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Abstract. In this paper, we present a novel and efficient surface match-
ing framework through shape image representation. This representation
allows us to simplify a 3D surface matching problem to a 2D shape im-
age matching problem. Furthermore, we present a shape image diffusion-
based method to find the most robust features to construct the match-
ing and registration of surfaces. This is particularly important for inter-
subject surfaces from medical scans of different subjects since these sur-
faces exhibit the inherited physiological variances among subjects. We
conducted extensive experiments on real 3D human neocortical surfaces,
which demonstrate the excellent performance of our approach in terms
of accuracy and robustness.
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1 Introduction

3D surface matching and registration remains a very challenging research prob-
lem in many medical image analysis fields since surfaces may have very flexible
free-form shape characteristics which are difficult to capture and use for matching
and registration purpose. The key issue in surface matching has been the shape
representation scheme. In recent years, a large amount of research effort has been
devoted on finding appropriate shape representations for 3D surface matching.
Different approaches, such as curvature-based representations [1], regional point
representations [2], shape distributions [3], spherical thin-plate splines [4], etc.,
have been proposed for this purpose. However, many of these representations are
not robust and cannot perform well for intersubject surface registration under
such circumstance as noise, clutter, and physiological variances.

This paper presents a novel and efficient surface matching framework through
shape image representation. Basically, a 2D representation is constructed to
describe a 3D surface. In practice, a family of geometric maps can be adopted to
create the 2D representation. This simplifies a surface matching problem to a 2D
image matching problem. When constructing shape images, Riemann geometric
maps, which can encode the shape information of the surface into the 2D image,
provide a viable solution to the mapping of a 3D surface onto a 2D domain.
Theoretically, in Riemannian geometry, any surface admits a Riemannian metric
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of constant Gaussian curvature. In fact, one can find a metric with constant
Gaussian curvature in any given conformal class. Certain 3D surfaces can be
mapped to a 2D domain through a global optimization and the resulting map
is a diffeomorphism [5–8]. As a result, the 3D surface-matching problem can
be rigorously simplified to a 2D shape image-matching problem through the
Riemannian geometric maps. These maps are stable, insensitive to resolution
changes and robust to noise. The analysis of 2D image which integrates geometric
and appearance information is a better understood problem [9–11]. Based on
the Riemannian geometric maps, we further provide a diffusion-based algorithm
for detecting the most robust shape features from the shape images. Therefore,
highly accurate and efficient 3D shape matching algorithms can be achieved by
matching these features. The rest of this paper will discuss the conformal maps,
describe how to construct the shape image given a 3D surface, and then the
matching framework based on shape image diffusion. The conducted experiments
demonstrates the excellent performance of the proposed approach.

2 Shape Image Construction with Conformal Mapping

A good shape image should be able to fully represent the global geometric char-
acteristics of a given surface and also serves a domain for modeling and indexing
of other heterogenous attributes. Thus, a 3D surface can be converted to a
multidimensional vector image for effective processing. Technically, we resort to
Riemannian geometric mapping to accomplish the task.

In the theorem of differential geometry, a diffeomorphism f : M → N is
conformal if and only if, for any surface patch σm on M , the first fundamental
forms of σm and σn = f ◦ σm are proportional. Mathematically, this means that

f ◦ ds2

m = λds2

n, (1)

where λ is called the conformal factor, ds2

m and ds2

n are the first fundamental
form on M and N . By minimizing the harmonic energy over the surface, we can
calculate the conformal map [12, 13].

To match 3D shapes accurately and efficiently, a new 2D representation,
shape image, is developed in our framework using conformal mapping. We have
previously shown that, given a surface patch M , its conformal image Ic can be
created using conformal mapping. There is one-to-one correspondence between
the vertices in M and the vertices in Ic. With the involvement of the shape at-
tributes at each vertex of M , attribute values can be interpolated and computed
for each pixel of the conformal shape image. As discussed in [15, 16], conformal
representation surface S(u, v) can be represented by conformal factor function,
λ(u, v), and mean curvature function, H(u, v). We assign these two attributes to
the Ic to form a vector image I, where the pixel attributes are represented by a
vector [H, λ]⊤. Figure 1 shows the human neocortical surface (Figure 1(a)) and
its corresponding mean curvature channel (Figure 1(b)) and conformal factor
channel (Figure 1(c)). The composite shape image is shown in Figure 1(d).
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(a) (b)

(c) (d)

Fig. 1. Shape Image. (a) shows the neocortical surface extracted from MR scans; (b)
and (c) are the mean curvature channel and conformal factor channel of the shape
images of the neocortical surface; (d) is the composite shape image including both
channels.

3 Feature Extraction through Shape Image

Since a surface can be represented as a unique shape image composed of con-
formal factors and curvatures, many algorithms suitable for image computing
may be used in the analysis and feature extraction of this type of images. For
the purpose of matching and registration, the main task is to find the stable
keypoints or regions and their local image features for alignment. This section
describes a novel diffusion-based algorithm to extract distinctive features from
the shape images. Through the shape image diffusion, we can identify the robust
keypoints and their scales from the computed diffusion extrema, which are ideal
for matching purpose.

3.1 Shape image diffusion

Our shape image is a multichannel image, similar to a color image. The sim-
plest way to do the diffusion filtering of the shape images is to deal with chan-
nels separately and independently from each other. For a vector image I =
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(I1, I2, ..., Im)⊤, the anisotropic diffusion is performed by

∂Ii

∂t
= div

(

g∇Ii

)

(i = 1, ..., m), (2)

where div indicates the divergence operator, and ∇ is the gradient operator.
However, this method leads to an undesirable effect that edges may be formed
at different locations for each channel. In our framework, we employs a common
diffusivity g which combines information from all channels. For the case in which
g is a constant for a specific channel Ii, it reduces to the isotropic heat diffusion
equation,

∂Ii

∂t
= c△Ii, (3)

where △ is the Laplacian operators. Its solution is Gaussian smoothing. Gaussian
smoothing has a typical disadvantage: Gaussian smoothing does not only reduce
noise, but also blurs important features such as edges and, thus, makes them
harder to identify.

One model to improve this is inhomogeneous linear diffusion filtering,

∂Ii

∂t
= div

(

g
(

|∇fIi
|
2

)

∇Ii

)

, (4)

where fIi
is the original image, Ii is the actual image which we are trying to

calculate at a specific scale, and g is the diffusivity function. We extend this
to our shape image. Particularly, our approach sums up the diffusivity of each
channel to a common diffusivity. This may be regarded as collecting the contrast
information of all channels. Thus, for a shape image I = (I1, I2, ..., Im)⊤, the
vector diffusion is performed by

∂Ii

∂t
= div

(

g
(

m
∑

j=1

|∇fIj
|
2

)

∇Ii

)

(i = 1, ..., m). (5)

The numerical solution for Eq. 5 can be referred to Perona-Malik’s model [14].
By solving the equations in Eq. 5, what we obtain is,
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, (6)

which is a sequence of vector image with t as the scale in matrix format, i.e.,
each row of the matrix is the sequence images of a specific channel with t as the
scale, and each column of the matrix is the vector image at a specific scale t.

3.2 Extrema detection

Eq.5 satisfies the maximum principle, which states that all the maxima of the
solution of the equation in space and time belong to the initial condition (the
original image) [14].
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Instead of calculating the Difference of Gaussian (DoG) as in the SIFT al-
gorithm [9], we compute the Difference of Diffusion (DoD) using the following
vector-based equation,

DoDti = Iti+1 − Iti (i = 1, ..., n− 1). (7)

Once DoD vector images have been obtained, keypoints are identified as local
minima/maxima of the DoD images across scales. This is done by comparing
each pixel in the DoD images to its eight neighbors at the same scale and nine
corresponding neighboring pixels in each of the neighboring scales. If the pixel
value is the maximum or minimum among all compared pixels, it is selected as a
candidate keypoint. This algorithm is carried out through all the channels of the
vector image: DoDi, (i=1,...,m). The maximum and minimum which are found
in every channel will be considered as the interest points, which are very robust
points suitable for matching purpose.

3.3 Descriptor Construction

After localizing the interest points, feature descriptors are built to characterize
these points. These descriptors should contain the necessary distinct information
for their corresponding interest points. Like SIFT, the local gradient-orientation
histograms for the same-scale neighboring pixels of an interest point are used as
the key entries of the descriptor. The descriptor is calculated channel by channel.
The feature descriptor is computed as a set of orientation histograms on (4× 4)
pixel neighborhoods. The orientation histograms are relative to the keypoint
orientation. Histograms contain 8 bins each, and each descriptor contains an
array of 4 × 4 histograms around the keypoint. This leads it to be a feature
vector with 4 × 4 × 8 = 128 elements.

In our case, m channel vector image, for a specific keypoint, it has m de-
scriptors which we combine as a vector, des = [des1,des2, . . . ,desm]⊤, where
m is the dimension of the vector images. Hence, the descriptor des of the vec-
tor image is a m × 128 dimension-based vector. This descriptor will be used
for matching, and all the descriptors from all the interest points form a feature
descriptor database.

4 Shape Matching and Registration

In our framework, shape matching is to match the interest points in different
objects since the interest points are considered as most reliable feature points
presented in surfaces. In Section 3, we have explained how the feature descriptor
for the each interest points is calculated and how a feature descriptor database
is formed.

Descriptor matching is performed for the constructed local descriptors by
comparing the distance of the closest neighbor (DISCN ) to that of the second-
closest neighbor (DISSCN ). The distance of two descriptors, des1 and des2
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which are m dimension vectors, is calculated by,

DIS =
m
∑

i=1

‖ des1i − des2i ‖ . (8)

Once the DISCN and the DISSCN are found, the DISCN and the DISSCN

are compared to decide whether they are matched or not. The judge function
for the comparison is

threshold × DISCN <= DISSCN . (9)

If this inequation holds, the points are matched; Otherwise, they are not matched.
Since the 3D data is usually coarsely aligned through affine transformations,

we can use the uniform subdivision grid to speed up the matching. The Euclidean
distance bound (ED) of two potentially matched interest points is calculated
and can be used in efficiently finding the the closest and the second-closest
neighbors grids. After finding all the matched points, registration can be easily
achieved using thin-plate splines deformation with the matched points as point
constraints.

5 Experiments

To evaluate the proposed approach, we have applied our algorithm on matching
human neocortex surfaces, which were extracted from high-resolution SPGR
scans. For the neocortex surface, a genus zero surface, conformal mapping is
performed to transfer it to a sphere. The reparameterization which we used to
map the sphere to a 2D domain is

σ(θ, ϕ) = (cos θ cosϕ, cos θ sin ϕ, sin ϕ),

where θ and ϕ are the row and column in the 2D domain image. Based on this
planar parameter domain, we construct the shape image by assign the H and
λ values to each corresponding image pixel. Hence, the shape image is a two
dimensional vector image [I1, I2]

⊤, where I1 = H and I1 = λ.
After the shape image is generated, we use the vector diffusion to create the

DoD matrix, of which each row is a sequence of images in different scale in the
each channel.
(

DoD1

DoD2

)

=
(

DoDt0 DoDt1 . . . DoDtn−1
)

=

(

DoD1
t0 DoD1

t1 . . . DoD1
tn−1

DoD2

t0 DoD2

t1 . . . DoD2

tn−1

)

(10)

By finding the maximum and minimum in each row of the matrix as the interest
points, the descriptor is computed for each point. Each descriptor is a 2*128=256
dimension vector and all these descriptors form the descriptor database. The
matching algorithm is performed to find the matched points which satisfies the
inequation (9). Fig. 2 shows the matching result of two different subjects. To
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clearly see the matched points between the two shape images, only 10% of the
points are shown in the figure. We have conducted the evaluation on intersubject
matching of 20 brain surfaces. The results are evaluated quantitatively in terms of
major landmark overlap (the central sulcus, the sylvian fissure, and the posterior
sulcus). Table.1 shows the average mismatch distance of the above three major
landmark regions for 20 surfaces. The average mismatch distance error of the
total 20 different subjects is only 4.08 mm.

Fig. 2. Matching of two different subjects’ brain surfaces. 10% of matched points are
shown above using the linked lines.

Subject Number s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Average Mismatch distance(mm) 4.32 4.43 4.05 3.97 4.03 4.07 4.38 4.09 4.25 4.11

Subject Number s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

Average Mismatch distance(mm) 3.92 3.67 3.98 4.12 4.26 3.86 3.78 4.15 4.22 3.95

Table 1. Mismatch distance in terms of major landmark overlap.

6 Conclusion

In this paper, we have presented a novel and efficient surface matching framework
through diffusion over shape images. Our framework converts 3D surface match-
ing problem to a 2D shape image matching problem based on stable keypoints
and local features. The most robust features facilitate a reliable registration as
observed from our experiments. This is particularly important for inter-subject
surfaces from medical scans of different subjects since these surfaces exhibit the
inherited physiological variances among subjects. The 2D representation also al-
lows easier statistical analysis of other modality features directly on the matched
2D domain. Future work will be focused on multimodality data integration over
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the 2D domain to support more accurate localization of brain disorder regions
from population study.
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