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Abstract
This paper presents a novel and efficient multitask learning framework for image translation and saliency detection from
remote sensing images, which mainly contains the image translation network-weight sharing attention GAN (WSA-GAN)
and the salient object detection network-boundary guidance network (BGNet). WSA-GAN can be used to generate a large
number of synthetic infrared remote sensing images (IRIs) or optical remote sensing images (ORIs) from the corresponding
complementary modality images. Then, a new multimodal context-aware learning is proposed for feature extraction and to
coordinate the entanglement of latent features in themultimodal context ofORIs and IRIs. Since convolutional neural networks
donot performwellwhen the object has directional variance, our framework introduces the attention-awareCapsNet (AACNet)
to alleviate the problem and enhance the feature expressiveness. In addition, knowledge distillation strategy is introduced in
AACNet to reduce the model complexity. Finally, the multiscale feature learning network and the boundary-aware block are
designed to generate more accurate saliency detection results with clear boundaries. Experimental results demonstrate that
the presented image translation and salient object detection networks outperform other approaches.

Keywords Multitask learning · Image translation · Salient object detection · Remote sensing image · Context-aware learning

1 Introduction

Salient object detection is of great importance in resources
exploration, environmental monitoring, and sea navigation.
The fundamental challenges in salient object detection from
optical remote sensing images (ORIs) lie in that ORIs span
a large area with complex background and various noise
interference. In addition, ORIs are vulnerable to influence
from weather conditions such as wave disturbance, day-
light and cloudy conditions. Compared to ORIs for salient
object detection, IRIs provide better clues to search for salient
objects but suffer from fuzzy edges. As a result, the salient
object detection technology integrating both ORIs and IRIs
can extract complement feature information and improve the
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accuracy of salient object detection. Unfortunately, the avail-
ability of IRIs is extremely limited. Currently, there are few
public IRIs for research exploration. In contrast, ORIs are
readily available and have the potential to augment IRIs if
translation from ORIs to IRIs is viable. However, current
image-to-image translation techniques are inefficient and
lead to poor quality of generated images due to the imbal-
anced information from the two modality domains. The task
of salient object detection in ORIs/IRIs remains very chal-
lenging.

In response to the aforementioned issues, we propose
a multitask learning framework, based on novel image-to-
image translation and salient object detection algorithms,
to enhance the feature representation capabilities for better
saliency analysis. More specifically, to address the issue of
the limited availability of IRIs, we design the weight-sharing
attention GAN (WSA-GAN) that can convert ORIs to IRIs
(and vice versa). Thus, multimodal context information and
latent feature can be generated even from a single input
modality (i.e., either ORIs or IRIs). A novel feature extrac-
tion network, namely multimodal context-aware learning
(MCL), is then used to extract and fuse the features of those
two modalities. To further explore the features’ representa-
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tion capabilities, we design a new salient object detection
network, in which the attention-aware CapsNet (AACNet)
offers a dynamic sigmoid routing and a EM routing with
the attention-aware strategy for developing higher-level cap-
sules to capture complex characteristics in salient objects,
and finally, the boundary guidance network (BGNet) is used
to separate salient items from the background. Our proposed
network structure is shown in Fig. 1

Our main contributions can be summarized as follows:

• We propose a novel WSA-GAN to achieve high-quality
image translations between ORIs and IRIs, in which the
multimodal feature share block (MFSB) can effectively
exchange the information of different modalities and
multiadditive attention block (MAB) can further improve
the feature reusability. In addition, we introduce the regu-
lation terms and texture loss to construct the WSA-GAN
loss function.

• A novel representation learning framework, MCL, is
proposed, which learns global and local contextual infor-
mation through three different context-aware blocks from
the input/translated multimodal remote sensing images.
To better entangle the latent feature vectors of the two
modalities, we further introduce the inter-modal feature
mapping loss in MCL.

• Due to the capabilities of the capsule network in describ-
ing the shape size, direction and deformation informa-
tion,we design an improvedCapsNet structure for further
feature enhancement. We present AACNet with the fea-
ture fusion attention-aware module (FFAM). AACNet is
able to narrow the search space when the route from
low-level capsule to high-level capsule occurs, which
indicates AACNet pays more attention to the feature
information with high correlation. This significantly
retains the intrinsic feature information while reducing
the possibility of noise allocation for boundary guided
saliency detection.

• Our method outperforms the state-of-the-art (SOTA)
methods in the experiments on image translate and
saliencydetection.The ablation study shows there is great
improvement when integrating MAB in WSA-GAN,
attention-aware strategy and knowledge distillation strat-
egy in AACNet.

2 Related work

Image translation, salient object detection and context-aware
learning are very important research topics in computer
vision.We review the classicmethods below. Interested read-
ers can refer to the survey articles [1–3] to further study other
methods.

2.1 Image-to-image translation

Image-to-image translation techniques aim at learning a
function to map an input image to the desired output image,
which can be divided into three categories: image methods
[4, 5], GAN approaches [6–12] and separating spaces meth-
ods [13–15]. Recent work mainly focused on mapping the
source image into a common latent feature space through
convolutions and decoding those latent features to target
domain image by using transposed convolutions. Compared
with traditional methods [4, 5], GAN-based approaches have
achieved promising results which can be classified into two
types of transfer learning: supervised learning [6, 7, 12]
and unsupervised learning [8–11]. Isola et al. [6] proposed
a pix2pix algorithm model for image-to-image conversion
based on cGAN [16]. Wang et al. [7] proposed a method to
generate high-resolution images using pix2pix. Pix2pix algo-
rithm combines the antagonism loss and L1 loss between the
source image and the target image. Therefore, the models
input paired data sets and belongs to supervised learning.
Yoo et al. [12] employed an additional discriminator in the
original GAN to judge whether the image pairs from differ-
ent domains are related, which can constrain the consistency
between the generated image and the ground truth image.

However, the collectionof paireddata samples is extremely
difficult, so the unsupervised learning image-to-image trans-
late algorithm has received more attention. Zhu et al. [9]
proposed CycleGAN, the first unsupervised image-to-image
conversion model, which ensures that the generate image
can retain the structure and content of the real source domain
image to the greatest extent. Some recent work [8, 11] also
used the same principle and modify the loss function to
enhance the robustness of the system. More recently, Li and
Tuzel introducedCoupleGAN (Cogan) [17],which learns the
joint distribution of the two domains in the potential space to
achieve unpaired image translation. Furthermore, Liu et al.
[10] proposed an unsupervised image-to-image translation
network (UNIT) based on the assumption of shared potential
space. In addition, several image-to-image translation algo-
rithms presume that the latent space of pictures may be split
into a content space and a style space. Huang et al. [14] pro-
posed MUNIT, a multimodal unsupervised image-to-image
translation framework with two latent representations for
style and content. Similarly, Lee et al. [13] proposed diverse
image-to-image translation (DRIT), which is based on dis-
entangled representation on unpaired data. DRIT divides the
latent space into a domain-invariant content space and a
domain-specific attribute space. PSC-GAN [15] converts the
abstract representation of images into code representation
through visual content disentanglement module (VCDM).
However, the above image translation methods perform the
image translation without the consideration of their interre-
lationship. Therefore, these methods can not semantically
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align and unify the features in latent space for downstream
image analyses. Inspired by [6], we design the generator by
using a share weight strategy which can take full advantage
of multimodal information from the pairs of the remote sens-
ing images. The network architecture and design are totally
different from the existing WSA-GANs [18–20] in the liter-
ature. In our WSA-GAN, we introduced a MFSB module as
a dynamic feature interaction mechanism, which can bal-
ance the gradients of the two network branches with the
inter-modal feature dependencies to ensure the joint learning
feature representation for the task of image transformation.

2.2 Context-aware learning

In image processing tasks, various approaches have been
presented to incorporate the context-aware information. In
some recent works [21–24], context cues were potentially
incorporated into featuremaps, such as deeper global context
information and shallower local context features. Li et al. [21]
proposed themultilayer feature context encoding network for
the remote sensing image scene classification by using the
multiscale spatial context information contained in the mul-
tilayer features. Wang et al. [22] extracted global and local
structures from hyperspectral images for scene classification
by incorporating contextual information into the classifier,
because adjacent pixels are highly likely to belong to the
same class. The extraction of useful context information is
also critical to the salient object detection task. In [23], the
relationship between regional context and dominant objects
was adopted to detect salient objects from their surrounding
context to guide advanced tasks. The work [24] presented
a residual refinement network that first recovers high-level
semantic context information, then strengthens features at
all scales.

However, the existing saliency models rarely study the
multimodal context-aware information of remote sensing
images (e.g., in ORIs and IRIs) and their relational impor-
tance. To bridge this gap, we propose the multimodal
context-aware learning for ORIs-IRIs image pairs to extract
their context-aware relational information.

2.3 Salient object detection

Salient object detection (SOD) is a method that simulates
human visual perception to locate the most important tar-
get in the scene. Traditional SOD approaches based on
hand-crafted features are divided into two groups, includ-
ing bottom-up methods [25, 26] and top-down methods [27,
28]. Readers can gain a comprehensive understanding of
these methods from [2]. However, when capturing high-level
semantics in complex scenes, these methods easily become
ineffective.

On the other hand, CNN-based models [29–34] can be
trained end-to-end using pixel-wise annotated saliencymaps,
which have broken the performance bottlenecks. In [29], an
edge guidance network (EGNet) was proposed to simulate
the two types of complementary information between salient
edges and objects through a single network. By introducing
short connections to the skip-layer structureswithin the holis-
tically nested edge detector (HED) architecture, Hou et al.
[30] introduced a succession of short connections between
shallower and deeper side-output layers.

Compared with common scenes, Li et al. [31] proposed
the salient object detection method based on deep learning
for remote sensing images. Similarity, Zhang et al. [32] pro-
posed a saliency adaptivemultifeature fusionmodel based on
low-rankmatrix recovery to detect remote sensing images by
integrating color, intensity, texture andother clues.Moreover,
Hu et al. [33] proved that the use of deep contextual infor-
mation effectively improves the accuracy of salient object
detection. In [34], closure guided attention network (CGAN)
and the coarse significance network (CSN) jointly supervise
the feature channels to eliminate simplicity bias.

The above CNNs methods intend to extract the perceptual
contexts for salient object detection. However, they ignore
the intrinsic features of objects, such as scale and orientation,
which often leads to incomplete segmentation of the saliency
detection. To address this problem, the capsule networks use
vectorized capsule neurons to encode feature information,
and use weight matrices and dynamic routing algorithms
to convey spatial relationships between feature objects with
a higher level of abstraction modeling capability. Yu et al.
[35] proposed a convolutional capsule network for detect-
ing vehicles from high-resolution remote sensing images.
Later, they [36] presented a sparse anchoring guided high-
resolution capsule network (SAHR-CapsNet) for geospatial
object detection. In [37], a multilevel CapsNet framework
was proposed to achieve efficient military target recognition
with the small training dataset.

In order to explore the routing mechanism of the cap-
sule network and reduce the computational complexity of the
capsule network. Sabour et al. [38] suggested a dynamic rout-
ing method to learn the intrinsic spatial distribution between
the portion and the whole. Later in [39], Hinton et al. con-
solidated their findings by presenting the matrix CapsNet,
which featured a pose matrix and an activation probabil-
ity for each capsule. Based on [38, 39], some recent works
[40–42] continued to innovate the routing mechanism. Feng
et al. [40] designed a novel dual-routing mechanism to fil-
ter low-discriminative capsules which consists of inter-video
and intra-video. Zhang et al. [41] implemented a dual flow
strategy, called two-stream part-object relational network
(TSPORTNet), to reduce network complexity and possible
redundancy during capsule routing. Moreover, Mazzia et al.
[42] introduced a non-iterative parallel routing algorithm
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to replace dynamic routing, which effectively reduces the
number of capsules between subsequent layers by using the
self-attention mechanism.

The key difference between themethodsmentioned above
and our proposed approach lies in the fact that our method is
using multimodal context-aware learning to make full use of
optical, infrared, andmore importantly, their relational infor-
mation. The detectionmethod BGNet combines the AACNet
andutilizes context-aware informationbyMCL.Thenetwork
architecture and design are totally different from the existing
BGNets [43, 44] in the literature. In BGNet, we employed
multiscale dilated convolution with capsule salient map to
fuse feature information at different scales and enhance the
directional feature representation capabilities for the edge
of objects in remote sensing images. The latent space GAN
transforms the information from the descriptor space to the
latent feature space and, then, use the feature fusion attention-
awaremodule (FFAM) to fuse the two-way routing to explore
and unify the multimodal relational representations.

3 Methodology

In this work, we propose WSA-GAN to learn the conversion
from ORIs to IRIs (and vice versa) and BGNet for salient
object detection from ORIs and IRIs.

3.1 Overview

The entire end-to-end deep neural network framework con-
sists of five parts, including WSA-GAN, MCL, latent space
GAN, AACNet, and BGNet, as shown in Fig. 1. During
image translation through WSA-GAN, we use multiadditive
attention blocks (MABs) to filter features and multimodal
feature share blocks (MFSBs) to share the inter-modal fea-
tures. The schematic diagram of MABs and MFSBs is
shown in Fig. 2. The network consists of compressed path-
ways for extracting localized features and extended paths
for resampling the image mapping along with contextual
information. To encourage more semantically relevant out-
put, skip connections are utilized tomix high-resolution local
characteristics with low-resolution global features. In fea-
ture learning with MCL, the input and translated ORIs-IRIs
pairs are used as the input, and the structure of two MCLs is
shown in Fig. 3. MCL contains three different context-aware
blocks to capture contextual information from varying recep-
tive fields. The output of two MCLs, which are unified in the
latent space GAN, is used to construct the primary capsule
in AACNet. The primary capsule is input to feature fusion
attentionmodule (FFAM)with an attention-aware strategy to
build higher-level capsules. The schematic diagram of recip-
rocal attention module (RAM) and dual attention module
(DAM) in FFAM is shown in Fig. 5. At the final stage, we

design multiscale feature learning network (MFLN) to gen-
erate the multiscale aggregated feature and boundary-aware
block to produce the edge feature, as illustrated in Fig. 1. To
generate the saliency detection result which are close to the
ground truth, we combine the multiscale aggregated feature,
the edge feature and capsule salient map to derive the final
saliency. In the following, we introduce the novel techni-
cal components of the proposed method: WSA-GAN, MCL,
latent space GAN, AACNet, and BGNet.

3.2 Weight-sharing attention GAN

We build an image translation network, weight sharing atten-
tion GAN (WSA-GAN), to handle a relatively small number
of ORIs-IRIs image pairs. Due to the fact that there exists
correlations among scene contents between the tasks of
generating paired ORI and IRI, the MFSB is introduced
into WSA-GAN to extract features from the two shared
weight generators to improve the accuracy of the output
images. Sharing weights in our networks between two tasks,
when learning for two related sets of data, increases net-
work robustness and learning efficiency since generators can
fully utilize context-aware feature vectors by sharingweights
across the two generators. Both encoders are constrained to
encode the same semantic items in different styles, and the
method learns to use the similar encoding to represent two
visually distinct domains by sharing the multimodal feature
information (i.e., ORIs and IRIs domains).

Multimodal feature share block As a result, we construct
the multimodal feature share block (MFSB) as depicted
in Fig. 2, which consists of two feature branches: infrared
branch f I RI and optical branch fORI . Most of the existing
cross modal feature fusion methods are designed on the basis
of addition or concatenation operation, which often causes
redundant information and complex structure. Inspired by
the attention mechanism, this work uses element-wise mul-
tiplication to build MFSB which fuse the infrared feature
f I RI and optical feature fORI . Through the multiple feature
fusion, infrared feature f I RI and optical feature fORI will
gradually absorb each other’s useful information and reduce
redundant information. Considering the noise of shallow fea-
tures, this paper usesMFSB to cross fuse optical and infrared
features in the deeper level of the generator.

Multiadditive attention block In the deep stage of cod-
ing, the network will extract features with rich semantic
information. However, due to cascading convolution and
nonlinearity, the loss of spatial details becomes severe, which
will lead to poor final image conversion results. To solve
this problem, we designed MAB which is incorporated into
the basic U-Net architecture in order to highlight important
aspects via skip connections. A gating signal g is used for
each pixel to determine the focal region. First, we deployed
convolution layer-batch normalization structure to treat the
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Fig. 1 The overall architecture of our multitask learning framework.
The first stage is weight-sharing attention GAN (WSA-GAN), where
ORIs-IRIs image pairs are input to train the network to have the ability
to generate corresponding IRIs from ORIs (and vice versa). Multiaddi-
tive attention blocks (MABs) filter the features propagated by skipping
connections. The features ( f1, f2, f3, f4) extracted by the generator in the
first four layers of the encoding part are used as input to the multiscale
feature learning block (MFLN). MFLN outputs multiscale aggregated
features (P1, P2, P3) to add accuracy for subsequent saliency detec-
tion. The second stage is multimodal context-aware learning (MCL),
where we perform multimodal feature extraction and fusion on the
ORIs-IRIs pairs generated in the first stage, and input these features into

the attention-aware CapsNet (AACNet) in the third stage. Before the
third stage, our Latent Space GAN can generate a joint potential space
vector FN through training, which includes optical and infraredmodali-
ties. Fc represents the features ofMCLoutput. Next, AACNet processes
the features Fc, and the primary capsules are transited to higher-level
capsules by feature fusion attention-aware module (FFAM). Higher-
level capsules and (P1, P2, P3) are used as inputs to the last phase
of the boundary guidance network (BGNet). In order to better gen-
erate saliency detection results, we developed boundary-aware block
(BAB), which can process (P1, P2, P3) to the edge features (Fe).
Finally, BGNet will combine Fe, (P1, P2, P3) and capsule salient map
to generate the final salient map

gating signal (g) and input features (x). Referring to the
self-attention mechanism, we use max-pooling layer and
element-wise multiplication operation to enhance the gat-
ing signal. Inspired by the spatial attention mechanism, we
fuse the gating signal branch and the input feature branch
using the addition operation and the result is further pro-
cessedby theLeakyReLUactivation-convolution layer-batch
normalization-Sigmoid activation structure. The decoding
layer output (̃x) is the construct from gating signal (g) plus
the element-wise product of attention coefficients (η) and
input features (x).

In the GAN expanded stage, these trimmed features are
concatenated with resampled output maps at a certain scale.

Finally, the generator is trained to generate the ORIs or IRIs
with a size of 512×512. The discriminator is used to deter-
mine whether or not the input picture is real or generated.
The discriminator, given an input image, uses a series of
convolution layer-batch normalization-LeakyReLU activa-
tion combination to extract the image’s multiscale features.
Finally, the discriminator outputs the result using the fully
connected layer and the softmax activation function. The out-
put result of the discriminator is the estimated probability of
judging that the input image is a real image. As illustrated
in Fig. 1, there are two sets of discriminators and generators
introduced here, corresponding to IRIs-ORIs and ORIs-IRIs.
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Fig. 2 Diagram of the multimodal feature share block (MFSB) and
multiadditive attention block (MAB). MFSB: First, the channels num-
bers of f I RI and fORI are compressed by a convolution layer, which
is convenient for the subsequent element-wise multiplication to fuse
and transform the features, and then, recover the channels numbers
of fused features by the convolution layer, batch normalization and
LeakyReLU activation. Finally, we add the fused feature to the original
feature to realize the sharing of multimodal feature information. MAB:
To transfer important information to the decoding layer output (̃x), the
input features (x) are scaled with attention coefficients (η). Contex-
tual information is provided by the coarser gating signal (g). Trilinear
interpolation is used to grid resample attention coefficients

WSA-GAN Loss Although the learning process is auto-
matic, we still need to carefully design the objective function
to determine the goal of optimization. In WSA-GAN, the
objective function is a combination of the conditional GAN
loss and the regularization term and texture loss. The condi-
tional GAN loss can be formatted as follows:

L(G, D) = ExORI ,yORI [log D(xORI , yORI )]+
ExORI [log(1 − D(xORI ,G(xORI )))]+
ExI RI ,yI RI [log D(xI RI , yI RI )]+
ExI RI [log(1 − D(xI RI ,G(xI RI )))],

(1)

where xORI and xI RI represent the source images of ORIs
and IRIs, yORI and yI RI are the corresponding target images.
G is the generator, D is the discriminator, and E represents
the expectation of the discrimination outcomes. The source
images xORI and xI RI are used as the condition term entered
in the discriminator. The discriminator’s goal is to maximize

the expected value, while the generator tries to minimize the
expected value, G∗ = argmin

G
max
D

L(G, D).

Regularization Terms In order for the image created by the
generator to be close to the ground truth image in the target
domain, the conditional GAN loss must be minimized. To
encourage the generated and target images to have similar
styles, the regularization terms are mixed as GAN losses,
which can be defined as follows:

L r(G) =ExORI,yORI [‖yORI − G(xORI)‖1]+
ExIRI,yIRI [‖yIRI − G(xIRI)‖1],

(2)

where ‖·‖1 denotes the L1 distance between the generated
images and the target images. Compared with the L2 dis-
tance, the L1 distance fosters sparsity and less blurring than
the L2 distance.

Texture Loss To constrain the internal drawing task and
ensure fine-grained textures,we employ a local binary pattern
(LBP)-based [45] loss function to minimize the difference
between the generated textures and the ground truth texture,
the equation as follows:

Lt = ‖LBP(Gray(G(xORI))) − LBP(Gray(yORI))‖1 +
‖LBP(Gray(G(xIRI))) − LBP(Gray(yIRI))‖1 , (3)

where Gray(·) is a function that converts a color image into
a grayscale image and LBP(·) is a differentiable LBP layer
that acquires a grayscale image and outputs a LBP image.

Multitask loss weight optimization A common way to
simplify multitask optimization is to balance different loss
functions. The final objective function is a weighted com-
bination of conditional GAN loss, regularization terms and
texture loss.

G∗ = argmin
G

max
D

L(G, D) + λ1Lr (G) + λ2Lt , (4)

where λ1 is the regularization coefficient and λ2 is the texture
coefficient, which are calculated by Eq. (5). With the regu-
larization constraint and texture constraint on the conditional
GAN, the generated image can not only deceive the discrim-
inator, but also have the same intensity, texture and structure
as the ground truth image. The weight by the relationship for
the loss weighting and task schedule is assigned as:

λi = 1 +
(

softsign(P̄ − Pi))min(θ, (max
j

Pj)
γ

∣

∣P̄ − Pi
∣

∣

δ
)

,

(5)

where Pi is the ratio of the current validation perfor-
mance to the target validation performance, P̄ is the
average value of Pi. θ limits the excessive difference
between the task weights, γ adjusts the speed and inten-
sity of weight deviation from uniformity and δ adjusts
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the emphasis on deviations of the current ratio from the
mean ratio. The softsign function is introduced to solve
the gradient problem; therefore, the network convergence
is faster and less prone to saturation. We use the grid
search method to train the hyper-parameters (θ, γ, δ) by the
validation set at {1, 5, 10, 15}, {0.1, 0.2, 0.3, 0.4, 0.5} and
{0.1, 0.2, 0.3, 0.4, 0.5}. The hyper-parameters (θ, γ, δ) are
set as (10,0.1,0.1) in our experiments.

3.3 Multimodal context-aware learning

In order to further explore the spatial context information
embedded in CNN multilayer features, this paper proposes
multimodal context-aware learning (MCL) that effectively
integrates both multimodal information. Figure3 shows two
sets of MCLs, and we first take one of them to explain the
processing flow. TheMCL consists of three parts: the feature
processing of IRIs, the feature processing of ORIs and the
multimodal feature fusion processing.

Feature extraction phase In the feature extraction phase,
we employ a convolution layer, a batch normalization, amax-
pooling layer and Res-blocks to extract feature. The max-
pooling layer is used for down-sampling, with a 3×3 kernel
and astride of 2.

Context-aware block The main purpose of the context-
aware blocks is to learn the spatial context information in
the feature. We design three different context-aware blocks
which have different structure to capture context information
from varying receptive fields. The different scale convolution
layers in three context-aware blocks are designed to enhance
the scalability of the complementary representation. The first
block contains a 3×3 convolution layer, a batch normaliza-
tion and a LeakyReLU activation. The second block contains
two residual blocks. The residual block consists of three con-
volution layers each followed by a batch normalization and
a ReLU activation. The output feature of the last 1×1 con-
volution layer is added to the input feature as the final output
feature. The third block has two branches. One branch has
3×3 average pooling layer and 1×1 convolution layer, and
the other branch has 3×3 convolution layer and 1×1 convo-
lution layer. Each 1×1 convolution layer followed by a batch
normalization and a ReLU activation, and the two branches
finally merged by addition operation.

Feature superposition module The inter-modal feature
mapping loss(Lopt−inf , L inf−opt) is deployed prior to the fea-
ture superposition module, which enforce the features from
the optical branch and the infrared branch to be as similar as
possible. The entanglement ofmultimodal latent features is to
synergistically and complementarily map the features from
different modalities (i.e., optical or infrared) into a unified
joint latent space, which reconstructs the encoded informa-
tion (targets or background) from the pair of the remote
sensing images to improve the accuracy of saliency detection.

The feature superpositionmodule entangles the features from
the ORIs branch and the IRIs branch in MCL to improve the
efficacy of the feature information and decrease divergence.
Webuild the basicmodules based on convolution layer–batch
normalization–pooling layerswhich can realize the compact-
ness of image feature representation. In the end, the three
processed features are spliced by the concatenation operation
and mapped from the pool layer to their respective feature
space. We deploy the addition operation to fuse FIO and
FOI . Context awareness is used to enhance the spatial and
semantic relationships of feature maps from different modal-
ities.Multimodal feature fusion processing parts for IRIs and
ORIs enhance the semantic relationship between features of
differentmodalities.And the pooling layers at different scales
aim to sample the features at different dimensions to obtain
spatial information at different locations and scales in the
image. The pooling layer with smaller size can reflect more
information about the spatial details of an image, while the
larger size pooling layer can reflect information about larger
subareas of an image.

Inter-modal feature mapping loss We designed the inter-
modal feature mapping loss (Lopt−inf , L inf−opt) prior to the
addition operation to better entangle the latent vectors of the
two modalities. The goal of modal feature mapping loss is to
entangle the feature vectors of IRIs and ORIs into a unified
joint latent space, which forces the outputs from the two
modalities to be as similar as possible. The detail of two loss
functions is expressed by:

Lopt−inf = EA
′
IRI∼I N F ′

[∥

∥

∥MI(Fe(A
′
IRI)) − BORI

∥

∥

∥

1

]

+
EAORI∼OPT

[∥

∥

∥MO(Fe(AORI)) − B
′
IRI

∥

∥

∥

1

]

,
(6)

L inf−opt = EA
′
ORI∼OPT ′

[∥

∥

∥MO(Fe(A
′
ORI)) − BIRI

∥

∥

∥

1

]

+
EAI RI∼I N F

[∥

∥

∥MI(Fe(AIRI)) − B
′
ORI

∥

∥

∥

1

]

,
(7)

where AIRI ∼ I N F and A
′
IRI ∼ I N F

′
represent the fea-

ture vectors of IRIs GT and IRIs generated, respectively.
AORI ∼ OPT and A

′
ORI ∼ OPT

′
denote the feature

vectors of ORIs GT and ORIs generated, respectively. In
Fig. 3, Fe denotes the feature extraction, and MO and MI

denote the three context-aware block for ORIs and IRIs,
respectively. E represents the expectation of the outcomes.
BIRI = MI (Fe(AIRI)), B

′
ORI = MO(Fe(A

′
ORI)), B

′
IRI =

MI(Fe(A
′
IRI)) and BORI = MO(Fe(AORI)).

3.4 Latent space GAN

Our latent space GAN, which contains a generator G and a
discriminator D, operates in the joint latent space. As seen
in Fig. 1, the input is a random noise vector and generator
produce FN to deceive discriminator. Taking a pair of IRI-
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Fig. 3 The architecture of two multimodal context-aware learnings
(green and yellow). AI RI and A

′
I RI represent the IRIs GT and gen-

erated IRIs, respectively. AORI and A
′
ORI represent the ORIs GT and

generated ORIs, respectively. MO and MI denote the processing flow

of three context-aware blocks for ORIs and IRIs, respectively. Lopt−in f
and Lin f −opt are detailed in Eqs. (6) and (7). FIO and FOI mean the
concatenation features of green MCL and yellow MCL, respectively.
FC is the final output feature of two MCLs

ORI, we encode them into one joint latent vector FC in the
joint latent space INF-OPT. During training, the multimodal
context-aware learning is fixed. We used Wasserstein GAN
[46] in the joint adversarial loss:

LJGAN =EFN∼Noise[D(FN)]−
EFC∼INF−OPT[D(FC)] + μL rgp,

(8)

where Lrgp represents the regularization gradient penalty
loss and μ is a scalar weight (default is 10). FN is the gener-
ator vector in the latent space Noise. FC is the latent vector
in the latent space INF−OPT.

3.5 Attention-aware CapsNet

To effectively extract the information in the remote sens-
ing image, it is necessary to redesign the feature extraction
module in the original CapsNet. The proposed AACNet is
dedicated to segmenting salient items from the background
and is used to investigate the relationship between objects in
the input images.

Knowledge Distillation Strategy We import knowledge
distillation strategy in AACNet, which can decrease the
number of network parameters while preserve themodel per-
formance. As shown in Fig. 4, the original AACNet is defined
as teacher network and the pruned AACNet is defined as
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Fig. 4 Our knowledge distillation strategy in attention-aware capsule
net (AACNet). Fc means the context-aware features from multimodal
context-aware learning (MCL)

student network. The difference between teacher network
and student network is the number of Res-block. We deploy
three Res-blocks to extract the deeper features with stronger
semantic information from multimodal context-aware fea-
ture prior to the operations of pose matrix construction and
activation construction in teacher network. In contrast, the
student network only remains one Res-block, which means
that the parameters of student network are less. The specific
process of our knowledge distillation strategy is as follows.
First, we pre-train the teacher model with cross entropy loss,
then we train the student model with the help of privileged
information learned by teacher model. The lower-level cap-
sule contains local features, and its different dimensions
capture different aspects of the information space [38]. The
length of the output vectors of the high-level capsule repre-
sents the probability of the existence of the entity, and the
direction represents the instantiated parameters. In order to
make full use of the capsule information,we build knowledge
distillation loss Lkd to constrain the inter-dimension corre-
lation similarity of lower-level capsules (primary capsules)
and the difference of information distribution of higher-level
capsules between teacher network and student network [47].
The covariance matrices are used to calculate the similarity
between them, which is defined as:

Mt = CT
t · Ct; Ms = CT

s · Cs, (9)

where Mt, Ms denotes the covariance matrices of lower level
capsules of the teacher network (Ct) and student network (Cs)
respectively. The knowledge distillation loss which contains
the lower-level capsules loss and higher-level capsules loss
is as follows:

Lkd =
∥

∥

∥

∥

Mt

‖Mt‖2 − Ms

‖Ms‖2

∥

∥

∥

∥

2

F
+

KL[log(σ (‖hs‖ /τ)), σ (‖ht‖ /τ)]τ 2,
(10)

where ‖·‖F is the Frobenius norm, σ(·) represents the soft-
max activation, K L[·] means the KL divergence and τ

denotes the temperature parameter [48]. hs and ht are the

higher-level capsules of student network and teacher net-
work, respectively.

The training loss function of AACNet LAACNet contains
two-part, knowledge distillation loss and capsule salient map
(CSM) cross-entropy loss Lce:

Lce(CSM) = −
W×H
∑

i=1

(Gs1(i)log(CSM(i))+

Gs0(i)log(1 − CSM(i))),

(11)

LAACNet = αLce(CSM) + βLkd, (12)

where Gs1 and Gs0 represent the salient object pixels and
background pixels, respectively, in the salient ground truth.
CSM denotes the capsule salient map generated by high-
level capsules through up-sampling layer. α and β are the
hyperparameters for cross-entropy loss and knowledge dis-
tillation loss, respectively.

Construction of primary capsules The features generated
by themultimodal context-aware learning are first transferred
into 8 capsules, each of which is consisted of an activation
value and a 4×4 pose matrix. Two Conv-BN-LeakyReLU
activations are used to downsample the multimodal feature
maps Fm(128×128×192) into featuremap Fd (64×64×128)
for the subsequent operation. First, we construct the pose
matrix Mp(64× 64×8×16) by the convolution layer and
reshape layers. Then, we compute the activation informa-
tion A(64×64× 8×1) of 8 capsules via one convolution
layer. In the end, we combine the pose matrixes Mp and
the activation information A to set up the primary capsules
Cp(64×64×8×17).

Attention-aware strategy We split the primary capsules
into two capsule groups Cr1(64×64×4×17) and Cr2

(64×64×4×17). To get a capsule with more advanced fea-
tures,We reshape the two sets of capsules toC

′
1(2048×36×17)

and C
′
2(2048×36×17) via a convolution layer with the step

size of 2 and the channel number of 9. Then sent Cr1 and
Cr2 into two routes (EM routing and Sigmoid dynamic
routing), respectively. After that, we input the pose matrix
and the transformation matrix to calculate the number of
votes V (2048×36×8×16) from the low-level capsules to
the adjacently high-level capsules. At last, we assign low-
level and high-level capsules to each other. The difficulty
of allocating each portion to the total can be solved by
discovering tight voting clusters from each part. The estab-
lishment of RCaps2 is identical to RCaps1 but differs in one
way. Instead of EM routing, we employ Sigmoid dynamic
routing [38] in RCaps2. Jia and Huang [49] proved that
the probability of sending features to potential capsules is
almost equal, which may lead to wrong classification. There-
fore, we use the sigmoid function to calculate the coupling
coefficient θi j , which no longer represents the distribution
probability of the final capsule, but represents the correla-
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Fig. 5 The reciprocal attentionmodule (RAM) and dual attentionmod-
ule (DAM) in feature fusion attention-aware module (FFAM). The
RCaps1 is in charge of extracting background characteristics with a
broad receptive field. The RCaps2 is designed to extract salient objects,
and the RAM is used to improve the features on several levels, which is
inspired by spatial attention. Then, the output of the two routing is fused
via the DAM which is inspired by self-attention and channel attention

tion strength between the primary capsule and the potential
capsule. We apply feature clustering for the final feature
FR1(32×32×128) and FR2(32×32×128) after the routing
process. For dual-routing attention-aware fusion, we employ
the Feature fusion attention-aware module (FFAM), which
consists of two branches, depicted in Fig. 5. Based on the
spatial attention structure, we create the reciprocal attention
module (RAM) and applied it to several layers of the RCaps2
branch. RAM can emphasize the spatial information related
to salient object areas due to the contribution of spatial atten-
tion structure.

We create a dual attention module (DAM) based on self-
attention and channel attention to efficiently merge the two
branches. Self-attention is employed to represent the dis-
tant dependence of pixels in different regions and get global
context information in the RCaps1 branch. Dilated gated
convolution is used in the EM routing branch (RCaps1) to

provide appropriate content by extract features with large
receptive field. The sigmoid routing branch (RCaps2) makes
advantage of RAM to improve edge features and the gated
residual block to make the branch more detailed. Finally, we
combine the two branches using DAM to create higher-level
capsules. Based on the multimodal context-aware features,
attention-aware capsule net constructs two attention branches
to avoid the attentionmechanism focusing on a single region,
which makes the final generated capsule salient map more
accurate and the model more robust.

3.6 Boundary guidance network

The proposed boundary guidance network (BGNet) is shown
in Fig. 1, which can generate accurate saliency detectionmap
based on the guidance of boundary-aware block (BAB) and
multiscale feature learning network (MFLN). First, we use
MFLN to output multiscale aggregated features (P1,P2,P3)
based on the shallow features ( f1, f2, f3, f4) extracted by
WSA-GAN, which will be used by the BAB to generate
edge map for supervised training. Although the boundary of
the object inside in capsule salient map (CSM) is blurred,
irregular bright spots appear in the background area, and
the smoothness of the salient parts is low. We can use the
multiscale aggregation features (P1,P2,P3) extracted by
MFLN, and the edge features extracted by BAB to gener-
ate the more accurate saliency detection map through the
guidance of concatenation and convolution operations and
conduct supervised training with the saliency GT, as shown
in Fig. 1.

Multiscale feature learning network We designed multi-
scale feature learning network (MFLN) to further process the
extracted shallow features ( f1, f2, f3, f4). As shown in Fig. 1,
from f1 to f4 are divided into four groups, and each group
stacked up the features treated by three different parame-
ters of dilated convolution layers. The multiscale aggregated
features (P1,P2,P3) are extracted using the MFLN which
allows rich contextual information to be captured without
increasing the kernel size. In addition, we collect context
data across multiple scales and combine deep features with
shallow features since low-level feature maps help to cap-
ture details, while high-level feature maps help to capture
semantic knowledge.

Boundary-aware block By reviewing the existingORI and
IRI saliency detection models, we find that in the current
work, there are few studies that focus on boundary infor-
mation. Therefore, we propose the edge-aware block that
focuses on boundary information, which enables our model
to overcome the fuzzy boundary provided by CSM and gen-
erate a salient prediction map with clear boundary. First,
we select the multiscale aggregated features (P1,P2,P3)
from MFLN and up-sample them to the same dimension
for concatenation operation. Then, we use convolution layer
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Fig. 6 Our Dataset. The optical remote sensing images (ORIs) are in
the first row, and the infrared remote sensing images (IRIs) are in the
second row

to further process the concatenated feature and the result is
called Fetmp . At last, based on the channel attention mecha-
nism, the temporary edge features Fetmp are further processed
to generate clearer edge information by:

Fe = Up(Conv(Conv(MaxP(Fetmp )) × Fetmp + Fetmp )),

(13)

where MaxP represents the max-pooling layer, Up(·) rep-
resents upsampling operation, Conv(·) denotes convolution
layer followed by a batch normalization layer and a ReLU
activation, “+ " is element-wise addition operation and “× "
is element-wise multiplication operation.

With the aid of edge features (Fe) and the multiscale
aggregated features (P1,P2,P3), the process of generating
the multiscale saliency detection features from CSM is as
follows:

FSi = Up(Concat(Up(CSM), Pi)), (14)

where i ∈1,2,3, Concat(·) is the concatenation layer.
Then, based on edge feature Fe, the salient features FSi

are further processed to generate the final saliency detection
map Sm by:

Sm = Up(Conv(Concat(Fe, (Conv(Conv(FS3))

+Up(Conv(FS2) +Up(FS1)))))), (15)

whereConv(·)denotes convolution layer followedby a batch
normalization layer and a ReLU activation.

Cross-entropy loss We use cross entropy loss to realize
the edge supervision and saliency supervision. The edgemap
Em is generated from edge-aware block by up-sampling edge
features Fe. The cross-entropy edge loss is defined as:

Ledge(Em) = −
W×H
∑

i=1

(Ge1(i)log(Em(i))+

Ge0(i)log(1 − Em(i))),

(16)

Lobject(Sm) = −
W×H
∑

j=1

(Gs1( j)log(Sm( j))+

Gs0( j)log(1 − Sm( j))),

(17)

where Ge1 and Ge0 indicate the edge pixels and back-
ground pixels respectively in the edge ground truth. Gs1 and
Gs0 denote the salient object pixels and background pixels,
respectively, in the salient ground truth.

The overall loss function is LBGNet = Ledge(Em) +
Lobject(Sm). Therefore, the final salient features contain low-
level spatial information and high-level semantic information
and are guided by edge information, and we can generate
high-quality and more accurate saliency detection maps.

In order to realize multimodal image-to-image transla-
tion and saliency detection of multimodal remote sensing
images, with an end-to-end fashion, we use the different
weight parameters to fuse the above loss function (except
for L JGAN , the latent space GAN is to ensure the feature
reproducibility and we train it separately.) for the complete
model training. The complete model loss function is as fol-
lows:

LCM =μ1G
∗ + μ2(Lopt−in f + Lin f −opt )

+ μ3L AACNet + μ4LBGNet ,
(18)

where μ1, μ2, μ3 and μ4, respectively, represent the coef-
ficients of each loss function. We set μ1 = 0.3, μ2 =
0.2, μ3 = 0.2 and μ4 = 0.3 in our experiments.

Table 1 Quantitative evaluation
of image translation

Evaluation metrics MAE (↓) PSNR (↑) SSIM (↑) Model size (MB) Test time (ms)

Pix2pix 100.137 17.802 0.639 210 70

Pix2pixHD 102.025 16.896 0.621 713 87

CycleGAN 100.923 17.564 0.627 43 243

MUNIT 104.755 16.060 0.501 127 211

DRIT 103.895 16.152 0.567 717 301

DualGAN 98.436 17.449 0.637 270 294

Ours 96.497 18.402 0.682 879 85

Bold values indicate the best data for the corresponding evaluation indicator
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Fig. 7 Image-to-image translation results of IRIs-to-ORIs with different methods. a Input IRIs; b Ground truth of ORIs; c Pix2pix d CycleGAN e
DualGAN f Pix2pixHD g MUNIT h DRIT and i Our method

4 Experiments and implementation

In this section, we conduct extensive experiments and analy-
sis to verify the effectiveness and advantages of ourmultitask
learning framework. We compared our methods on the two
tasks, image translation and salient object detection, with the
state-of-the-art methods on different datasets qualitatively
and quantitatively. All models in this paper are trained on
an NVIDIA GeForce GTX1080Ti GPU, and the model is
trained using Pytorch 1.2.0 with momentum set to 0.9 and
weight decay set to 5 × 10−4. The initial learning rate was
10−4, the number of iterations of themodel is 800 epochs, and
the batch size is 2. The Adam optimizer [50] is used to train
our model with an initial learning rate of 10−4, β1 = 0.9,
β2 = 0.999 and ε = 10−8. The source code of our frame-
work and the dataset will be released shortly.

4.1 Datasets

Our dataset The experimental data of the self-made dataset

includes 800 ORIs and 800 IRIs from the Landsat-8 satellite.
We crop these images into image slices of 512*512 pixels,
which have a resolution of 0.5−2.0m/pixel. We manually
annotate the salient objects of the image at the pixel level.
Compared with other datasets, our image targets are smaller
and contain more complex scenes. Figure6 shows some of
these examples.

ORSSD dataset ORSSD dataset [31] collected 800 ORIs
fromGoogle Earth or other datasets, and the images areman-
ually labeled at the pixel level for a variety of significant
targets (islands, ships, vehicles, etc.). We conduct separate
training for this dataset, and the visual and quantitative com-
parisons are described in this section.

EORSSD dataset EORSSD dataset [51] is built based on
ORSSD dataset, which has more types of significant targets
and a larger number of images. In addition to the original 800
ORIs, the dataset includes another 1200 ORIs from Google
Earth. We also conduct separate training for this dataset, and
the visual and quantitative comparisons are presented in this
section.
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Fig. 8 Image-to-image translation results of ORIs-to-IRIs with different methods. a Input ORIs; b Ground truth of IRIs; c Pix2pix d CycleGAN e
DualGAN f Pix2pixHD g MUNIT h DRIT and i Our method

Fig. 9 P-R curves of different methods on the testing subset of the ORSSD, EORSSD and our dataset

4.2 Image-to-image translation

To demonstrate the efficacy of our proposed model, we
compare it to Pix2pix [6], CycleGAN [9], Pix2pixHD [7],
MUNIT [14], DualGAN [8], and DRIT [13]. The above
methods are retrained with our dataset under the default
parameter settings of the corresponding model. Both the
visual andquantitative comparisonwill be taken into account.

Evaluation metrics In this subsection, we use PSNR (peak
signal-to-noise ratio),MAE (mean absolute error), and SSIM
(structural similarity index) to evaluate the image conversion

quality. The index PSNR for image quality evaluation, which
is measured in db (decibels), depends on the mean square
error (MSE).Mathematically, the PSNR is defined according
to the error between the corresponding pixels as follows:

PSN R = 10 × log10
(2n − 1)2

MSE
, (19)

where n is the number of bits per pixel, andMSE is calculated
by:
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MSE = 1

H × W

W−1
∑

i=0

H−1
∑

j=0

[Iy(i, j) − IG(x)(i, j)]2, (20)

where H and W represent the height and width of images,
respectively; Iy stands for aGT image and IG(x) is a generated
image.

MAE uses pixel measures and relies on the error between
the predicted image and the real image, which is defined as:

MAE = 1

n

n
∑

i=1

|G(x)i − yi | , (21)

where n is the number of pixels in the image, and G(x)i and
yi are the values of the pixels for the generated image and
the GT image, respectively.

The standard SSIM is commonly used to evaluate the
structural similarity between grayscale images in terms of
three factors: luminance, contrast and structure, defined as:

SSI M(y,G(x)) = (2αyαG(x) + c1)(2δyG(x) + c2)

(α2
y + α2

G(x) + c1)(δ2y + δ2G(x) + c2)
,

(22)

where y andG(x), respectively, stand for the pixels of theGT
image and the generated one; αy and αG(x) are their average
values; δy and δG(x) represent their standard deviation, and
δyG(x) is the covariance of these two images; c1 and c2 are
two parameters to avoid the denominator being 0. The larger
the SSIM value, the more similar the structure between the
two images.

Comparison with other methods The results of these three
metrics on the dataset are shown in Table 1. From this table,
it can be seen that our method shows the smallest MAE, the
largest PSNR and the largest SSIM compared to the other six
methods. In addition, the reduction value of MAE reaches
1.939 and the increase values of PSNR and SSIM reach 0.6
and 0.043, respectively, compared to the results of the second
best method. The results of the image transformation are
plotted in Figs. 7 and 8, and the selected results have a variety
of targets, such as ships, islands andOil tanks. As can be seen
from the figures, our method is closer to the actual image,
although Pix2pix does generate competitive results, in which
our method has better results in terms of details.

4.3 Salient object detection

To demonstrate the advantages of our proposed model, we
compare it with the SOTA methods, PoolNet [52], DAFNet-
V [51], DAFNet-R [51], DSS [30], EGNet [29], RCRR [53]
and RRWR [25]. Since our dataset is the only one containing
ORIs-IRIs pairs, the IRIs saliency detection experiment use
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Fig. 10 Salient object detection result of IRIs with different method. a Input IRIs; b Ground truth images; c DAFNet-V d DAFNet-R; e PoolNet f
DSS g EGNet h RCRR i RRWR j Our method

our dataset. For the input with only optical modal (Fig. 11),
we use the optical branch method to compare with other
method. The above methods based on deep learning use our
dataset, ORSSD dataset and EORSSD dataset for retraining
under the default parameter settings of the corresponding
model. Both visual comparison and quantitative comparison
will be taken into account.

Evaluation metrics We use the precision–recall (PR)
curve, MAE score, F-measure and S-measure to evaluate the
performance of different methods. The saliency map can be
thresholded by integers ranging from 0 to 255 into some
binary saliency masks and then compared with the real val-
ues to obtain precision and recall. Different combinations of
precision and recall scores are used to draw the PR curve.

F-measure is an overall performance indicator, which is
computed by

Fβ = (1 + β2)Precision × Recall

β2Precision + Recall
, (23)

It is recommended to set β2 to 0.3 in [2].
MAE is defined as Eq. (21). However, in this phase of the

experiment, the generated image was replaced with saliency

map. S-measure [27] Sm is computed by:

Sm = αSo + (1 − α)Sr , (24)

where So and Sr represent the object-aware and region-aware
structure similarities between the prediction and the ground
truth, respectively. α is set to 0.5 as in [54].

Comparison with other methods On the two most promi-
nent remote sensing salient object detection datasets and our
own dataset, Fig. 9 depicts the PR curves of our method in
comparison to other methods. If we observe the upper right
corner of the PR curve, our method will produce higher
accuracy when the recall score is close to 1, which indi-
cates that the false positive rate is low. The advantages as
shown by the curve also suggest that our resulting image is
closer to ground truth. Table 2 lists the average values of
the F-measure, MAE, and S-measure for different methods.
Our model embodies competitive performance. On average,
our method outperforms other approaches in the three quan-
titative metrics on our datasets and maintains competitive
performance on ORSSD and EORSSD datasets. In addition,
the performance of training methods based on deep learn-
ing is significantly better than traditional methods. On the
ORSSD dataset, DAFNet-R (second-best method) reaches
0.9235 in F-measure, on the EORSSD dataset, it is 0.9060,
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Fig. 11 Salient object detection result of ORIs with different method. a Input ORIs; b Ground truth images; c DAFNet-V d DAFNet-R e PoolNet
f DSS g EGNet h RCRR i RRWR j Our method

Fig. 12 P-R curves of ablation study of knowledge distillation strategy on the testing subset of the ORSSD, EORSSD and our dataset

and on our dataset, it is 0.8855. We have a percentage gain
of 2.26 percent in F-measure, 0.16 percent in MAE scores,
and 1.12 percent in S-measure when compared to the second-
best method in our dataset. Our method has achieved greater
percentage improvements on the ORIs-IRIs dataset in terms
of the three quantitative metrics, i.e., F-measure, MAE and
S-measure, which demonstrates that the multimodal fusion
plays a significant role. Because the ORSSD and EORSSD
datasets are optical remote sensing datasets, compared with
the complete model structure used on our dataset, the model
on the ORSSD and EORSSD only retains one WSA-GAN
and MCL branch.

Figures10 and 11 depict the running results of a variety of
graphics with different properties, such as small targets, large
targets, shore targets, offshore targets, and center deviations.
Our model takes into account the majority of scenarios and
performs well with photos of various properties. In general,
our detection results are closer to the ground truth in many
situations than the SOTA methods.

4.4 Model analysis and ablation study

To demonstrate the importance of including the knowledge
distillation strategy, attention-aware strategy, and multiad-
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Fig. 13 Visual comparisons for the different routing strategy in salient
object detection ablation study. a Image; b GT; c Single-routing Cap-
sNet + BGNet; d Attention-aware CapsNet + BGNet

ditive attention blocks (MABs), we conduct model analysis
and ablation experiments.

Knowledge distillation strategy In order to verify the
importance of knowledge distillation strategy, we compared
the PR curves of the following two structures on ORSSD,
EORSSD and our dataset: AACNet with knowledge dis-
tillation strategy+BGNet and AACNet without knowledge
distillation strategy (using student network)+ BGNet. It can
be seen from Fig. 12 that on the three different datasets, the
knowledge distillation strategy makes our model produce
higher accuracy, which means the saliency detection map
is closer to the ground truth.

Attention-aware strategy To better understand the supe-
riority of the attention-aware strategy, we investigate two
architectures, including “BGNet+Attention-aware CapsNet”
and “BGNet+Single-routing CapsNet”, where the latter is
achieved by directly adopting the original CapsNet. As
shown in Fig. 13, the single-routing CapsNet incorrectly
marks some background areas as part of the salient objects,
which indicates that the single-routing strategy introduces
some noisy capsule assignments. In contrast, due to the
involvement of the attention-aware strategy, our CapsNet
successfullymitigates these noisy capsule assignments, help-
ing to cluster the correct salient parts together, thus constitut-

Fig. 14 Visual comparisons for the different GAN structure(MAB) in
image translation ablation study. a Image; bGT; cWeight-sharingGAN
(without MAB) d Weight-sharing attention GAN (contain MAB)

ing the entire salient object. From Table 3, we can see that,
after changing to the attention-aware CapsNet+BGNet struc-
ture, all evaluation indicators have improved. In our dataset,
Fβ increased by 3.41 percent, MAE decreased by 0.32 per-
cent and SSIM increased by 0.24 percent.

Multiadditive attention blocks In order to better under-
stand the superiority of the MABs, we studied two architec-
tures, including weight-sharing attention GAN and weight-
sharing GAN. The latter structure does not add the MABs
structure, but uses the original U-Net structure in the cor-
responding positions. As shown in Fig. 14, without MABs,
the image transformation is not effective and some details
do not match the real image. In contrast, the use of MABs
makes the image conversion better and the details are closer
to the real image. From Table 4, we can see that, after adding
the MAB module, all evaluation indicators have improved.
Among them, MAE decreased by 3.322, PSNR increased by
0.476 and SSIM increased by 0.035.

5 Conclusions

In this paper, we have presented an attention GAN net-
work with a weight sharing strategy to synthesize infrared

Table 3 Table caption

Dataset ORSSD EORSSD Our Dataset

Evaluation metrics Fβ(↑) MAE(↓) Sm(↑) Fβ(↑) MAE(↓) Sm(↑) Fβ(↑) MAE(↓) Sm(↑)

Single-routing CapsNet+BGNet 0.9154 0.0138 0.9192 0.8844 0.0068 0.9040 0.8740 0.0129 0.9252

Attention-aware CapsNet+BGNet 0.9368 0.0113 0.9254 0.9101 0.0047 0.9172 0.9081 0.0097 0.9276

Bold values indicate the best data for the corresponding evaluation indicator
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Table 4 Quantitative evaluation of different GAN structures in image
translation ablation study

Evaluation metrics MAE(↓) PSNR(↑) SSIM(↑)
Weight-sharing GAN 99.819 17.926 0.647

Weight-sharing Attention GAN 96.497 18.402 0.682

Bold values indicate the best data for the corresponding evaluation indi-
cator

remote sensing images from optical remote sensing images
(and vice versa) in order to address the problem of a
lack of IRIs and build complementary visual features for
more accurate saliency detection. To fully explore context-
aware information of IRIs and ORIs, we have designed a
context-aware learning that co-encodes the entanglement and
de-entanglement of features from the multimodal of IRIs
and ORIs. Then, we construct the attention-aware CapsNet
which can further enhance feature representations and cor-
relation them through latent space, to address the problem
that some targets (e.g., ships, vehicles, etc.) have directional-
ity, yet CNN is not sensitive to the directionality. Finally, the
boundary-aware block is proposed to generate final saliency
detection result through the multiscale feature learning net-
work, boundary-aware block and capsule salient map. In the
image translation and salient object detection multitask, we
noticed that our large model requires high memory and high
computation cost. In the future, we will focus on how to
reduce the cost of the computational tasks and model size
while maintaining accuracy, such as lightweight capsule net-
works.
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