic volumetric models in a force-based
physical manner, we must address the important issue of force
mapping, which defines how dynamic models response to applied
forces. Note that, the generated forces will be input to the dynamic
system as external forces and will also be fed back to a haptic de-
vice in our system. Therefore, any force mapping algorithm must
be meaningful and suitable for both the dynamic simulation and the
haptic interaction.

To illustrate the concept clearly, we shall use a one-dimensional
implicit function to describe how to implement the force mapping
mechanism in our system. More complicated situations in 3D can
be trivially generalized.

For an arbitrary one-dimensional implicit function the zero-set is
simply a set of points. As shown in Figure 3, consider that a user
wants to move one point of the zero-set,x0, to x1, our system then
automatically generates a series of forcesf applied on every mass-
point betweenx0 andx1. As a result, these forces will increase the
density value froms1(x) to s2(x) correspondingly at all the affected
locations within the interval. Eventually, the density value atx1 will
be zero and the density values betweenx0 andx1 will be greater than
zero. So the iso-surface evolves fromx0 to x1, undergoing real-time
deformation controlled by the numerical integration of Lagrangian
dynamics. To further convey this idea, we can imagine that the
above process is equivalent to the lifting of the ”density height” for
every affected mass-point via applied forces.

(a) (b)

Figure 3: (a) Iso-surface changing fromx0 to x1 via applied force
f , which is proportional to the gray area. (b) Close-up view of the
mass-spring network ofs1(x), where f is applied on every mass-
point betweenx0 andx1.

In our force mapping mechanism the applied sculpting force is
calculated directly from the continuous representation by perform-
ing integration from the starting point to the ending point along the
direction dictated by the force vector. In this one-dimensional ex-
ample, the force vector is simply a straight line-segment, so

f = −
∫ x1

x0

s1(x)dx.

Because
∫ x1

x0
s1(x)dx is less than zero in this example, the minus

sign outside the integral operator makes the force positive, match-

ing the case shown in Figure 3. In our system we define the follow-
ing conventions to enforce the consistency. The positive force is to
increase density value and the negative force is to decrease the den-
sity value. Note that,f is decreasing over time asx0 moves towards
x1.

The force mapping mechanism of our system is very general,
which can deal with iso-surface enlarging (as shown above) as well
as iso-surface shrinking with the same formula for force calcula-
tion. In Figure 3, suppose that the user intends to movex1 to x0
instead, then the force calculation will be

f = −
∫ x0

x1

s2(x)dx.

In this case,f becomes negative, which will decrease the density
values betweenx0 to x1 from s2(x) to s1(x) correspondingly.

Now we shall generalize our force mapping technique to 3D,

f = −
∫

C
s(u,v,w)dc, (6)

whereC is any force vector,s(u,v,w) is the density distribution
function in the 3D working space. Whenf is input as external
forces into (5), the density field will be changed and this will result
in the deformation of the dynamic volumetric model.

4.3 Numerical Solver and Simulation

Since all the discretized points and springs are constrained by the
spline-based volumetric implicit function, we shall formulate the
motion equation of physical behavior for all the control coeffi-
cients that define the scalar B-splines. We augment the discrete La-
grangian equation of motion with geometric and topological quan-
tities related to the volumetric implicit function. By multiplying
each side withA� and substituting̈d with Ap̈, we obtain:

A�MAp̈+A�Dḋ+A�Kd = A�fd,

Therefore, we can directly compute the acceleration of the con-
trol coefficient vector based on the sculpting forces in the dis-
cretized space:

A�MAp̈ = A�fd −A�Dḋ−A�Kd,

p̈ = (A�MA)−1(A�fd −A�Dḋ−A�Kd). (7)

Then the model’s control coefficients and their velocity can be
computed using a forward Euler method:

ṗi+1 = ṗi + p̈i�t
pi+1 = pi + ṗi�t . (8)

The updated control coefficientspi+1 are further used to update
the discretized field defined bydi+1 = Api+1. Here we can see
that the simulation does not change the geometric position of mass-
points. It only updates the density value of every mass-point. Note
that, the volumetric implicit function can be evaluated anywhere
at arbitrary resolution oncep is known. After generating the new
density field (or say new implicit representation), the new applied
forces are calculated and will be applied in subsequent simulation
steps.

As a result, the new dynamic approach can continuously evolve
the implicit functions. So we refer the implicit functions asdy-
namic spline-based volumetric implicit functions. This approach
permit users to directly work on both the level-set geometry and the
enclosed material distribution with a continuous visual and haptic
feedback. Although the more robust, implicit Euler solver is read-
ily available in our system, we decide to employ a simpler, forward
method for the purpose of real-time, haptic interaction.



5 Hierarchical Implicit Function Fitting

In order to allow users to conduct further editing on existing solid
objects, we transform the discrete solid representation of modeled
objects to the continuous representation in our environment. Then
the solids can be sculpted using the interactive tools available in
our system. That is to say, we want to reconstruct and represent 3D
objects using our own volumetric implicit functions. We shall find
a volumetric implicit functionf , which implicitly defines any user-
specified solid of various types. The volumetric implicit function
offers a compact functional description for a set of discrete, input
data. It can be evaluated anywhere to produce a mesh at arbitrary,
desirable resolution. In the previous work, [Muraki 1991] proposed
algorithm to reconstruct range data using blobby model. [Turk and
O’Brien 1999] and [Carr et al. 2001] used radial basis functions to
reconstruct and represent point clouds. Our simple reconstruction
algorithm can handle point clouds as well as volumetric datasets.

Let us first discuss the fitting and reconstruction of point clouds.
This issue is essentially an interpolation problem:

Problem 1 Find f such that

f (xi ,yi ,zi) = 0, i = 1, · · · ,n (iso-surface points),
f (xi ,yi ,zi) = di �= 0, i = n+1, · · · ,N (off-surface points),

where{(xi ,yi ,zi)|i = 1, · · · ,n} are points lying on the surface and
{(xi ,yi ,zi)|i = n+1, · · · ,N} are points lying off the surface.

The iso-surface points are always given by point clouds. How-
ever, there is still a problem on how to generate the off-surface
points and their correspondingdi . There has been a lot of research
work on this topic [Turk and O’Brien 1999][Carr et al. 2001]. One
viable solution for this problem is a signed-distance field, where
the di is the distance to the closest iso-surface point. Points out-
side the solid are assigned negative values, while points inside are
assigned positive values. Obviously, we don’t need to generate the
entire distance field. From our experiments, it is sufficient to pro-
duce two off-surface points associated with each iso-surface point,
one outside and the other one inside. We employ the tagging algo-
rithm recently proposed by [Zhao et al. 2001] and slightly modify
it to compute the required signed distance field, then we make use
of the least-square fitting to obtain the volumetric implicit function,
whose zero-level-set fits the given point clouds.

In general, solid objects are of huge size. So, using a single B-
spline to fit the solids is impractical since the size of basis matrices
will be too large to handle and the fitting error will be unacceptable.
Our system utilizes the volumetric implicit function (See Equation
3) to obtain hierarchical implicit B-spline representations for the
objects. The octree-based subdivision scheme is employed to sub-
divide the working space containing the 3D object. Our recursively
hierarchical fitting algorithm is illustrated as follows:

1. Create an octree for the entire working space, which contains
the fitted object, and subdivide the root node to eight child
nodes.

2. Fit a single scalar B-spline to the region of each child node
using the least-square technique.

3. Evaluate the Mean Square Error (MSE) at nodei,

εi =
1
Ni

Ni

∑
j=1

(dj − fi(xj ))2,

whereNi denotes the number of sampling points inside the
region of nodei.

4. If εi is less than the user-specified error boundε, then mark
the node as a leaf node.

Figure 4: Illustration of an octree-based subdivision scheme and a
hierarchical fitting structure, where the red color denotes the node
that needs to be subdivided.

5. Else subdivide the nodei to eight child nodes and go to 2.

This algorithm will not stop until all the child nodes are marked
as leaf nodes. Then the discrete point clouds are converted to a
continuous spline-based volumetric implicit function, which can
be evaluated at arbitrary sampling resolution and rendered with
the Marching Cubes algorithm. This reconstruction process allows
users to conduct further editing using the tools available in our mod-
eling environment. Figure 4 shows a hierarchical fitting structure.
The red color means theMSEat that region is greater than the error
bound and the region needs to be further subdivided and fitted.

Our fitting algorithm can handle several types of point clouds,
including scattered datasets, corrupted datasets, cross-sectional
datasets, and noisy datasets. Figure 5(a) shows a set of point
clouds, which are non-uniformly distributed, Figure 5(b) is the
cross-sectional view of the distance field, and Figure 5(c) is the fit-
ted solid. Figure 6(a) shows a torus, in which a portion of the points
near the top of the model has been removed. Through the use of the
tagging algorithm to generate a signed distance field, a flattened
area in the neighborhood of the gap can be created as shown in Fig-
ure 6(b). So in Figure 6(c) we can see the hole in the torus is filled
nicely with a minimal surface.

(a) (b) (c)

Figure 5: (a) A point-sampled smooth tetrahedra with four holes.
(b) Cross-sectional view of the generated distance field. (c) The
reconstructed object represented by a volumetric implicit function.

(a) (b) (c)

Figure 6: (a) The point clouds of a damaged torus. (b) Cross-
sectional view of the distance field. (c) The reconstructed torus
represented by a volumetric implicit function (The hole is nicely
filled).

Besides point clouds, our system can also transform volumet-
ric datasets to the spline-based volumetric implicit functions. In



(a) (b) (c)

Figure 7: (a) Volume rendering of the original density field. (b)
Fitting with fewer octree layers and control coefficients. (c) The
reconstructed volume object represented by a volumetric implicit
function.

this case, we treat the intensity value at a grid point(i, j,k) asdi jk .
Then the interpolation problem is essentially the same as the one
documented above. The fitting algorithm is also the same as the
one used in the fitting process for point clouds. Figure 7 shows a
volumetric object and its fitted implicit solids.

6 System Description

Our dynamic implicit modeling environment can handle both com-
plicated geometry and arbitrary topologies. Designers can create in-
teresting objects from scratch or from some existing objects through
the use of our hierarchical fitting algorithm to transform other data-
types to continuous B-spline implicit representations. The system
provides a large number of virtual sculpting tools to a wide spec-
trum of users. Whenever a sculpting tool is used to sculpt an object,
the density values of the working space at the affected regions will
be modified correspondingly. Then the system will reconstruct the
volumetric implicit function to represent the new, modified object
undergone deformation. By using local Marching Cubes technique
[Lorensen and Cline 1987][Wyvill et al. 1988], the iso-surface of
the object can be displayed interactively.

By integrating physics-based modeling with a haptic interface,
our force-based tools further allow users to reach toward an object,
feel the physical presence of its shape, and sculpt free-form solids
with force feedback. The feedback forces are computed based on
the object geometry and the associated physical properties. Figure
8 shows the haptics-based user interface of our modeling environ-
ment. In Figure 8, a bending operation on the red lobster is being
performed by a user.

When using haptic tools, to reduce the latency and maximize
the throughput, we resort to a parallel technique that can multi-
thread the haptics, graphics, and simulation processes with weak
synchronization. This technique leads to a significant performance
improvement, and ultimately, a parallel implementation of haptic
sculpting, in the presence of high-end multi-processor computing
resources.

The haptics loop is implemented in a single thread. It maintains
the haptic refresh rate, which is no less than 1KHz. This require-
ment is critical to the realistic feedback of haptic interaction. In our
system, the haptic thread has the highest priority. It computes the
haptic force and feed it back to the haptic device.

The simulation loop is implemented in another thread, which
controls the physical simulation. It continuously computes the total
internal forces and external forces, then updates the physical states
of a sculpted object as described in Section 4.3. In order to keep up
with interactive frame rate, the physical simulation is limited to a
small region by using the techniques described in Section 7.3. Usu-
ally users’ design intention and their sculpting operations would not
exceed this limited region during one design cycle. In order to keep
the simulation more stable we employ a simple adaptive method to

Figure 8: Haptics-based user interface.

adjust the simulation time-step. Essentially, if ¨p is greater than a
specified threshold, we shall use half of the previous time-step as
the current simulation time-step.

The graphics loop is developed to handle the rendering of volu-
metric objects. The rendering task makes use of the local March-
ing Cubes algorithm and only updates a very small region in or-
der to achieve interactive rendering rate and make graphics display
consistent with sculpting operations, physical simulation, and force
feedback.

Since the sculpted object is discretized in a voxel raster, usu-
ally there are many homogeneously empty regions outside the ob-
ject of interest. Separating those regions from the sculpting regions
will significantly reduce the memory consumption and speed up the
volume rendering and modeling tasks. Therefore, an octree-based
data structure is employed in our system (See Figure 4), which can
locate where the modification is performed, and then only locally
update the volumetric implicit function for efficiency purpose. The
local update property can speed up the Marching Cubes rendering
by only conducting the re-evaluation task of the modified parts. The
octree-based subdivision also helps our fitting algorithm construct
a hierarchical structure of the fitted objects.

7 Sculpting Toolkits

Since our volumetric modeling framework integrates geometry and
physics, our modeling environment can provide two primary types
of sculpting tools: one type of tools is called ”geometric tools”,
and the other one is called ”force-based tools”. Geometric tools do
not involve in the physical simulation, while the force-based tools
afford dynamic property and haptic interaction.

7.1 Geometric Tools

Geometric tools are represented by any 3D implicit functionc0 =
G(x,y,z). When users assign a sculpting tool to a new location, the
density values inside the tool volume are modified. We reconstruct
the volumetric implicit function of B-splines according to the new
density distribution by using the least-square fitting [Hua and Qin
2001]. Our geometric tools can be easily defined using any implicit
functions. Therefore, using the geometric tools users can create
objects of complicated geometry and arbitrary topology. More im-
portantly, our modeling environment also allows designers to define
their own tools with any implicit functions. Geometric tools facil-
itate precise sculpting operations on volumetric models with inter-
active speed. Figure 9 shows a number of sculpted examples using
our geometric toolkits.



Figure 9: Sculpted examples using geometric tools.

7.2 Force-based Tools

Although geometric tools are powerful to create complicated vol-
umetric shapes, they constitute a purely geometric representation.
To perform free-form deformation, modelers have to design com-
plicated tools based on popular function primitives. This kind of
shape modification and refinement is time-consuming in general.
To alleviate these problems, our modeling environment also offers
force-based tools, which allow users to perform direct free-form
deformation with ease.

7.2.1 Free-form deformation via Forces

In our system the simple force-based tool allows the user to grab
the nearest mass-point in the solid. In addition, our system pro-
vides other tools to allow users to grab a subset of the mass-points
in a nearby region simultaneously. The force is then distributed
among nearby points using a user-defined functionβ(x,y,z), which
can be constant, Gaussian, spherical, cylindrical, conical, or any
other distributions.

For point-based force sculpting, we can use the parametric form
{(u(t),v(t),w(t))|t ∈ [t0, t1]} to representC in Equation (6), then
we have

f = −
∫ t1

t0
s(u(t),v(t),w(t))

√
u̇2(t)+ v̇2(t)+ ẇ2(t)dt.

If further assuming the force vector to be a straight line, thenC can
be formulated as follows:


u(t) = u0 +(u1−u0)t
v(t) = v0 +(v1−v0)t
w(t) = w0 +(w1−w0)t

t ∈ [0,1],

where(u0,v0,w0) is the starting point of the force vectorC and
(u1,v1,w1) is the ending point. Then,

f = −l ·
∫ 1

0
s(u0 +(u1−u0)t,v0 +(v1−v0)t,w0 +(w1−w0)t)dt,

where l =
√

(u1−u0)2 +(v1−v0)2 +(w1−w0)2. Figure 10
shows two simple examples for force-based deformation.

(a) (b) (c)

Figure 10: Deformation with point-based force tools, where (a)
shows the original object and the arrows in (b) and (c) denote the
directions of the applied forces.

In a more general case, ifC is a spatial curve instead, a general
curve-based tool can be defined in our system without any addi-
tional difficulty. Users can pre-define a curve and limit the force
mapping only along that curve. Therefore, when users sculpt the
object with the curve-based tool, the integral of forces is then along
the curve force vector. The generated forces are applied on all the
mass-points on the curve. For other more advanced, area-based
tools, our system discretizes the area into a set of sampled (straight
and/or curved) tracks, then perform integration along every track,
and result in a more sophisticated deformation in any user-specified
area. In a nutshell, area-based tools allow users to manipulate a set
of mass-points instead of only one point. Figure 11(a) shows a
curve and area based force deformation and Figure 11(b) shows a
force-based joining.

If we associate the force vector with certain constraints, then
more interesting tools can be created, such as chisel, squirt, bending
tools and so on. Figure 12(a) shows an operation performed with a
virtual chisel, which controls the tool-penetration depth at the con-
tacting points to be a small, constant value along the normal of the
tool surface. So the sculpting forces are generated by integrating
only along the array of specified, short force vectors sampled over
the trajectories of tool path (i.e., ”H” in this example). The gener-
ated forces result in the chisel effect along the trajectories of tool
path. Figure 12(b) shows a squirt operation, where the generated
sculpting forces are opposite to chisel forces along the same tra-
jectories. More importantly, our modeling environment provides
virtual tools to users so that they can perform some more inter-



(a) (b)

Figure 11: (a) Free-form deformation with curve-based and area-
based force tools (The 3D ”s” shape is extruded from a flat base by
the force tools). (b) Joining with a force tool.

(a) (b) (c) (d)

Figure 12: (a) Chisel operation. (b) Squirt operation. (c-d) Force
tools allow users to sculpt solid interior without breaking the outer
material.

esting tasks, which are impossible to conduct in real-world sculpt-
ing. For example, Users can sculpt the modeled object anywhere
(not just adding/removing material over the solid boundary). Fig-
ure 12(c) and 12(d) show an example undergone sculpting only in
solid interior while maintaining its surrounding, boundary material
unchanged.

7.2.2 Haptic Feedback

In order to enhance the realism of virtual sculpting, our modeling
environment offers force feedback, which can offer users a realistic
feel of the virtual objects. Thus, users can gain a richer understand-
ing of their sculpted model. Our work significantly extends the
notion of simply touching compliant objects (i.e., haptic rendering)
to interactively and directly sculpting of virtual solids (i.e., haptic
modeling).

By adding external input forces based on the user’s actions,
the iso-surface deforms according to the physical properties of the
model. The external forces that apply to the model are generated
using the technique described in Section 4.2. In order to satisfy the
haptic refreshing requirement, we use Gaussian Quadrature method
for the fast evaluation of the integral. Along each force vector, the
continuous function is only evaluated at four sampled points to ef-
fectively calculate the integral.

Whenever a force-based tool pulls or pushes on mass-points to
introduce forces along the force vector, an equal and opposite force
is generated at the other end of the force vector (i.e., the user’s
cursor). The force is calculated at 1000Hz and transmitted to the
haptic device where the force magnitude is then converted to mo-
tor torques leading to a real force at the cursor position. When the
iso-surface gradually moves toward the user’s cursor, the force de-
creases gradually to zero. Then the user is connected directly to
the iso-surface. The gradual decreasing approach prevents high-
variational jerking forces from occurring, which otherwise can po-
tentially injure the user of the haptic device or damage the device.

7.3 Constraints

Our system can provide geometric constraints. Enforcing geometric
constraints offers additional intuitive control of a shape during the

physics-based design process. Constraining geometric properties of
dynamic volumes can facilitate feature-centered design, which can
significantly improve the system performance.

Our volumetric implicit function uses B-splines as underlying
constituents, so local support can be easily accomplished. Design-
ers can specify the regionR in which he/she wishes the deformation
to occur. Control coefficients and mass points outside the specified
region are not processed by the system and remain fixed. For the
localized regionR,

dR = A′pR,

whereA′ is a small subset of the original basis matrix.
The haptic device we are currently using requires 1000Hz refresh

rate. This hardware limitation only permits the real-time simulation
of several thousand mass-points. Therefore, local sculpting is much
more attractive for the system to deal with large sculpted objects by
constraining the physical simulation to occur in a local region and
speeding up frame rates.

Typical geometric constraints include point, curve, and normal
constraints. In our modeling environment we provide two mecha-
nisms to implement geometric constraints.

The mathematical mechanism expresses the linear constraints as
follows:

c(d) = Ld+b = 0, (9)

whereL is a matrix of coefficients,d is the generalized coordi-
nate vector, andb is a constant vector. Usually (9) is an under-
determined linear system. So we can eliminate those constrained
variables and expressd with the rest unconstrained variablesh us-
ing the robust linear least-square solver of singular value decompo-
sition:

d = Gh+h0. (10)

Replacingd in (5) with (10), the matrices and vectors in (5) are
reduced to a minimal unconstrained set of generalized coordinates:

MGḧ+DGḣ+KGh = fd −Kh0. (11)

Multiplying each side withG�, then (11) becomes:

G�MGḧ+G�DGḣ+G�KGh = G�fd −G�Kh0.

Defining mass, damping, and stiffness matrices of the con-
strained dynamic system as:

Mh = G�MG, Dh = G�DG,

Kh = G�KG, c = −G�Kh0,

the discrete Lagrangian equations of the constrained dynamic sys-
tem can be formulated as follows:

Mhḧ+Dhḣ+Khh = fh + c. (12)

In the constrained dynamic system,h has reduced size compar-
ing with d. Hence,h = A′p′, whereA′ andp′ are subsets of the
original matrices. We can still use the numerical technique de-
scribed in Section 4.3 to solve (12). This method treats those con-
straints as hard constraints. Figure 13 shows cross-sectional design
using the point and curve constraints.

8 Experiments

Our system is implemented on a Microsoft Windows NT PC with
a 550MHz CPU and 512MB RAM. A PHANToM 1.0 3D Hap-
tic input/output device from Sensable Technologies is employed to
provide a natural and realistic force feedback. The entire software
system is written in Microsoft Visual C++ and the graphics render-
ing module is built upon OpenGL.



(a) (b) (c) (d)

Figure 13: Illustration of cross-sectional design using point con-
straints and curve constraints. Green points denote on-surface
points, and the specified curves must be on the iso-surface. The
arrows denote the sculpting forces.

We have developed a modeling environment for haptic sculpt-
ing of dynamic volumetric models based on non-uniform scalar B-
splines and physics-based modeling. The dynamic volumes can be
generated with a varying number of control coefficients and sam-
pling rates and with any user-specified physical properties. For
force-based deformations, it is time critical since it affords real-
time haptic feedback. In this case, sometimes we may need sacri-
fice the simulation loop speed and graphics loop speed in order to
satisfy the haptics device refresh rate. Currently our system per-
mits the real-time simulation of several thousand mass-points. We
have recorded the timings for physical simulations using various
configurations of the control coefficients and the discretized space
samples (See Table 1). This table contains the timings only for the
simulation loop under the condition that the haptics loop is always
performed within 1ms.

Control coefficient resolution Mass points Explicit time
5×5×5 5×5×5 0.5 ms
5×5×5 10×10×10 3.2 ms

10×10×10 10×10×10 22 ms
10×10×10 15×15×15 50 ms
15×15×15 15×15×15 120 ms

Table 1: Physical simulation timings using an explicit solver. The
first and second columns denote how many control coefficients and
mass points in the simulated region.

Within our dynamic, volumetric environment and using all the
available geometric, physical, and haptic tools we have developed
(and without using any other external resources), we have sculpted
many interesting objects and composed them into several virtual-
world scenes (See Figure 14). It only took 20 to 40 minutes to
create each of them with our system. Figure 14(a) demonstrates a
3D ”VOLVIS 2002” logo. They are formed and stretched from flat
panels using force-based tools. Figure 14(b) demonstrates a ”virtual
coffee room”, which is composed of a pair of sofa, a glass table,
and two coffee mugs. Figure 14(c) shows a ”water world”, which
is composed of stones, marine plants, and lobsters. The lobsters
are fitted from an existing dataset and further edited using force-
based tools in our modeling environment. Figure 14(d) illustrates a
”terrain field”, which consists of trees, terrains, mountains, stones,
a truck, and a jeep. The truck and jeep are fitted from the volumetric
datasets using our hierarchical fitting procedure.

9 Conclusion

We have presented a novel haptics-based, dynamic, volumetric
modeling environment that employs trivariate scalar non-uniform
B-splines as its underlying representation. All the volumetric ob-
jects sculpted in our modeling environment are characterized by

piece-wise implicit functions. We have proposed a novel ap-
proach that unifies implicit functions, parametric representations,
and physics-based modeling within a single haptics-based volumet-
ric modeling framework. We have developed a large variety of algo-
rithms and toolkits that afford designers the intuitive mechanism of
interactive and direct manipulation of implicit function based vol-
umetric models with force feedback in real-time. The novel force
mapping technique along with the concept of ”density springs” (for
dynamic modeling of implicit functions) can be straightforwardly
extended to the haptic sculpting of any other types of implicit func-
tions without additional difficulties. Moreover, our physics-based
haptic tools can be directly employed to act on density-based volu-
metric datasets as well as solids implicitly defined by point clouds.
The powerful 3D haptics-based interface of our environment is
more intuitive and natural than conventional 2D mouse-based inter-
faces, making it possible for our dynamic, volumetric framework
to appeal to a spectrum of users ranging from highly-trained en-
gineers, computer professionals, artists, to even naive users (with
little computer skill). Our volumetric modeling system permits de-
signers to create real-world, complicated volumetric models and
scenes in real-time.

For the future work, several issues shall be addressed to improve
our research. At present, our system can only simulate several thou-
sand mass points in real-time. It is difficult and far from trivial to
perform global deformation on large datasets. A multi-resolution
model is more desirable to achieve better resolution control when
dealing with global deformation on large models.

Acknowledgements

This research was supported in part by the NSF CAREER award
CCR-9896123, the NSF grant DMI-9896170, the NSF ITR grant
IIS-0082035, the NSF grant IIS-0097646, Alfred P. Sloan Fellow-
ship, and Honda Initiation Award.

References

AVILA , R. S.,AND SOBIERAJSKI, L. M. 1996. A haptic interac-
tion method for volume visualization. InProceedings of the 7th
IEEE Visualization ’96, 197–204.

BLINN , J. F. 1982. Generalization of algebraic surface drawing.
ACM Trans. on Graphics 1, 3, 235–256.

BLOOMENTHAL, J., AND WYVILL , B. 1990. Interactive tech-
niques for implicit modeling.Computer Graphics 24, 2, 109–
116.

BLOOMENTHAL, J. 1997.Introduction to implicit surfaces. Mor-
gan Kaufmann. Edited by J. Bloomenthal with C. Bajaj, J. Blinn,
etc.

CANI , M. P.,AND DESBRUN, M. 1997. Animation of deformable
models using implicit surfaces.IEEE Trans. on Visualization
and Computer Graphics 3, 1, 39–50.

CARR, J. C., BEATSON, R. K., AND CHERRIE, J. B. 2001. Re-
construction and representation of 3d objects with radial basis
functions. InSIGGRAPH’01, 67–76.

DACHILLE , F., QIN, H., AND KAUFMAN , A. E. 2001. A novel
haptics-based interface and sculpting system for physics-based
geometric design.Computer-Aided Design 33, 5, 403–420.

FERLEY, E., CANI , M. P., AND GASCUEL, J.-D. 2000. Practical
volumetric sculpting.The Visual Computer 16, 7, 469–480.

GALYEAN , T. A., AND HUGHES, J. F. 1991. Sculpting: An inter-
active volumetric modeling technique.Computer Graphics 25,
4, 267–274.

HUA, J., AND QIN, H. 2001. Haptic sculpting of volumetric im-
plicit functions. InProceedings of 9th Pacific Conference on
Computer Graphics and Applications, 254–264.



(a) (b)

(c) (d)

Figure 14: Several sculptures and scenes created entirely with our environment and finally rendered with ray tracing.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3d surface construction algorithm.Computer
Graphics 21, 4, 163–169.

MCDONNELL, K. T., QIN, H., AND WLODARCZYK, R. A. 2001.
Virtual clay: A real-time sculpting system with haptic toolkits. In
Proceedings of the 2001 Symposium on Interactive 3D Graphics,
179–190.

METAXAS, D., AND TERZOPOULOS, D. 1992. Dynamic defor-
mation of solid primitives with constraints.Computer Graphics
26, 2, 309–312.

MURAKI , S. 1991. Volumetric shape description of range data
using blobby model.Computer Graphics 25, 4, 227–235.

PENTLAND, A., AND WILLIAMS , J. 1989. Good vibrations:
Modal dynamics for graphics and animation.Computer Graph-
ics 23, 3, 215–222.

PERRY, R. N., AND FRISKEN, S. F. 2001. Kizamu: a system
for sculpting digital characters. InSIGGRAPH’01, ACM Press,
47–56.

QIN, H., AND TERZOPOULOS, D. 1996. D-NURBS: A physics-
based framework for geometric design.IEEE Trans. on Visual-
ization and Computer Graphics 2, 1, 85–96.

RAVIV, A., AND ELBER, G. 1999. Three dimensioinal freeform
sculpting via zero sets of scalar trivariate functions. InProceed-
ings of 5th ACM Symposium on Solid Modeling and Applica-

tions, 246–257.
TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.

1987. Elastically deformable models.Computer Graphics 21, 4,
205–214.

THOMPSON, T. V., JOHNSON, D. E., , AND COHEN, E. 1997.
Direct haptic rendering of sculptured models. InProceedings of
the 1997 Symposium on Interactive 3D Graphics, 167–176.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation using
variational implicit surface. InSIGGRAPH’99, 335–342.

WANG, S. W.,AND KAUFMAN , A. E. 1995. Volume sculpting. In
Proceedings of the 1995 Symposium on Interactive 3D Graphics,
151–156.

WYVILL , G., MCPHEETERS, C., AND WYVILL , B. 1988. Data
structure for soft objects.The Visual Computer 2, 4, 227–234.

ZHAO, H., OSHER, S.,AND FEDKIW, R. 2001. Fast surface recon-
struction and deformation using the level set method. InProc.
Of the IEEE Workshop on Variational and Level Set Methods in
Computer Vision.


