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Abstract. Accurate registration of cortical structures plays a funda-
mental role in statistical analysis of brain images across population. This
paper presents a novel framework for the non-rigid intersubject brain
surface registration, using conformal structure and spherical thin-plate
splines. By resorting to the conformal structure, complete characteristics
regarding the intrinsic cortical geometry can be retained as a mean cur-
vature function and a conformal factor function defined on a canonical,
spherical domain. In this transformed space, spherical thin-plate splines
are firstly used to explicitly match a few prominent homologous land-
marks, and in the meanwhile, interpolate a global deformation field. A
post-optimization procedure is then employed to further refine the align-
ment of minor cortical features based on the geometric parameters pre-
served on the domain. Our experiments demonstrate that the proposed
framework is highly competitive with others for brain surface registration
and population-based statistical analysis. We have applied our method
in the identification of cortical abnormalities in PET imaging of patients
with neurological disorders and accurate results are obtained.

1 Introduction

In order to better characterize the symptoms of various neuro-diseases from large
datasets, automatic population-based comparisons and statistical analyses of
integrative brain imaging data at homologous cortical regions are highly desirable
in noninvasive pathophysiologic studies and disease diagnoses [1]. As a recent
comparative study pointed out, intensity-based approaches may not effectively
address the huge variability of cortical patterns among individuals [2]. Surface-
based methods, which explicitly capture the geometry of the cortical surface and
directly drive registration by a set of geometric features, are generally thought to
be more promising in bringing homologous brain areas into accurate registration.
One reason leading to this consideration is that the folding patterns (gyri and
sulci) are typically used to define anatomical structures and indicate the location
of functional areas [3].

In essence, cortical surfaces can be regarded as 3D surfaces. In the context of
cortical structural analysis, representations based on the Euclidean distance are
problematic, as it is not consistent with the intrinsic geometry of a surface [3].
For this reason, we adopted the strategy to first parameterize brain surface on a
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canonical spherical domain using conformal mapping [4]. After that, subsequent
matching and averaging of cortical patterns can be performed in this canonical
space with enhanced efficiency since all geometric characteristics of the cortex
are retained in this space. The benefits of this framework are as follows: first,
because surface registration is modeled as a smooth deformation on a sphere,
many confounding factors originally existing in the Euclidean space are elimi-
nated; second, this registration method is implicitly scale-invariant as shapes are
normalized on the canonical domain via conformal mapping; third, by means of
deforming shapes in a parametric space, a 3D shape registration is reduced into
a 2D space, thus largely simplifying computational complexity.

Even so, one needs to note that conformal mapping itself can not wipe off the
inherent variability of individual human brains. To account for this nonlinear
variation, non-rigid registration techniques need be used to deform one surface
onto another with consistent alignment of primary anatomies. Towards this end,
the spherical thin-plate splines (STPS) is presented to provide a natural scheme
for this purpose. Given a set of point constraints, a smooth deformation field can
be efficiently estimated with C∞ continuity everywhere except at the location
of lankmarks where the continuity is C1. Optimization techniques can then be
further appended afterwards in this framework as a back-end refinement in order
to compensate for the discrepancies between piecewise spline estimation and the
actual confounding anatomical variance.

For the purpose of accurately aligning two brain surfaces, a novel framework
is systematically introduced in this paper. We first propose to use the conformal
structure on a spherical domain to completely represent the cortical surface
for registration. Building on that, we systematically derive the analytical and
numerical solutions regarding spherical thin-plate splines (STPS) deformation
and compound optimization based on the conformal factor and mean curvature
of brain surfaces, which naturally induces a non-rigid registration between two
brain surfaces. The effectiveness and accuracy of this framework is validated in
a real application that intends to automatically identify PET abnormalities of
the human brain.

2 Conformal Brain Surface Model

Based on Riemannian geometry, conformal mapping provides a mathematically
rigorous way to parameterize cortical surface on a unit sphere, of which many
properties have been well studied and fully controlled. Let φ denote this con-
formal transformation and (u, v) denote the spherical coordinates, namely, the
conformal parameter. The cortical surface can be represented as a vector-valued
function f : S2 → R3, f (u, v) = (f1(u, v), f2(u, v), f3(u, v)). Accordingly, the
local isotropic stretching of φ (conformal factor λ(u, v)) and the mean curvature
H(u, v) of surface f can be treated as functions defined on S2. Since λ(u, v)
and H(u, v) can uniquely reconstruct surface f except for a rigid rotation [4],
the two functions are sufficient for representing arbitrary closed shapes of genus
zero topology. We term this representation the Conformal Brain Surface Model
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(CBSM). The orientational freedom of CBSM can be removed by SVD meth-
ods, based on the landmark correspondences representing homologous cortical
features. The CBSM is illustrated in Figure 1.

(a) (b) (c) (d)

Fig. 1. Conformal Brain Surface Model. In (a) and (b), mean curvature and logarith-
mic conformal factor are color-encoded on the brain surface, respectively. (c) and (d)
visualize the mean curvature function and the conformal factor function in accordance
with the CBSM.

Suppose that M1 and M2 are two surfaces to be matched, and the parameter-
izations are ϕ1 : M1 → R2 and ϕ2 : M2 → R2, respectively. Then the transition
map ϕ2 ◦ ϕ−1

1 : M1 → M2 defines a bijection between M1 and M2. Given a
matching criterion, the registration of 3D shapes can be consequently defined
as an automorphism μ on the parameter domain, such that the transformation
ψ = ϕ2◦μ◦ϕ−1

1 in 3D minimizes the studied matching error. In particular, given
a conformal parameterization of brain surface S, a registration criterion can be
losslessly defined using (λ(x1, x2), H(x1, x2)).

A few related ideas have been proposed in [4,5,6,7,8]. However, Gu et al. [4]
only pursued solutions in the conformal space, which in most cases is over-
constrained for an optimal registration in terms of anatomy alignment. In [6],
the deformation for the brain surface was essentially computed in a rectangular
plane. Since a topological change is required from a sphere to a disk, choices
for the landmarks are restricted by the large distortion at domain boundaries.
The registration scheme employed in [7] is basically a variant of ICP (Iterated-
Closest-Point) algorithm that is performed in the Euclidean space. As for the
spherical deformation, diffeomorphic deformation maps constructed by the in-
tegration of velocity fields that minimize a quadratic smoothness energy under
specified landmark constraints are presented in a recent paper [9]. When com-
pared with STPS, its solution does not have closed-form.

3 Method

Generally, our method includes two main steps: First, the registration is initiated
by a feature-based STPS warping. This explicit procedure largely circumvents
local minimum and is more efficient when compared with using variational opti-
mization directly. Second, a compound energy functional that represents a bal-
anced measurement of shape matching and deformation regularity is minimized,



370 G. Zou, J. Hua, and O. Muzik

which compensates for the potential improper localization of unmarked cortical
features.

3.1 STPS Deformation

Thin-plate splines (TPS) are a class of widely used non-rigid interpolating func-
tions. Because of its efficiency and robustness, intensive exploitation of TPS has
been made for smooth data interpolation and geometric deformation.

The spherical analogue of the well-known thin-plate bending energy defined
in Euclidean space was formulated in [10], which has the form

J2(u) =
∫ 2π

0

∫ π

0
(Δu(θ, φ))2 sin φdθdφ, (1)

where θ ∈ [0, π] is latitude, φ ∈ [0, 2π] is longitude, Δ is the Laplace-Beltrami
operator. Let

K(X, Y ) =
1
4π

∫ 1

0
log h(1 − 1

h
)(

1√
1 − 2ha + h2 − 1

− 1)dh, (2)

where a = cos(γ(X, Y )) and γ(X, Y ) is the angle between X and Y . With the
interpolants

u(Pi) = zi, i = 1, 2, . . . , n, (3)

the solution is given by

un(P ) =
n∑

i=1

ciK(P, Pi) + d, (4)

where
c = K−1

n [I − T(TT K−1
n T)−1TT (K−1

n )]z,

d = (TT K−1
n T)−1TT (K−1

n )z,

(Kn)ij = K(Pi, Pj),

T = (1, . . . , 1)T ,

z = (zi, . . . , zn)T ,

in which Kn is the n × n matrix with its (i, j)th entry denoted as (Kn)ij .
Given the displacements (Δθi, Δφi) of a set of points {Pi} on the sphere in

spherical coordinates, the STPS can be used to interpolate a deformation map
S2 → S2 that is consistent with the assigned displacements at {Pi} and smooth
everywhere, which minimizes J2. Most anatomical features on brain surfaces,
such as sulci and gyri, are most appropriate to be represented as geometric
curves. The feature curves are automatically fitted using the cardinal splines,
based on a set of sparse points selected by a neuroanatomist on the native
brain surface. The framework also provides the automatic landmark tracking
functions using the methods in [11]. In order to deal with curve landmarks on the
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sphere with STPS, we convert a curve to a dense set of ordered points, yielding
precise control over curves. A global smooth deformation field (uθ(P ), uφ(P ))
can be consequently determined, which warps each landmark curve on the source
CBSM into their counterpart on the target as shown in Figure 2 (a), (b) and (c).
This deformation ensures the alignment of primary labeled features. However,
other unlabeled cortical anatomies are not guaranteed to be perfectly matched
to their counterparts. In the following, a global optimization scheme is proposed
to address this issue.

(a) (b) (c) (d)

Fig. 2. The illustration of the CBSM deformations at each registration stage. (a) shows
the target CBSM. (b) shows the source CBSM. (c) shows the effect of STPS deformation
performed on (b). The result of a further refining optimization is shown in (d).

3.2 Compound Optimization

Since all the transformations applied so far are topology preserving, we generally
consider that homologous anatomies have been laid very close to each other in
the spherical space through the landmark-based STPS deformation. To further
refine the alignment of anatomies besides the manually traced features, we define
a global distance in the shape space via CBSM based on the conformal factor
λ(u, v) and the mean curvature H(u, v):

d(S1, S2) =
∫

S2
((log λ1(u, v) − log λ2(u, v))2 + (H1(u, v) − H2(u, v))2)dμ, (5)

where the dμ is the area element of the unit sphere S2. Here we compare the
logarithm values of λ to eliminate the bias between the same extent of stretching
and shrinking from conformal mapping. When this functional is minimized, two
brain surfaces are registered. Additionally, we moderately smooth down the brain
surface for mean curvature computation similar in spirit to [3], since we assume
that the optimization should only be directed by large-scale geometric features
while being relatively insensitive to those small folds that are typically unstable
across subjects. Suppose the optimization procedure is performed by deforming
S2 to S1. The optimal nonlinear transformation φ̃∗ can be formulated as

φ̃∗ = argmin
φ

(d(S1(u, v) − S2(φ(u, v)))). (6)

In practice, simply minimizing the distance functional may cause undesirable
folds or distortions in the local patch. To avoid this, we also add another term
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to the distance functional to maximize conformality while warping two spherical
images into registration. This regularizing term is essentially a harmonic energy
functional.

Note that the cortical surface, as well as the domain, are approximated by tri-
angular meshes. We use the gradient descent method for the numerical optimiza-
tion. Suppose f(·) and g(·) are the piecewise linear approximations of CBSM
domains, p and q are neighbor vertices, and {p, q} denotes the edge spanned
between them. αp,q and βp,q denote the two angles opposite to p, q in the two
triangles sharing edge {p, q}. Af(g)(p) denotes the areal patch in f(g) associated
with p. Therefore, the gradient of this compound functional is given by

∂E

∂f(v)
=

∑
u∈N1(v)

(cotαp,q + cotβp,q)(f (v) − f(u))

+
ϕAf (v)∑
i∈Kf

Af (i)
λf−g(v)

f(v) − f (u∗)
‖f(v) − f (u∗)‖∇−−−−→{u∗, v}λf−g(v)

+
ωAf (v)∑
i∈Kf

Af (i)
Hf−g(v)

f (v) − f(u∗)
‖f (v) − f(u∗)‖∇−−−−→{u∗, v}Hf−g(v),

(7)

where ϕ and ω are tunable weighting factors, SFf−g(·) = SFf (·) − SFg(·), and
u∗ is defined as

u∗(v) = arg max
u∈N1(v)

∇−−−→{u, v}(SFf − SFg)(v), (8)

in which the SF denotes either λ(·) or H(·), and N1(v) is the 1-ring neighbors of
v. In practice, we also constrain the displacement of each vertex in the tangential
space of the unit sphere. The optimized result after STPS deformation is shown
in Figure 2 (d). Its improvement to brain surface registration will be further
demonstrated in Section 4.

4 Experiments

We have tested our framework through automatic identification of Positron
Emission Tomography (PET) abnormalities. In order to identify the functional
abnormalities characterized by PET, the normal fusion approach [12] is used for
MRI and PET integration as shown in Figure 3 (a) and (b). PET values are
projected onto the high resolution brain surface extracted from MRI data. Then
we apply the proposed framework to bring the studied subjects (high-resolution
cortical surfaces) into registration and subdivide the cortical surfaces into regis-
tered, homotopic elements on the spherical domain. Similar to the element-based
analysis of PET images in [13,14], we obtain the PET concentration for each of
the cortical elements. A patient’s data is compared with a set of normals to locate
the abnormal areas in the patient brain based on the statistical histogram anal-
ysis of the PET concentration at the homotopic cortical elements. Figure 3 (c)
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(a) (b) (c)

Fig. 3. Identification of PET abnormalities. (a) and (b) show the rendering of the
PET concentration on the cortical surface and the spherical domain, respectively. The
triangle-like elements are the defined homotopic cortical elements by the registration.
(c) PET abnormalities are rendered on the cortical surface using a color map.

(a) (b) (c)

Fig. 4. Repetition Levels for Prominent Cortical Regions. (a) shows the regions of
middle frontal gyri delineated by a neuroscientist; (b) shows the agreement using only
STPS, while (c) gives the result when the compound optimization is enabled.

show the result of a pediatric patient with epilepsy. The blue color indicates
decreased tracer concentration than normal. We use 8 normal pediatric datasets
to establish the normal distribution for comparison. One of the normal dataset is
treated as the template for registration. In our experiments, the detected abnor-
mal spots well corresponds to the final clinical diagnoses because the high-quality
inter-subject mapping and registration greatly improves cross-subject element
matching for statistical analysis. This real application validates the registration
capability of our framework from a practical perspective.

We also directly evaluated our methods on several prominent neuroanatom-
ical regions in terms of group overlap using high-resolution MRI data. Since
cortical regions have been well defined and indexed by elements, the overlap
can be measured by area. The elements for a specific feature which agree on
more than 85% cases are colored in red. Those that agree on 50%∼85% cases
are colored in green. As an example, Figure 4 demonstrates the result on middle
frontal gyri, delineated by a neuroscientist. It is evident that, after compound
optimization, the features under study appear more consistent to the middle
frontal gyrus regions on the template cortex because of the refined matching
of geometric structures by compound optimization. The certainty with regard
to the regional boundaries are increased. More comprehensive experiments in-
dicate that significant agreements can be achieved via our method. The overall
registration accuracy in terms of group overlap is about 80%.
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5 Conclusion

We have presented a novel, effective non-rigid brain surface registration frame-
work based on conformal structure and spherical thin-plate splines. To enable
this procedure, we systematically derive the analytical and numerical solutions
regarding STPS deformation and compound optimization based on the confor-
mal factor and mean curvature of brain surfaces. Our experiments demonstrate
that our method achieves high accuracy in terms of homologous region overlap.
Our method is tested in a number of real neurological disorder cases, which
consistently and accurately identify the cortical abnormalities.
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