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Abstract Traditional clustering algorithms are inapplicable to many real-world problems
where limited knowledge from domain experts is available. Incorporating the domain knowl-
edge can guide a clustering algorithm, consequently improving the quality of clustering. In
this paper, we propose SS-NMF: a semi-supervised non-negative matrix factorization frame-
work for data clustering. In SS-NMF, users are able to provide supervision for clustering
in terms of pairwise constraints on a few data objects specifying whether they “must” or
“cannot” be clustered together. Through an iterative algorithm, we perform symmetric tri-
factorization of the data similarity matrix to infer the clusters. Theoretically, we show the
correctness and convergence of SS-NMF. Moveover, we show that SS-NMF provides a gen-
eral framework for semi-supervised clustering. Existing approaches can be considered as
special cases of it. Through extensive experiments conducted on publicly available datasets,
we demonstrate the superior performance of SS-NMF for clustering.

Keywords Non-negative matrix factorization · Semi-supervised clustering ·
Pairwise constraint

1 Introduction

Clustering or unsupervised learning is a generic name for a variety of procedures designed to
find natural groupings, or clusters, in multidimensional data, based on measured or perceived
similarities among the patterns [13,19,23,27]. The purpose of clustering is to extract useful
information from unlabeled data. Applications of data clustering are found in many fields,
such as information discovery, text mining, web analysis, image grouping, medical diagnosis,
and bioinformatics. In general, the clustering algorithms can be categorized into two popular
techniques: hierarchical clustering and partitional clustering.
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Hierarchical clustering [33,35] aims to obtain a hierarchy of clusters, called dendrogram,
that shows how the clusters are related to each other. The clustering result can be obtained by
cutting the dendrogram at a desired level. Amongst these the agglomerative methods create
the cluster dendrogram in a bottom-up fashion, starting with each data object (or sample)
in its own cluster and merging clusters successively according to a similarity measure till a
convergence criterion is reached [32,55]. Divisive hierarchical clustering methods create the
cluster dendrogram in a top-down divisive fashion, where all the data objects initially belong
to a single cluster to begin with. This cluster is then split successively according to some
measurement till a convergence criterion is reached [6,12,17].

Partitioning methods divide the data in a given number of clusters directly and are typ-
ically used more frequently in real-world applications. These methods attempt to obtain a
partition which minimizes the within-cluster scatter or maximizes the between-cluster scat-
ter. Amongst these density-based algorithms model clusters as dense regions, use different
heuristics to find arbitrary-shaped high-density regions in the input data space and group
points accordingly. Well-known methods include Denclue, which tries to analytically model
the overall density around a data object [24], and WaveCluster, which uses wavelet-transform
to find high-density regions [48]. Density-based methods typically have difficulty scaling up
to very high dimensional data. Mixture-based methods assume that the data objects in a clus-
ter are drawn from one of several distributions (usually Gaussian) and attempt to estimate the
parameters of all these distributions. The introduction of the expectation maximization (EM)
algorithm in Dempster et al. [9] was an important step in solving the parameter estimation
problem. Mixture-resolving methods have a high computational complexity and make rather
strong assumptions regarding the distribution of the data. Most mixture-based methods view
each cluster as a single simple distribution and strongly restrict the shape of the clusters. For
example, the k-means algorithm [44] assumes every cluster has a compact shape. Since the
actual underlying distribution of the data can be different, these methods are susceptible to
their a priori assumptions.

Clustering based on spectral graph partitioning has emerged as a popular method over the
years with applications across various domains [8,14–16,20,49]. These methods model the
data objects as vertices of a weighted graph with edge weights representing the similarity
between two data objects. Clustering is then obtained by “cutting” the graph vertices into
different partitions. Partitioning of the graph is obtained by solving an eigenvalue problem
where the clustering is inferred from the top eigenvectors. Although, all of the above methods
have contributed greatly to the problem of data clustering, they are completely unsupervised.
That is, they are inapplicable to many real-world problems where limited knowledge from
domain experts is available. Incorporating the domain knowledge can guide a clustering
algorithm, consequently improving the quality of clustering.

Semi-supervised clustering uses class labels or pairwise constraints on data objects to aid
unsupervised clustering [3,4,31,34,36,51,52]. It can group data using the categories of the
initial labeled data as well as unlabeled data in order to modify the existing set of categories
which reflect the whole regularities in the data. Two sources of information are usually
available to a semi-supervised clustering method: the similarity distance measurement in
unsupervised clustering and class labels or some pairwise constraints. For semi-supervised
clustering to be profitable, these two sources of information should not completely contra-
dict each other. Existing methods for semi-supervised clustering based on source information
generally fall into two categories: distance-based and constraint-based methods. In distance-
based approaches, an existing clustering algorithm that uses a distance measure is employed;
however, the distance measure is first trained to satisfy the labels or constraints in the
supervised data [31,52]. In constraint-based approaches, the clustering algorithm itself is
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modified so that the available labels or constraints are used to bias the search for an
appropriate clustering of the data [1,7]. Recent research in semi-supervised clustering tends
to combine the constraint-based with distance-based approaches.

In this paper, we propose a non-negative matrix factorization (NMF) [37,38] based
framework to incorporate prior knowledge into data clustering. Under the proposed Semi-
Supervised NMF (SS-NMF) methodology, user is able to provide pairwise constraints on a
few data objects specifying whether they “must” or “cannot” be clustered together. We derive
an iterative algorithm to perform symmetric non-negative tri-factorization of the data simi-
larity matrix. The correctness and convergence of the algorithm are proved by showing that
the solution satisfied the KKT optimality and the algorithm is guaranteed to converge. We
also prove that SS-NMF is a general and unified framework for semi-supervised clustering by
establishing the relationship between SS-NMF and other existing semi-supervised clustering
algorithms. Experiments performed on various publicly available datasets demonstrate the
superior performance of the proposed work.

The rest of the paper is organized as follows. We review related work on semi-supervised
data clustering in Sect. 2. The proposed SS-NMF algorithm for data clustering and our
theoretical results are presented in Sect. 3. Experimental results appear in Sect. 4. Finally,
we conclude in Sect. 5.

2 Related work

In this section, we provide a review of related works on using user provided information to
improve data clustering. We first discuss some algorithms in which prior knowledge is in the
form of labeled data. Next, we describe other algorithms for which pairwise constraints are
required to be known a priori.

SS-constrained-Kmeans [51] and SS-seeded-Kmeans [3] are the two well-known algo-
rithms in semi-supervised clustering with labels. The SS-constrained-Kmeans seeds the
k-means algorithm with the given labeled data and keeps that labeling unchanged through-
out the algorithm. Moreover, it is appropriate when the initial seed labeling is noise-free,
or if the user does not want the labels of the seed data to change. On the other hand, the
SS-seeded-Kmeans algorithm changes the given labeling of the seed data during the course
of the algorithm. Also, it is applicable in the presence of noisy seeds, since it does not enforce
the seed labels to remain unchanged during the clustering iterations and can therefore aban-
don noisy seed labels after the initialization step. Semi-supervised clustering with labels has
been successfully applied to the problem of document clustering. Hotho et al. [25] proposed
incorporating background knowledge into document clustering by enriching the text features
using WordNet.1 In Jones et al. [30], some words per class and a class hierarchy were sought
from the user in order to generate labels and build an initial text classifier for the class.
A similar technique was proposed in Liu et al. [41], where the user is made to select inter-
esting words from automatically selected representative words for each class of documents.
These user identified words were then used to re-train the text classifier. Active learning
approaches have also found applications in semi-supervised clustering. Godbole et al. [18]
has proposed to convert a user recommended feature into a mini-document which is then used
to train an SVM classifier. This approach has been extended by Raghavan et al. [47] which
adjusts SVM weights of the key features to a predefined value in binary classification tasks.
Recently, Huang and Mitchell [26] presented a probabilistic generative model to incorporate

1 http://wordnet.princeton.edu.
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extended feedback that allows the user and the algorithm to jointly arrive at coherent clusters
that capture the categories of interest to the user. Nigam et al. [46], Blum and Mitchell [5]
and Joachims [29] proposed methods where the user provided class labels a priori to some
of the documents. These algorithms use the labeled data to generate seed clusters that ini-
tialize a clustering algorithm, and use constraints generated from the labeled data to guide
the clustering process. Proper seeding biases clustering towards a good region of the search
space, while simultaneously producing a clustering similar to the specified labels.

However, in certain applications, supervision in the form of class labels may be unavail-
able. For example, complete class labels may be unknown in the context of clustering for
speaker identification in a conversation [2], or clustering GPS data for lane-finding [51].
In some domains, pairwise constraints occur naturally, e.g., the database of interacting pro-
teins (DIP) dataset contains information about proteins co-occurring in processes, which
can be viewed as must-link constraints during clustering. Similarly, for document clustering,
user knowledge about which few documents are related or unrelated can be incorporated to
improve the clustering results. Moreover, it is easier for a user to provide feedback in the
form of pairwise constraints than class labels, since providing constraints does not require
the user to have significant prior knowledge about the categories in the dataset. Amongst the
various methods proposed for utilizing user provided constraints for semi-supervised clus-
tering [3,4], two of the well known include the semi-supervised kernel k-means (SS-KK)
[36] and semi-supervised spectral clustering with normalized cuts (SS-SNC) [28]. While,
SS-KK transforms the clustering distance measure by weighted kernel k-means with reward
and penalty constraints to perform semi-supervised clustering of data given either as vectors
or as a graph, SS-SNC utilizes supervision to change the clustering distance measure with
pairwise information by spectral methods. The SS-NMF framework presented in this paper,
allows the user to provide pairwise constraints on a small percentage of the data points.
Specifically, these constraints specify whether the two data points should belong to the same
cluster or should strictly belong to different clusters.

3 Semi-supervised non-negative matrix factorization for clustering

In this section, we first formulate the SS-NMF model in Sect. 3.1 and derive it in Sect. 3.2. We
prove the correctness and convergence of the algorithm in Sect. 3.3. Equivalence of SS-NMF
to SS-KK and SS-SNC is proven in Sect. 3.4, followed by a discussion of advantages of
SS-NMF in Sect. 3.5.

3.1 Model formulation

We assume the data consists of n objects, and that m features have been extracted from each
of the objects. Correspondingly, the data can be represented using a matrix X ∈ Rm×n where
columns index the data objects to be clustered and rows denote the features. An entry x f i in
this matrix denotes the value of feature f for object i .

We propose a SS-NMF model for data clustering. NMF has received much attention
recently and proved to be very useful for applications such as face recognition, text min-
ing, multimedia analysis, and DNA gene expression grouping. It was initially proposed for
“parts-of-whole” decomposition [37,38], and later extended to a general framework for data
clustering [10]. It can model widely varying data distributions and accomplish both hard and
soft clustering simultaneously. When applied to the data matrix X, NMF factorizes it into
two non-negative matrices [53],
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X ≈ PQT (1)

where P ∈ Rm×k is cluster centroid, Q ∈ Rn×k is cluster indicator, and k is the number of
clusters.

In the proposed model, we perform symmetric non-negative tri-factorization of the simi-
larity matrix A = XTX ∈ Rn×n as,

A ≈ GSGT (2)

where G ∈ Rn×k is the cluster indicator matrix. An entry gih in G gives the degree of
association of object xi with cluster h. The cluster membership of an object is given by
finding the cluster with the maximum association value. S ∈ Rk×k is the cluster centroid
matrix that gives a compact k × k representation of X.

Supervision is provided as two sets of pairwise constraints on the data objects: must-link
constraints CML and cannot-link constraints CCL. Every pair, (xi , x j ) ∈ CML implies that xi

and x j must belong to the same cluster. Similarly, all possible pairs (xi , x j ) ∈ CCL implies
that the two objects should belong to different clusters. The constraints are accompanied by
associated violation cost matrix W. An entry wi j in this matrix denotes the cost of violating
the constraint between xi and x j , if such a constraint exists, that is, either (xi , x j ) ∈ CML or
(xi , x j ) ∈ CCL. The model relies on a distortion measure D : Rm → R, to compute distance
between the data objects. For a given k, the goal is to partition the data objects into k disjoint
clusters {Xh}kh=1, such that the total distortion between the objects and the corresponding
cluster representatives is (locally) minimized according to the given distortion measure D,
while constraint violations are kept to a minimum.

3.2 Algorithm derivation

We define the objective function of SS-NMF as follows:

JSS−NMF = min
S≥0,G≥0

‖˜A−GSGT‖2 (3)

where˜A = A−Wreward+Wpenalty is affinity or similarity matrix A with constraints Wreward =
{wi j |(xi , x j ) ∈ CM L , s.t. yi = y j } and Wpenalty = {wi j |(xi , x j ) ∈ CC L , s.t. yi = y j }, wi j

is the penalty cost for violating a constraint between xi and x j , and yi is the cluster label of
xi . S ∈ Rk×k is the cluster centroid, and G ∈ Rn×k is the cluster indicator.

We propose an iterative procedure for the minimization of Eq. (3) where we update one
factor while fixing the others. The updating rules are,

Sih ← Sih
2

√

(GT
˜AG)ih

(GTGSGTG)ih
(4)

Gih ← Gih
4

√

(˜AGS)ih

(GSGTGS)ih
(5)

Thus, the SS-NMF algorithm for document clustering can be illustrated in Algorithm 1.

3.3 Algorithm correctness and convergence

We now prove the theoretical correctness and convergence of SS-NMF. Motivated by Long
et al. [42,43] and Ding et al. [11], we render the proof based on optimization theory, auxiliary
function and several matrix inequalities.
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Algorithm 1 SS-NMF Algorithm
INPUT: Data similarity matrix A, number of clusters k, constraint penalty matrix Wpenalty , and constraint
reward matrix Wreward

OUTPUT: Clusters {Xh}kh=1 with Yh = {i |xi ∈ Xh}
METHOD:

1. Initialize S and G with non-negative values.
2. Construct ˜A = A−Wreward +Wpenalty
3. Iterate for each i and h until convergence

(a) Cluster centroid

Sih ← Sih
2

√

(GT
˜AG)ih

(GT GSGT G)ih

(b) Cluster indicator

Gih ← Gih
4

√

(˜AGS)ih

(GSGT GS)ih

3.3.1 Correctness

First, we prove the correctness of the algorithm, which can be stated as,

Proposition 1 If the solution converges based on the updating rules in Eqs. (4) and (5), the
solution satisfies the KKT optimality condition.

Proof Following the standard theory of constrained optimization, we introduce the
Lagrangian multipliers λ1 and λ2 to minimize the lagrangian function,

L(S, G, λ1, λ2) = min
S≥0,G≥0

‖˜A−GSGT‖2 − Tr(λ1ST)− Tr(λ2GT) (6)

Based on the KKT complementarity conditions,

∂ J

∂S
= 0

∂ J

∂G
= 0

we obtain the following two equations,

2GT
˜AG− 2GTGSGTG+ λ1 = 0 (7)

4˜AGS− 4GSGTGS+ λ2 = 0 (8)

Applying the Hadamard multiplication on both sides of Eqs. (7) and (8) by S and G, respec-
tively, and using KKT conditions of

λ1 � S2 = 0

λ2 �G4 = 0

where � denotes the Hadamard product of two matrices, we can prove that if S and G are a
local minimizer of the objective function in Eq. (6), the following equations are satisfied,

(GT
˜AG)� S2 − (GTGSGTG)� S2 = 0 (9)

(˜AGS)�G4 − (GSGTGS)�G4 = 0 (10)
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Based on Eqs. (9) and (10), we derive the proposed updating rules of Eqs. (4) and (5). If
the updating rules converge, the solution satisfies the KKT optimality condition. Proof is
completed. �	

3.3.2 Convergence

Next, we prove the convergence of the algorithm. In Propositions 2 and 3, we show that the
objective function decreases monotonically under the two updating rules. This can be done
by making use of an auxiliary function similar to that used in Lee and Seung [38].

Proposition 2 If G is a fixed matrix, then J (S) = ‖˜A−GSGT‖2 = Tr(˜A
T
˜A− 2GT

˜A
T

GS+
GTGSGTGST) decreases monotonically under the updating rule of Eq. (4).

Proof A function F(S(t+1), S(t)) is called an auxiliary function of L(S(t+1)) if it satisfies
F(S(t+1), S(t)) ≥ L(S(t+1)) and F(S(t+1), S(t)) = L(S(t+1)) for any S(t+1), S(t). Define
S(t+1)=arg mins F(S(t+1), S(t)). By construction, L(S(t))=F(S(t), S(t))≥F(S(t+1), S(t))≥
L(S(t+1)). Thus, L(S(t)) is monotonic decreasing (non-increasing).

The key step is to find appropriate auxiliary function F(S(t+1), S(t)). Assuming G is fixed,
we write

L(S(t+1)) = Tr(˜A
T
˜A− 2GT

˜A
T

GS+GTGSGTGST) (11)

and show that,

F(S(t+1), S(t)) = ‖ ˜A ‖2 −
∑

ih

2(GT
˜AG)ihS(t)

ih (1+ log
S(t+1)

ih

S(t)
ih

)

+
∑

ih

(GTGS(t)GTG)ihS2(t+1)
ih

S(t)
ih

(12)

is an auxiliary function of L(S(t+1)).
First, we show that the inequality F(S(t+1), S(t)) ≥ L(S(t+1)) holds. We can see the second

term in F(S(t+1), S(t)) (aside from the negative sign) is always smaller than the second term

in L(S(t+1)) because of the inequality
S(t+1)

ih

S(t)
ih

≥ 1+ log

(

S(t+1)
ih

S(t)
ih

)

, ∀S(t+1)
ih

S(t)
ih

> 0. In addition, the

third term in F(S(t+1), S(t)) is always bigger than the third term in L(S(t+1)) [11]. Thus, the
condition F(S(t+1), S(t)) ≥ L(S(t+1)) holds. Second, we show the equality F(S(t+1), S(t)) =
L(S(t+1)) holds. It is obvious when S(t+1) = S(t), the equality F(S(t+1), S(t)) = L(S(t+1))

holds.
Therefore, F(S(t+1), S(t)) is an auxiliary function of L(S(t+1)). Since we have,

S(t+1) = arg min
S

F
(

S(t+1), S(t)
)

(13)

S(t+1) is given by the minimum of F(S(t+1), S(t)) while fixing S(t). The minimum value is
obtained by setting,

∂ F(S(t+1), S(t))

∂S(t+1)
ih

= −
∑

ih

2(GT
˜AG)ih

S(t)
ih

S(t+1)
ih

+ 2
∑

ih

(GTGS(t)GTG)ihS(t+1)
ih

S(t)
ih

= 0 (14)

Thus, we can derive the updating rule of Eq. (4) as Sih ← Sih
2

√

(GT
˜AG)ih

(GTGSGTG)ih
. Under this

updating rule, J (S) decreases monotonically. Proof is completed. �	

123



Y. Chen et al.

Proposition 3 If S is a fixed matrix, J (G) = ‖˜A − GSGT‖2 = Tr(˜A
T
˜A − 2GT

˜A
T

GS +
GTGSGTGST) decreases monotonically under the updating rule of Eq. (5).

Proof A function F(G(t+1), G(t)) is called an auxiliary function of L(G(t+1)) if it satis-
fies F(G(t+1), G(t)) ≥ L(G(t+1)) and F(G(t+1), G(t)) = L(G(t+1)) for any G(t+1), G(t).
Define G(t+1) = arg minG F(G(t+1), G(t)). By construction, L(G(t)) = F(G(t), G(t)) ≥
F(G(t+1), G(t)) ≥ L(G(t+1)). Thus, L(G(t)) is monotonic decreasing (non-increasing).

The key step is to find appropriate auxiliary function F(G(t+1), G(t)). Assuming S is fixed,
we write

L(G(t+1)) = Tr(˜A
T
˜A− 2˜A

T
GSGT +GTSGTGSTGT) (15)

and show that,

F(G(t+1), G(t)) = ‖ ˜A ‖2 −
∑

ih

2(˜AG(t)S)ihG(t)
ih

(

1+ 2log
G(t+1)

ih

G(t)
ih

)

(16)

+
∑

ih

(G(t)SG(t)T G(t)S)ihG4(t+1)
ih

G4(t)
ih

is an auxiliary function of L(G(t+1)).
Following the proof of Proposition 2, it is not difficult to prove F(G(t+1), G(t)) is an

auxiliary function of L(G(t+1)). Since G(t+1) = arg minG F(G(t+1), G(t)), G(t+1) is given
by the minimum of F(G(t+1), G(t)) while fixing G(t). The minimum value is obtained by

setting ∂ F(G(t+1),G(t))

∂G(t+1)
ih

= 0. Thus, we can derive the updating rule of Eq. (5) as Gih ←

Gih
4

√

(˜AGS)ih

(GSGTGS)ih
. Under this updating rule, J (G) decreases monotonically. Proof is com-

pleted. �	
3.4 Equivalence of SS-NMF and other semi-supervised clustering methods

We now show that SS-NMF is a general and unified framework for semi-supervised cluster-
ing by establishing the relationship between SS-NMF and other well-known semi-supervised
clustering algorithms, i.e., semi-supervised kernel k-means (SS-KK) [36] and semi-
supervised spectral clustering with normalized cuts (SS-SNC) [28]. In fact, both these algo-
rithms can be considered to be special cases of SS-NMF.

Proposition 4 Orthogonal SS-NMF clustering is equivalent to SS-KK clustering.

Proof The SS-NMF objective function is,

JSS−NMF = min
S≥0,G≥0

‖˜A−GSGT‖2 (17)

The equation can be written as, JSS−NMF = ‖˜A−GSGT‖2 = ‖˜A−G′G′T‖2 = Tr(˜A
T
˜A−

2G′T˜AG′ +G′TG′) if let S = QTQ and G′ = GQT. Since Tr(˜A
T
˜A+G′TG′) is a constant,

the minimization of J becomes a maximization problem as,

max
G′≥0

Tr(G′T˜AG′) s.t. G′TG′ = I (18)
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The SS-KK objective function is [36],

JSS−KK = min
k

∑

h=1

∑

i∈Xh

‖φ(xi )− φh‖2

−
∑

(xi ,x j )∈CM L ,s.t.yi=y j

wi j +
∑

(xi ,x j )∈CC L ,s.t.yi=y j

wi j (19)

where φ(·) is the kernel function and φh the centroid. Let E be the matrix of pairwise
squared Euclidean distances among the data points, W the constraint matrix and G the
cluster indicator. Equation (19) becomes the minimization of the following function,

min
G≥0

Tr(GT(E− 2W)G) s.t. GTG = I (20)

We can convert the minimization of Eq. (20) to a maximization of the problem,

max
G≥0

Tr(GTKG) s.t. GTG = I (21)

where K = A+W and A the similarity matrix.
It is clear that the objective function of SS-NMF (Eq. (18)) is equivalent to that of SS-KK

(Eq. (21)) if K = ˜A. The G′ in Eq. (18) represents the same clustering as G of Eq. (21) does.
Proof is completed. �	
Proposition 5 Orthogonal SS-NMF clustering is equivalent to SS-SNC clustering.

Proof The objective function of SS-SNC is [28],

JSS−SNC = min
k

∑

h=1

gT
h (˜D−˜A)gh

gT
h
˜Dgh

=
k

∑

h=1

zT
h (I− Ȧ)zh (22)

where ˜A = A −Wreward −Wpenalty is the pairwise similarity matrix with constraints, ˜D =
diag(̃x1, . . . , x̃n) is the diagonal matrix, gh is the cluster indictor, scaled cluster indicator

vector zh = ˜D
1/2

gh/‖˜D1/2
gh‖, and Ȧ = D−1/2

˜AD−1/2.
It can be shown that the minimization of Eq. (22) becomes a maximization problem as,

max
Z≥0

Tr(ZTȦZ) s.t. ZTZ = I (23)

Also, it can be seen that Eq. (18) is equivalent to Eq. (23) if ˜A = Ȧ. Moreover, the G′ in
Eq. (18) represents the same clustering as Z of Eq. (23) does. Proof is completed. �	

From the above two proofs, we can see that SS-NMF, SS-KK, and SS-SNC are mathemat-
ically equivalent. However, notice that in SS-NMF, the matrix ˜A might have some negative
values, which is not permitted in traditional NMF [37,38]. In this case, one possible solution
is to perform some normalization techniques to guarantee non-negative values. Alternatively,
we can simply relax the non-negative constraint to allow negative values as in Semi-NMF [40].
In either of the approaches, the clustering result will not get affected. In SS-NMF, the cluster
indicator G′ is near-orthogonal and can produce soft clustering results. The cluster centroid
S can provide good characterization of the quality of data clustering because the residue of
the matrix approximation J = min ‖˜A−GSGT‖ is smaller than J = min ‖˜A−GGT‖. On
the other hand, for SS-KK and SS-SNC, if input matrix is added with constraint weight W, in
order to ensure positive definiteness, certain additive constraints need to be enforced. More-
over, these constraints are difficult to be relaxed. Also, the cluster indicator G or Z is required
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Fig. 1 a An artificial toy dataset consisting of two natural clusters. b Data distribution in the SS-NMF subspace
of the two column vectors of G. The data points from the two clusters get distributed along the two axes.
c Data distribution in the SS-SNC subspace of the first two singular vectors. There is no relationship between
the axes and the clusters

to be orthogonal, leading to only hard clustering results. Hence, both SS-KK and SS-SNC
can be viewed as special cases of SS-NMF with orthogonal space constraints. Thus, SS-NMF
essentially provides a general and unified mathematical framework for semi-supervised data
clustering.

3.5 Advantages of SS-NMF

In this section, we further illustrate the advantages of SS-NMF using a toy dataset shown in
Fig. 1a, which follows an extreme distribution consisting of 20 data points forming two natural
clusters: two circular rings with 10 data points each. Traditional unsupervised clustering
methods, such as (kernel) k-means, spectral normalized cut or NMF, are unable to produce
satisfactory results on this dataset. However, after incorporating knowledge from the user in
the form of constraints, we are able to achieve much better results.

Unlike SS-SNC, SS-NMF maps the samples into a non-negative latent semantic space.
Moreover, SS-NMF does not require the derived space to be orthogonal. Figure 1b, c shows,
the data distributions in the two spaces for SS-NMF and SS-SNC, respectively. Data points
belonging to the same cluster are depicted by the same symbol. For SS-NMF, we plot the
data points in the space of two column vectors of G, while for SS-SNC the first two singular
vectors are used. Clearly, in the SS-NMF space, every data point takes non-negative values in
both the directions. Furthermore, in SS-NMF space, each axis corresponds to a cluster, and
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Table 1 Cluster indicator G of
SS-KK and SS-NMF for the toy
dataset

G SS-KK SS-NMF

g1 1 0 0.2778 0.0820

g2 1 0 0.2977 0.0486

g3 1 0 0.4301 0.0009

g4 1 0 0.1295 0.0494

g5 1 0 0.1377 0.0021

g6 1 0 0.3845 0.0000

g7 1 0 0.1281 0.0001

g8 1 0 0.1426 0.0097

g9 1 0 0.3119 0.0023

g10 1 0 0.4691 0.0080

g11 0 1 0.0651 0.3959

g12 0 1 0.0599 0.4449

g13 0 1 0.1161 0.4108

g14 0 1 0.0978 0.2985

g15 0 1 0.0592 0.2506

g16 1 0 0.1220 0.1233

g17 0 1 0.1047 0.1735

g18 0 1 0.1503 0.2028

g19 0 1 0.1233 0.2866

g20 0 1 0.1181 0.3800

all the data points belonging to the same cluster are nicely spread along the axis. The cluster
label for a data point can be determined by finding the axis with which the data point has
the largest projection value. However, in the SS-SNC space, there is no direct relationship
between the axes (singular vectors) and the clusters.

Table 1 shows the difference of cluster indicator between the hard clustering of SS-KK and
soft clustering of SS-NMF. An exact orthogonality in SS-KK means that each row of cluster
indicator G has only one nonzero element, which implies that each data object belongs to
only 1 cluster. The near-orthogonality of cluster indicator G in SS-NMF relaxes this a bit, i.e.,
each data object could belong fractionally to more than 1 cluster. This can help in knowledge
discovery in the cases where the data point is evenly projected along the different axes. For
instance, g16 = {0.1220, 0.1233} indicates that this data point may belong to any one of the
two clusters.

SS-NMF uses an efficient iterative algorithm instead of solving a computationally expen-
sive constrained eigen decomposition problem as in SS-SNC. The time complexity of
SS-NMF is O(tkn2) where k is the number of clusters, n is the number of documents,
and t is the number of iterations. In fact, the time complexity is similar to that of the classical
SS-KK clustering algorithm. However, compared to SS-KK, SS-NMF algorithm is simple
as it only involves some basic matrix operations and hence can be easily deployed over a
distributed computing environment when dealing with large datasets. Another advantage in
favor of SS-NMF is that a partial answer can be obtained at intermediate stages of the solution
by specifying a fixed number of iterations.

In Fig. 2, we demonstrate the computational speed of SS-NMF with respect to SS-KK
and SS-SNC. This experiment was performed on a machine with a 3 GHz Intel Pentium 2
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Fig. 2 Computational speed
comparison for SS-KK, SS-SNC
and SS-NMF
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processor with 2 GB RAM. As the number of data samples increase, SS-SNC turns out to be
the slowest of the three algorithms. SS-KK is the quickest with SS-NMF closely following
it. In the next section, we show the superior performance of SS-NMF in terms of clustering
accuracy in comparison with other clustering algorithms.

4 Experiments and results

In this section, we empirically demonstrate the performance of SS-NMF for data cluster-
ing. we present the details of our experiments, starting with the descriptions of the data sets
(Sect. 4.1), the methodology and evaluation metrics (Sect 4.2), followed by thorough per-
formance comparisons with leading unsupervised and semi-supervised clustering algorithms
(Sect 4.3).

4.1 Data description

We have thoroughly evaluated the proposed algorithm on a variety of datasets, with number of
classes ranging from 2 to 10, having between 27 and 500 data samples, and the dimensionality
(attributes) ranging from 4 to 12,600. These datasets represent applications from different
domains such as text mining and bioinformatics.

1. Text datasets
We have used eight text datasets for document clustering. In particular, we created the
datasets by mixing some of the datasets used in Han and Karypis [21].2 Datasets oh0
and oh5 are from OHSUMED collection [22], a subset of MEDLINE database, which
contains 233, 445 documents indexed using 14, 321 unique categories. Dataset re0 is
from Reuters-21578 text categorization collection Distribution 1.0 [39]. Dataset Fbis is
from the Foreign Broadcast Information Service data of TREC-5 [50]. For all datasets, the
common words are removed and the words are stemmed using Porter’s suffix-stripping
algorithm.

2 http://www.cs.umn.edu/~han/data/tmdata.tar.gz.
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Table 2 Summary of text
datasets used in the experiments

Datasets No. of clusters No. of words No. of docs

Graft-Phos 2 2,432 293

England-Heart 2 2,504 375

Interest-Trade 2 2,682 438

Fbis2 2 2,000 200

Fbis3 3 2,000 300

Fbis4 4 2,000 400

Fbis5 5 2,000 500

Fbis10 10 2,000 500

Table 2 shows the document datasets used in our experiments. These datasets were
created as follows:
– Classes Gra f t-Survival and Phospholipids from oh5 were mixed to form the

Gra f t-Phos dataset.
– Dataset England-Heart was created by mixing classes England and Heart-

V alve-Prosthesis from oh0.
– I nterest-T rade was formed by mixing I nterest and T rade classes of re0 dataset.
– We randomly selected 2, 3, 4, 5, and 10 classes from Fbis to form datasets Fbis2,

Fbis3, Fbis4, Fbis5 and Fbis10, respectively.
In addition, we performed feature selection on the words according to Yang and Pedersen
[54] by retaining the top 10% of the words based on mutual information in each of the
datasets.

2. Gene expression datasets
We have used five datasets from Kent Ridge Biomedical Dataset Repository3 for gene
expression clustering, including AML/ALL, Colon Tumor, Prostate Cancer, ALL/MLL/
AML, and Central Nervous System (CNS).
– The ALL/AML dataset includes two types of human tumor-acute myelogenous

leukemia (AML, 11 samples) and acute lymphoblastic leukemia (ALL, 27 samples).
– The Colon Tumor dataset contains 62 samples collected from colon-cancer patients.

Among them, 40 tumor biopsies are from tumors and 22 normal biopsies are from
healthy parts of the colons of the same patients; 2, 000 out of around 6, 500 genes
were selected based on the confidence in the measured expression levels.

– The Prostate Cancer dataset contains 52 prostate tumor samples and 50 non-tumor
prostate samples with around 12, 600 genes.

– The ALL/MLL/AML dataset contains 57 leukemia samples which are divided into 20
ALL, 17 MLL and 20 AML.

– The Central Nervous System (CNS) dataset consists of 34 samples: 10 classic medul-
loblastoms, 10 malignantgliomas, 10 rhabdoids and 4 normals.

These datasets are summarized in Table 3.

3. UCI datasets
We have utilized three datases from the UCI data repository [45]: Iris, LettersIJL, and
Soybean.

3 http://research.i2r.a-star.edu.sg/rp/
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Table 3 Summary of gene
expression datasets used in the
experiments

Datasets No. of clusters No. of genes No. of samples

ALL/AML 2 7,129 38

Colon Tumor 2 2,000 62

Prostate Tumor 2 12,600 102

ALL/MLL/AML 3 12,582 57

CNS 4 7,129 34

Table 4 Summary of UCI
datasets used in the experiments

Datasets No. of clusters No. of attributes No. of samples

Iris 3 4 150

LettersIJL 3 16 300

Soybean 4 35 47

– Iris plant data contains three classes: Iris Setosa, Iris Versicolour and Iris Virginica
with four attributes sepal length, sepal width, petal length and petal width.

– LettersIJL is a randomly sampled subset of three letters I, J, L with 300 samples from
Letters dataset.

– Soybean comes from Soybean Small data with 4 classes: D1, D2, D3 and D4.

The datasets are summarized in Table 4.

4.2 Methodology and evaluation metrics

We compared the performance of SS-NMF model on all the 15 datasets with the following
6 clustering methods: (1) k-means, (2) kernel k-means, (3) spectral normalized cuts, (4)
NMF, (5) SS-KK, (6) SS-SNC. The first four methods are the most popular unsupervised
data clustering methods, whereas SS-KK and SS-SNC are the representative semi-supervised
ones. Through these comparison studies, we demonstrate the relative position of SS-NMF
with respect to unsupervised and semi-supervised approaches in real-world data clustering.

We evaluated the clustering results using confusion matrix and the accuracy metric AC.
Each entry (i, j) in the confusion matrix represents the number of objects in cluster i that
belong to true class j . The AC metric measures how accurately a learning method assigns
labels ŷi to the ground truth yi , and is defined as,

AC =
∑n

i=1δ(yi , ŷi )

n
. (24)

where n denotes the total number of objects in the experiment, and δ is the delta function
that equals one if ŷi = yi , else its zero. Since iterative algorithm is not guaranteed to find
the global minimum, it is beneficial to run the algorithm several times with different initial
values and choose one trial with a minimal objective value. In reality, usually a few number
of trials is sufficient. In the case of NMF and k-means, for a given k, we conducted 20 test
runs. Three trials are performed in each of the 20 test runs and final accuracy value is the
average of all the test runs.
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Table 5 Comparison of document clustering accuracy between k-means, kernel k-means (KK), spectral
normalized cuts (SNC), NMF and, SS-NMF with 3% constraints

Datasets G-P E-H I-T Fbis2 Fbis3 Fbis4 Fbis5 Fbis10

k-means 0.684 0.710 0.722 0.565 0.472 0.462 0.418 0.232

KK 0.798 0.714 0.742 0.570 0.553 0.552 0.514 0.378

SNC 0.655 0.632 0.703 0.990 0.636 0.597 0.542 0.392

NMF 0.815 0.784 0.956 0.995 0.653 0.612 0.590 0.416

SS-NMF 0.993 0.997 1.000 1.000 0.883 0.877 0.752 0.674

The names of the datasets have been abbreviated as G-P (Graft-Phos), E-H (England-Heart), I-T (Interest-
Trade)

4.3 Results

4.3.1 Document clustering

We first performed comparison of the four unsupervised clustering approaches with SS-NMF
having pairwise constraints on only 3% pairs of all the possible document pairs, which is
(total docs
2 ). Each of the constraints were generated by randomly selecting a pair of docu-

ments. If both the documents have the same class label (must-link) , then the constraint is
assigned maximum weight in the document-document similarity matrix. On the other hand,
if they belong to different classes (cannot-link), then the minimum weight in the similarity
matrix is used for the constraint. For kernel k-means, we used a Gaussian (exponential) ker-
nel K (x1, x2) = exp(−‖x1 − x2‖2/2σ 2), with variance σ = 0.00001 for two clusters and
σ = 0.01 for more than two clusters. In Table 5, we compared the algorithms on all the
datasets using AC values. The performance of the first three methods is similar with NMF
proving to be the best amongst the unsupervised methods. However, the accuracy of NMF
greatly deteriorates and is unable to produce meaningful results on datasets having more
than two clusters. On the other hand, the superior performance of SS-NMF is evident across
all the datasets. We can see that in general a semi-supervised method can greatly enhance
the document clustering results by benefitting from the user provided knowledge. Moreover,
SS-NMF is able to generate significantly better results by quickly learning from the few pair-
wise constraints provided. Table 6 demonstrates the performance of SS-NMF when varying
amounts of pairwise constraints were available a priori. We reported the results in terms
of the confusion matrix C and the cluster centroid matrix S. As the available prior knowl-
edge increases from 0 to 5%, we can make the following two key observations. Firstly, the
confusion matrices tend to become perfectly diagonal indicating higher clustering accuracy.
Second observation pertains to the cluster centroid matrix S which represents the similarity
or distance between the clusters. Increasing values of the diagonal elements of S indicate
higher inter-cluster similarities. As expected, when the amount of prior knowledge available
is more, the performance of the algorithm clearly gets better.

In Fig. 3a, the sparsity pattern of a typical document-document matrix A = XTX (England-
Heart in the figure) before clustering is shown. The SS-NMF algorithm is applied to the
modified similarity matrix Ã. Document clustering leads to re-ordering of the rows and
columns of the matrix. Figure 3b,c shows the Ã matrices for England-Heart and Fbis5
datasets after clustering with 5% pairwise constraints. Document clusters are indicated by
the dense sub-matrices in these matrices.
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(a) (b)

(c)

Fig. 3 a Typical document-document matrix (shown here England-Heart) before clustering. b England-Heart
similarity matrix after clustering with SS-NMF. c Fbis5 similarity matrix after clustering with SS-NMF

We now compare SS-NMF with the other two semi-supervised clustering approaches.
As before, for SS-KK, a Gaussian kernel was used. In Fig. 4, we plotted the AC values
against increasing percentage of pairwise constraints available, for the algorithms on all the
datasets. On the whole, all three algorithms perform better as the percentage of pairwise
constraints increases. While the performance of SS-KK is close to that of SS-SNC on the
datasets in Figs. 4a–4c, it is clearly left out of the race completely in Figs. 4d–4h. This is
mainly because of the fact that SS-KK is unable to maintain its accuracy when producing
more than two clusters. While, the performance of SS-SNC is head-to-head with SS-NMF
on Fbis2 and Fbis3, it is consistently outperformed by SS-NMF on the rest of the datasets.
Another noticeable fact is that the curve for SS-KK and SS-SNC might take a slow rise
in some cases indicating that they need more amount of prior knowledge to improve the
performance. Comparatively, SS-NMF gets better accuracy than the other two algorithms
even for minimum percentage of pairwise constraints.

4.3.2 Gene expression clustering

We now present the comparison of SS-NMF with the other algorithms on real-world gene
expression datasets. We first compared the four unsupervised clustering approaches with
SS-NMF having pairwise constraints on only 3% pairs of all the possible sample pairs. For
kernel k-means, we used a Gaussian (exponential) kernel, with variance σ = 0.00001 for
ALL/AML and Colon Tumor datasets and a polynomial kernel K (x1, x2) = (1 + x1 ∗ x′2)p

with polynomial parameter p = 1 for the other datasets. In Table 7, we have compared the
algorithms on all the five gene expression datasets with AC values. As was the case with
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Table 6 The comparison of confusion matrix C and cluster centroid matrix S of SS-NMF for different
percentages of document pairs constrained

constr. (%) Matrix G-P dataset E-H dataset Fbis5 dataset

0 C 116 21 181 81 1 1 4 1 4

33 123 0 113 84 95 0 0 1

14 1 11 1 0

0 0 0 96 3

1 3 85 2 92

S 0.777 0 1.036 0 1.069 0 0 0 0

0 0.773 0 1.150 0 0.869 0 0 0

0 0 1.039 0 0

0 0 0 0.87 0

0 0 0 0 1.041

1 C 130 3 181 31 92 17 0 8 0

19 141 0 163 0 0 22 0 0

0 0 64 0 1

0 0 1 89 0

8 83 13 3 99

S 0.914 0 1.216 0 2.520 0 0 0 0

0 0.944 0 1.534 0 2.475 0 0 0

0 0 2.425 0 0

0 0 0 2.653 0

0 0 0 0 2.823

3 C 147 0 193 0 55 0 0 7 0

2 144 1 181 33 99 0 0 0

0 0 0 0 0

0 0 90 89 0

72 1 10 4 100

S 1.231 0 2.581 0 4.257 0 0 0 0

0 1.300 0 2.798 0 4.678 0 0 0

0 0 4.234 0 0

0 0 0 4.089 0

0 0 0 0 4.095

5 C 149 0 194 0 100 0 0 0 0

0 144 0 181 0 100 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 100

S 1.609 0 3.427 0 6.517 0 0 0 0

0 1.598 0 2.564 0 6.311 0 0 0

0 0 6.042 0 0

0 0 0 6.731 0

0 0 0 0 5.922

The names of the datasets have been abbreviated as G-P (Graft-Phos), E-H (England-Heart)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 Comparison of document clustering accuracy between SS-KK, SS-SNC, and SS-NMF for different
percentages of document pairs constrained a Graft-Phos, b England-Heart, c Interest-Trade, d Fbis2, e Fbis3,
f Fbis4, g Fbis5, and h Fbis10 dataset
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Table 7 Comparison of gene expression clustering accuracy between k-means, kernel k-means (KK), spectral
normalized cuts (SNC), NMF and, SS-NMF with 3% constraints

Datasets ALL /AML CT PC ALL /MLL /AML CNS

k-means 0.526 0.629 0.578 0.631 0.529

KK 0.526 0.532 0.607 0.649 0.676

SNC 0.631 0.596 0.598 0.560 0.655

NMF 0.684 0.661 0.647 0.666 0.767

SS-NMF 0.763 0.758 0.666 0.736 0.852

The names of the datasets have been abbreviated as CT (Colon Tumor), PC (Prostate Cancer)

document clustering, SS-NMF performs to be the best across all the datasets. It is evident
that the algorithm learns quickly in spite of having few constraints. Table 8 demonstrates
the performance of SS-NMF improves when the number of pairwise constraints on the gene
expression datasets increase from 0 to 5%. These results are reported in terms of the confusion
matrix C and the normalized cluster centroid matrix S as before.

Next, we compare SS-NMF with the other two semi-supervised clustering approaches
on the gene expression datasets. Figure 5 shows a plot of the AC values against increas-
ing percentage of pairwise constraints for the three semi-supervised algorithms on all the
five datasets. All three algorithms perform better as the percentage of pairwise constraints
increases. SS-NMF performs significantly better than the other two algorithms with any
percentage of constraints when distinguishing between tumor and non-tumor samples, as
in Figs. 5b-c. Also, for clustering subtypes of tumors, although the differences are small,
SS-NMF outperforms the other two algorithms as seen from Figs. 5a, d-e.

4.3.3 UCI datasets clustering

Table 9 shows the comparison of SS-NMF with the unsupervised clustering algorithms on all
three UCI datasets. As before, for kernel k-means, we used a Gaussian (exponential) kernel
with variance σ = 1 for Iris data and polynomial kernel with polynomial parameter p = 1
for the other datasets. As can be seen, with just 5% constraints, SS-NMF yields significantly
better results than the unsupervised approaches. For instance, on Soybean data, SS-NMF
improves the accuracy over 25%. Similar trends can also be observed for other two datasets.

Figure 6 illustrates the performance of SS-NMF and the two semi-supervised algorithms
for increasing number of pairwise constraints on the UCI datasets. We can observe that
SS-NMF clustering always produces best accuracy performance when the dimensionality
of the datasets is high (Fig. 6b,c). However, it is unable to achieve quality clustering on
low dimensionality datasets for fewer constraints. For Iris dataset which has dimensionality
of 4 (Fig. 6a) SS-NMF yields low accuracy initially and tends to slowly catch up with
SS-KK as the percentage of pairwise constraints increase. This shows that SS-NMF is a viable
proposition for low-dimensional data as well but needs higher percentage of constraints.

5 Conclusions

We presented SS-NMF: a semi-supervised approach for clustering based on non-negative
matrix factorization. In the proposed framework, users are able to provide supervision in
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Table 8 The comparison of confusion matrix C and cluster centroid matrix S of SS-NMF for different
percentages of gene expression sample pairs constrained

constr. (%) Matrix ALL /AML dataset ALL /MLL /AML dataset CNS dataset

0 C 17 2 17 6 0 7 1 2 0

10 9 1 6 5 0 7 0 0

2 5 15 2 0 8 0

1 2 0 4

S 1.367 0 1.350 0 0 3.773 0 0 0

0 1.306 0 1.076 0 0 4.671 0 0

0 0 1.349 0 0 2.921 0

0 0 0 3.395

1 C 18 1 17 3 0 9 1 1 1

9 10 1 8 6 1 7 0 0

2 6 14 0 0 8 0

0 2 1 3

S 1.373 0 1.388 0 0 3.897 0 0 0

0 1.314 0 1.081 0 0 4.685 0 0

0 0 1.350 0 0 2.934 0

0 0 0 3.412

3 C 19 1 16 1 7 9 1 1 1

8 10 4 13 0 1 8 0 0

0 3 13 0 0 9 0

0 1 0 3

S 1.382 0 1.361 0 0 4.046 0 0 0

0 1.327 0 1.100 0 0 5.056 0 0

0 0 1.357 0 0 3.188 0

0 0 0 3.518

5 C 21 1 15 3 0 10 0 1 0

6 10 5 14 1 0 9 0 0

0 0 19 0 0 8 0

0 1 1 4

S 1.391 0 1.391 0 0 4.736 0 0 0

0 1.333 0 1.122 0 0 5.255 0 0

0 0 1.358 0 0 3.351 0

0 0 0 3.612

Table 9 Comparison of UCI
data clustering accuracy between
k-means, kernel k-means (KK),
spectral normalized cuts (SNC),
NMF and, SS-NMF with 5%
constraints

Datasets Iris LettersIJL Soybean

k-means 0.8263 0.5167 0.7234

KK 0.6933 0.5167 0.7021

SNC 0.6667 0.4467 0.7234

NMF 0.6733 0.5200 0.7447

SS-NMF 0.9267 0.6300 0.9149
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Fig. 5 Comparison of gene expression clustering accuracy between SS-KK, SS-SNC, and SS-NMF for differ-
ent percentages of sample pairs constrained a ALL/AML, b Colon Tumor, c Prostate Cancer, d ALL/MLL/AML
and e CNS dataset

terms of must-link and cannot-link pairwise constraints on the data objects. We derived
an iterative algorithm to perform symmetric tri-factorization of the data similarity matrix.
We have mathematically shown the correctness and convergence of SS-NMF. Moveover,
we proved that SS-NMF provides a general and unified framework for semi-supervised
data clustering. Existing approaches can be considered as special cases of it. Empirically,
we showed that SS-NMF outperforms well-established unsupervised and semi-supervised
clustering methods in grouping publicly available datasets.
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Fig. 6 Comparison of UCI data clustering accuracy between SS-KK, SS-SNC, and SS-NMF for different
percentages of sample pairs constrained a Iris, b LettersIJL and c Soybean dataset
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