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This paper presents a visualization and analysis framework for evaluating changes in structural organization
of fiber bundles in human brain white matter. Statistical analysis of fiber bundle organization is conducted
using an anisotropy measure, volume ratio (VR), which is ratio of anisotropic and isotropic components.
Initially fiber bundles are tracked using a probabilistic algorithm starting from seed voxels. To ensure
accurate selection of seed voxels and to prevent operator bias, a reference brain (MNI_152) is used when
marking ROIs. Individual structural MRI brain scans are mapped to the reference using volumetric conformal
parameterization. This mapping preserves topology and aligns features perfectly making it a robust and
accurate registration technique. One-to-one mapping to the template allows ROI selection and subsequent
transfer of ROI to structural MRI of subject. Affine registration coregisters structural MRI and DTI. Seed voxels
are mapped to DTI using the resulting transformation parameters. To evaluate the proposed approach, MRI
and DTI of 12 normal volunteers and 15 medial temporal lobe epilepsy patients are used. First, a statistical
hypothesis testing is conducted to test for anisotropy changes in cingulum and fornix fiber bundles of
epileptic patients. Experimental results reveal a 40% decrease in anisotropy levels of cingulum in patients
compared to volunteers. They also show a 25% overall decrease in anisotropy of fornix. Secondly, shapes of
the bundles are visualized in 3D illustrating that the bundles of epileptic patients are bumpy while those of
normal volunteers are smooth.
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Introduction

The advent of high-end and computationally intensive machines
has improved the acquisition of various 3-D neuroimaging data. The
complexity, scale, and resolution of the images have increased
significantly in recent years. As a result, huge amount of data is
available for analysis. Different imaging modalities provide comple-
mentary information regarding the anatomy, physiology, and struc-
ture of the living organs and tissues. They include anatomical and
diffusion data provided by magnetic resonance imaging (MRI) and
diffusion tensor imaging (DTI); molecular imaging and functional data
provided by positron emission tomography (PET) and functional MRI
(fMRI); and electrophysiological data provided by electroencepha-
lography (EEG). Normal brain function is characterized by various
interactions between specific regions of the brain. A framework
combining the various facets of the anatomy and physiology of the
human brain is a requirement for a robust pathological analysis. We
present a framework for evaluation of the fiber bundles based on two
modalities, MRI and DTI, which together provide an excellent
representation of the white matter organization as well as changes
associated with disease.

Statistical analysis (Miller et al., 1997; Styner et al., 2003;
Thompson and Toga, 2002) in brain abnormality studies are typically
population-based comparisons that reveal significant differences
between healthy volunteers and patients. The results can help achieve
important objectives in many neuroscience studies, for instance,
delineating the anatomical region affected by disease facilitates future
course of treatment and surgical planning. Given the complex
anatomy of the brain, a robust registration strategy is required for
accurate alignment of inter-subject brain images. An accurate
depiction of normal anatomical variability in specific regions across
subjects depends on the homology between them. In recent years,
various brain mapping algorithms have been developed (Miller et al.,
1997; Styner and Gerig, 2001; Thompson et al., 2001) to address this
dependency and to allow an accurate statistical analysis. Mapping
algorithms can be classified into two categories: implicit image
intensity-based technique; and explicit computational geometry-
based technique. The intensity-based technique does not require
segmentation of the brain structures (regions). It uses an implicit
characterization based on intensity distributions. This facilitates
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voxel-based analysis and not a surface-based analysis (Muzik et al.,
2007; Friston et al., 1994; Muzik et al., 2000). The geometry-based
technique takes advantage of additional explicit geometric properties
of the brain structures and achieves accurate mapping and registra-
tion of the brain images permitting surface-based analysis. Freesurfer
(Fischl et al., 1999) and Caret (Essen et al., 2001) are popular methods
that combine the geometry with automatic anatomical labeling
methods to achieve a powerful representation for analyzing cortical
brain structures. Since geometry is an important aspect, pre-
processing is a required first step. Various representations have
been proposed for surface analysis. They include curvature-based
representations (Vemuri et al., 1986), regional point representations
(Chua and Jarvis, 1997), spherical harmonics (Kazhdan et al., 2003),
shape distributions (Osada et al., 2002), spline representations
(Camion and Younes, 2001), and harmonic shape images (Zhang,
1999). These methods, however, suffer from mismatches due to
insufficient discriminative power. Riemannian geometry has a distinct
advantage since it is based on intrinsic geometric properties of the
manifold and corrects for this mismatch (Drury, 1999; Wang et al.,
2005). Conformal mapping based on the harmonic energy minimiza-
tion on a 2D manifold allows for accurate registration in genus zero
surfaces, which is topologically equivalent to the cortical brain
surface. This technique has been extended to 3D manifolds for
volumetric mapping and analysis (Wang et al., 2004). Moreover, the
mapping is bijective and is easily transferred to the native space of the
subject. In this paper, we present a constrained conformal mapping
approach for matching structural MRI images.

DTI is the preferred modality for visualizing the structural
organization of the white matter microstructure. The anisotropic
properties and directional diffusivity obtained from the DTI tensor at
each voxel is used to analyze and detect white matter abnormalities.
Statistical analysis and matching, however, is not straightforward in
DTI mainly due to the orientation information inherent in the data.
Spatial Normalization (Park et al., 2003; Jones et al., 2002) of the DTI
brain dataset, for quantification of diffusion tensor differences
between populations, were conducted with unsatisfactory results
because only intensity was considered (Wakana et al., 2004). The
Tract-Based Spatial Statistics (TBSS) method (Smith et al., 2006)
improves on this by using skeletonization to normalize the fractional
anisotropy (FA) images which measures the voxel-based statistics
alongmajor fiber tracts. In general, spatial normalization is non-trivial
and can modify the real tensor orientation of the underlying data
(Alexander et al., 2001). It can potentially modify abnormalities
captured in the native space, for instance, structural changes in the
fiber tracts.

The most popular method to identify changes in the structural
organization of the white matter fibers is tractography, which is
characterized as deterministic fiber tracking and probabilistic fiber
tracking. Deterministic fiber tracking tracks single-fiber populations
(Parker, 2000; Hagmann, 2004; Mori et al., 1999; Frank 2001) by
following the direction of the major eigen-vector of the tensor
ellipsoid at each voxel. Major eigen-vectors are well-defined at places
where the anisotropy is high and the tracts are reliable only for linear
anisotropy diffusion profiles. Probabilistic tracking improves on this
disadvantage by introducing uncertainty in the tracking algorithm for
estimating the fiber directions. Consequently, the algorithm allows
tracking in hard to reach areas (Brehens et al., 2003; Friman et al.,
2006). Since the tracks do not represent real fiber orientations
because of the random sampling criteria, we rely on the connectivity
strength prediction between voxels to describe a global probability
connectivity map. Various methods for computing this connectivity
employ techniques that achieve a greedy or global optimum and have
been studied extensively.

In this paper, we concentrate on using anisotropy markers for
measuring tract integrity. Our hypothesis testing studies rely on the
volume ratio (VR) to characterize structural changes in white matter
fiber bundles. This hypothesis is evaluated bymeasuring white matter
differences in the fornix and the cingulum fiber bundles of medial
temporal lobe epilepsy patients. MRI brain scans of individual subjects
are parameterized onto a curvature-constant volume representing the
canonical domain for mapping. Additionally, the anatomical and
diffusion images of the same subject are registered using an affine
registration algorithm. Since these mappings are bijective, the
statistical results can be generated in the native space of the DTI
image. The regions of interests (ROIs) that define the seed voxels for
tracking are chosen on the template and transformed to the native DTI
space of the subject using the transformation parameters obtained
during registration. The final results show that anisotropy differences
in the fiber bundles measured using the mean VR is significant
between the patient and the normal groups. Moreover, we employ a
region-growing algorithm to determine the shapes of these bundles
providing a visual interface to identify shape changes associated with
disease. The method and the results are explained in detail in the
following sections.

Materials and methods

Subjects and imaging data

The MRI and DTI data of fifteen medial temporal lobe epilepsy
patients (10 males, 5 females, ages 43±16) and twelve normal
volunteers (9 males, 3 females, ages 32±5) enrolled in research
studies approved by the IRB committee of Henry Ford Hospital,
Detroit, Michigan, USA were used in this work. All imaging data were
acquired on a 3 Tesla GE Signa system (General Electric, Milwaukee,
WI, USA) at Henry Ford Hospital, Detroit, Michigan, USA. The imaging
protocol included anatomical T1-weighted images and diffusion
tensor images. The T1-weighted images were acquired in the coronal
plane using a 3D inversion recovery (IR) spoiled gradient-echo (SPGR)
sequence with TR/TI/TE=7.6/1.7/500 ms, flip angle=20°, field of
view (FOV)=200 mm×200 mm, matrix size=256×256, pixel
size=0.781 mm×0.781 mm, and slice thickness=2.0 mm. The DTI
data were acquired in the axial plane using 25 non-collinear
weighting directions and a single shot echo planar imaging (EPI)
sequence with a b-value of 1000 s/mm2. Each volume covered a
240 mm×240 mm field of view with 0.9375 mm×0.9375 mm in-
plane resolution and 2.6 mm slice thickness with no inter-slice gap.

Conformal mapping

Conformal parameterization of the 3D-representative geometry in
the 2D space is a preferable choice since it simplifies computational
complexity. Gu et al. (2004) described a harmonic energy minimiza-
tion algorithm for generating a conformal map between genus zero
surfaces and a canonical surface (sphere). The canonical domain is
curvature-constant, which eliminates problems associated with
distance fields in the Euclidian space. Moreover, matching cortical
patterns in the canonical domain becomes highly efficient.

We represent our standardized space as canonical domain
structures of closed genus zero topology and term it as the Conformal
Brain Model (CBM). A genus zero topology is a geometric structure
with no holes. For statistical analysis, a representative brain is needed
which will be the template for matching. This model can be one of the
datasets used for analysis or an average brain representation from a
training set of normal subject brains. We chose the MNI_152 atlas
brain as our reference template for analysis and the corresponding
map will be the template CBM. The following paragraph explains the
method to compute the template CBM.

Initially, we concentrate on the conformal mapping of the brain
cortical surface. The brain cortical surface can be viewed as a closed
genus zero surface that can be parameterized in the spherical domain.
The mapping is defined using the function f:S2→R3, where f is a vector
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valued function that maps the coordinates of the sphere in spherical
coordinates onto the cortical brain surface. Fig. 1 provides a good
illustration for the conformal mapping. Consider two surfacesM andN
with a conformal mapping ϕ between them. If γ1and γ2 are two
curves defined on M with an intersecting angle α, then the cor-
responding curves ϕ(γ1) and ϕ(γ2) defined on N will intersect at the
same angle α. This is demonstrated by the checkerboard pattern on
the surfaces shown in Fig. 1 illustrating that the angles are preserved.
For the function f:M→N defined above, the mapping can be made
conformal by minimizing the harmonic energy of the map (Gu et al.,
2004). Genus zero surfaces are defined by meshes. For a simplicial
complex |K|, and the map f, the implicit energy is defined by

E = ∑
u;v∈k

ku;v‖ f ðuÞ−f ðvÞ‖2; ð1Þ

where u and v denote vertices, {u,v} denotes the edge linking u and v,
and ku,v is a constant representing the string energy between u and v.
Since f represents a vector valued function,

→
f = f f0; f1; f2g, defined

over |K|, the energy of f is computed by

E
→
f

� �
= ∑

2

i=0
Eð fiÞ: ð2Þ

The function f is harmonic if and only if the Laplacian of f in the
tangential direction is zero. This can be easily solved using the
steepest descent algorithm of the form

d
→
f ðtÞ
dt

= −Δ
→
f ðtÞ; ð3Þ

such that the string energy is minimized. This map is conformal and
represents a smooth and angle-preservingmapping from a genus zero
surface M, representing the brain surface, to a unit canonical sphere
S2. The conformal factor e2λ and the mean curvature on the surface
h are treated as functions on the sphere. These functions completely
define the surface S2 uniquely except for a rigid rotation (Gu et al.,
2004). A Cartesian coordinate system is defined which specifies a 3D
rotation transformation to guarantee a unique orientation of the
sphere (Zou et al., 2006). Note that this mapping is only a partial step
for creating the template CBM.

Volumetric conformal mapping

In the volumetric case, the brain volume is represented by the
tetrahedral mesh. We keep the same genus zero requirements that
will now map the tetrahedral mesh to a solid ball. The tetrahedral
mesh of a brain is shown in Fig. 2a. Fig. 2b shows the left-hemisphere
Fig. 1. An illustration of conformal mapping where the angles of the squares in the
checkerboard pattern are preserved.
highlighting the internal structures. The procedure to create the
template CBM is exactly the same as before. The surface map is fixed
and the algorithm proceeds to minimize the harmonic energy of the
internal structures. This step is computationally intensive because of
the increased resolution. The algorithm computes the template CBM
as shown in Fig. 2d. The template CBM represents the canonical space
for brain mapping. The volumetric conformal map also preserves the
geometry between the two volumes. A textured slice shown in the cut
section of the sphere (Figs. 2e–f) highlights the fact that the geometry
is preserved during mapping.

Brain volume matching using CBM-landmark-constrained shape
optimization

The CBM provides a 3D-representation of the brain volume
geometry in the canonical domain. For cross-subject analysis, the
CBM should be homologous across all datasets. This cannot be
achieved with conformal mapping alone and alignment between its
various anatomical features is important. Features are sulcal land-
marks and internal subcortical structures most common across brain
populations. These include cortical patterns, such as the ones shown
in Figs. 3c and 4a and internal brain structures (Fig. 3a) like the corpus
callosum, pons, anterior commissure, and cingulate. Structural MRI
effectively delineates these features and is the preferred modality for
alignment. An expert neuroanatomist selects the features for all the
individual MRI scans under study. A well-balanced set of features
across the brain guarantees the accuracy of the alignment. Some of the
surface landmarks shown in Fig. 4 are central sulcus, pre-central
sulcus, post-central sulcus, superior frontal sulcus, sylvian fissure,
superior temporal sulcus, inferior temporal sulcus, parieto-occipital,
and transverse occipital sulcus. Internal landmarks are edges and
points, the AC–PC line, and edges of well-known structures internal to
the brain. The landmarks are chosen as a set of ordered point's {Pi}
across the brain volume. Conformal mapping to the template CBM
orients the brain volumes while the landmark constraints minimize
the inherent variability in the anatomical domain and matches two
CBMs perfectly.

Various ideas has been proposed (Gu et al., 2004; Wang et al.,
2005) tackling this issue. A landmark-constrained conformal mapping
(Zou et al., 2006) is described below. Given a set of point's {Pi}
representing the landmarks, conformal mapping is employed on a
template brain without any landmark constraints. The MNI_152 brain
atlas, a standard averaged brain from a database of 152 normal
subjects (Fig. 4a), is mapped to the spherical domain and the
harmonic energy minimization on the surface and the subsequent
minimization on the volume computes the conformal model termed
the template CBM (Fig. 4b). Fig. 4 illustrates the steps of the matching
process. Fig. 4b shows the template CBM with the landmarks {pi∈C1}
defined on it. For an individual subject, we assume initially that the
landmarks are very close to the ones defined on the template {qi∈C2}.
The initial mapping of the subject onto the sphere is shown in Fig. 4c.
The set of ordered points is ensured to have the same cardinality. A
landmark-constrained optimization is computed using the steepest
descent algorithm as described in the previous section. This procedure
still minimizes the harmonic energy but every ordered point {pi} is
constrained to be aligned with its counterpart {qi} on the template.
The next step is to align the brain regions between the landmarks. This
is achieved by matching the anatomical shapes using a distance
function in the shape space given as

dðS1; S2Þ = ∫vððλ1−λ2Þ2 + ðh1−h2Þ2Þdμ ð4Þ

where S1=(λ1, h1) and S2=(λ2, h2) and dμ is the volume element on
the sphere. S1 and S2 are the two spherical volumes to be matched and
λ and h are the conformal factor and the mean curvature, respectively
defined as functions on the sphere that determine the spherical map



Fig. 2. An illustration of conformal mapping applied to brain: (a) tetrahedral mesh equivalent of the brain volume; (b) internal mesh structure; (d) the solid ball created by
volumetric conformal mapping; (e) internal structure of the brain after the conformal mapping; (c), (f) interpolated slices which show that the conformal mapping preserves the
brain geometry.
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unique up to rigid motions in R3. This optimization determines the
optimal shape transformation functional that minimizes the distance
field between the two shapes. To ensure that the optimization is
stable and also to use well-known features that are stable across the
datasets, very coarse smoothing is allowed on the brain surface.
Fig. 4d shows the subject brain CBM aligned to the template CBM.

Affine registration

The conformal mapping is invertible and has a one-to-one
mapping between individual MRIs and the template. The template
will be used for choosing ROIs and other functional elements or areas.
The ROIs for seeding the voxels for fiber tracking is chosen on the
template. Through affine registration, the voxels are mapped onto the
individual DTI scans for tracking. We argued before on the potential
problems associated with spatial normalization of the DTI, which
affects the tensor orientation. Hence, instead of warping the DTI to the
MRI, the registration parameters are saved. We choose the non-
diffusion weighted image, i.e., the image with no diffusion gradient
(b=0), and register it to the MRI using 12-parameter affine
registration. Combining the affine transformation parameters with
the conformal map creates the transformation space necessary to
convert the voxels selected on the template down to each individual
Fig. 3. A sagittal slice (a) and a surface view (b) of the brain that may be used to select the lan
DTI image. This is advantageous since the same ROIs are seeded across
all the subjects preventing bias. The ROIs will represent the same
spatial region across the subject populations. Affine image registration
is available in the well-known packages like FSL (Brehens et al., 2003),
AIR (Woods et al., 1998), and SPM.

Probabilistic fiber tracking

Thefinal step is to generate quantitativemeasures for the statistical
analysis study. For anisotropy analysis, we track the neural fibers from
the DTI data.We briefly describe the underlyingmodel of the diffusion
tensor image. Diffusion MRI is a relatively new modality and relates
displacements of water molecules, p, in the tissue with the image
intensities.Whitematter tissue in the humanbrain contains bundles of
neural fibers connecting various functional areas. For brain images, p,
along these fiber directions is higher. Hence, the probability distribu-
tion of p represents a cigar shaped structure (Fig. 5c) indicating high
anisotropy. Diffusion tensor MRI (DT-MRI) models p as a simple
diffusion with a Gaussian profile given by

Gðx;D; tÞ = ðð4πtÞ3 detðDÞÞ−1=2 exp
−xTD−1x

4t

 !
; ð5Þ
dmarks in comparison to an atlas (c) that shows various landmarks on the brain surface.



Fig. 4. The MNI 152 atlas (a) and the template CBM (b). Matching the features in (b) to a CBM of an individual (c) generates an optimized landmark-constrained version (d).
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where D is the diffusion tensor and t is the diffusion time. The MRI
acquisition sequences follow the Stejskal–Tanner imaging sequence
(Stejskal and Tanner, 1965), which models the observed intensity of
anisotropic samples as

S = S0e
−bgtDg

; ð6Þ

where b defines a parameter of the sequence called the weighting
factor. To sample the ellipsoid uniquely, the 3×3 diffusion tensor D
needs to be solved. This requires at least six independent measure-
ments along different gradient orientations g. The principal directions
of the tensor at each voxel are calculated using singular value
decomposition. The eigen-values specify an orientation-independent
measure of the anisotropy at each voxel and the corresponding eigen-
vectors specify the directions of water diffusion. Reconstructing the
white matter pathways from principal directions provide a means for
assessing pathological changes in the white matter. We describe two
methods to track these pathways.

Deterministic tracking tracks fibers along the primary eigen-
direction e1 at each voxel. Many fiber bundles have been reliably
tracked by this method and validated. The single direction criterion
for tractographymakes it difficult to track in areas where the diffusion
is more isotropic, for instance, complex fiber neighborhoods
(λ1≈λ2≫λ3) that correspond to multi-fiber orientation within a
voxel, resulting in unreliable tracking results (see Fig. 5). To overcome
these limitations, a probabilistic tracking algorithm is devised. We
follow the algorithm derived by Friman et al. (2006) in his paper. The
algorithm is based on a Bayesian inference and estimation scheme.
Uncertainties, due to noise or complex fiber architectures, are not
disregarded but captured in the model itself in the form of the
posterior distribution at each voxel. Given a source region A, the
probability of connectivity between A and a target region B is given by

pðA→B jDÞ = ∑
∞

n=1
∫Ωn

AB
pðnÞpðv1:n jDÞ; ð7Þ

where p(v1:n|D) is the probability of the fiber path going from A to B
given the diffusion data D and ΩAB

n represents the sampling space of
Fig. 5. (a) Isotropic profile (λ1≈λ2≈λ3). (b) Ellipsoidal profile (λ1Nλ2≈λ3). (c) Highly ani
shown in each case where e1 is the primary eigen-direction.
the connectivity between A and B of path length 1 through n. Since
Eq. (7) is not analytically solvable, a rejection sampling strategy is
employed. A large number of sampled fiber paths starting from the
source region A are drawn at random and the probabilities of the
paths between A and B are evaluated. Each random path is evaluated
locally in steps up until the predetermined length n. The steps are
assumed to be unit length vectors, with the condition that each step
depends only on the previous step. Since these samples reflect the
model of the actual fibers, the posterior distribution at each step is
calculated based on the diffusion data D at that voxel. This distribution
based on the Bayes theorem is written as

pðv̂i; θ jv̂i−1;DÞ =
pðD jv̂i; θÞpðv̂i jv̂i−1ÞpðθÞ

pðDÞ : ð8Þ

The first term in the numerator is the likelihood at the current step
and uses a constrained model based on a Gaussian diffusion profile.
pðv̂i jv̂i−1Þ is the prior to indicate the dependence of the current step on
the previous step. This assumption works well in a complex fiber
neighborhood because there will always be a preference on the
previous step. The nuisance priors, p(θ), address the parameters of the
Gaussian profile modeled as dirac priors. As explained by Friman et al.
(2006), using dirac priors significantly saves computation time.
Finally, p(D) is a normalizing constant that gives the probability
distribution at v̂i distributed over a unit sphere as shown in Fig. 6a. To
draw a random path, the sphere is discretized uniformly into a finite
set of unit vectors indicating possible directions. The next step
direction is picked at random and added to the path. The fiber paths
represent the sampling space of the source region. The fiber paths are
illustrated in Fig. 6b.

Shape analysis of fiber bundles

Anisotropic differences are indicative of the changes in the
structural organization of the fiber bundle. Abnormalities associated
with changes in anisotropy can be visually inferred from the fiber
bundle shape. We can quantify the shape differences using well-
knownmeasures such as curvature. Many researchers have presented
sotropic cigar-shaped profile (λ1≫λ2 and λ1≫λ3). The eigen-vectors (directions) are



Fig. 6. (a) Posterior probabilities of voxels showing areas of high probability that can be
used to identify most probable fiber path in each voxel. (b) Fornix bundle identified
using probabilistic fiber tracking.

Fig. 7. Illustrations of the convex and saddle surfaces.

S170 D. Pai et al. / NeuroImage 54 (2011) S165–S175
techniques to construct the fiber bundle surface. However, no specific
analysis protocols are available that analyze the shape differences.
Edge detection techniques (Schultz and Seidel, 2008; Kindlmann et
al., 2007a) directly use important tensor components to calculate
gradients, which represents the surface boundary of the fiber bundle.
Melonakas et al. (2007) introduces a concept based on the Finsler
metric to segment interesting fiber bundles. Most segmentation
algorithms are loosely based on the concept of region-growing. Since
the tensors are discrete, there is no easy way to determine how
tensors change between voxels. Linear interpolation may not be a
reliable method except at places with prolate profiles. A good
continuous tensor approximation may be needed to ensure that
shape generation is reliable (Pajevic et al., 2002). Various attempts to
compute the continuous tensor are available, notable among them use
the Riemannian (Pennec et al., 2006) and Log Euclidean metrics
(Arsigny et al., 2006). Kindlmann et al. (2007b) use geodesic
loxodromes to approximate the tensors between the voxels with a
distinct advantage that the tensors are always positive definite.

To quantify and visualize the shape changes, we employ a 3D
region-growing algorithm to extract the bundle surfaces. We start
with initial seeds chosen from the voxels that form part of the tract.
The criterion for the region-growing algorithm is chosen to be the
normalized tensor scalar product (NTSP) and is mathematically
described by the following equation

NTSP ðD1 : D2Þ = D1 : D2
TraceðD1ÞTraceðD2Þ ;

where; D1 : D2 = ∑
3

j=1
∑
3

i=1
λ1iλ2jðe1ie2jÞ2

ð9Þ

We used tri-linear interpolation NTSP to approximate the continuous
tensor spread. This works best for the fiber bundles that can be
delineated perfectly. The normalization of the scalar product ensures
that there is no bias in the criterion due to the size of the tensor. The
FA and the mode also provide constraint thresholds for restricting the
region growing in high anisotropy regions. To ensure that the
complete tract is extracted, multiple seeds at different spatial
locations are employed to propagate the region-growing. We choose
the starting voxels from within the ROIs that are used for tracking the
bundles. Shape measures employ the Gaussian curvature to analyze
the surface differences. Gaussian curvature is an intrinsic geometric
quantity independent of the embedding and is defined as the product
of the two principal curvatures k1 and k2 defined on the surface.
Details of Gaussian curvature can be found in textbooks on differential
geometry like (Carmo, 1976). Intuitively, the analysis will show that
for normal subjects the Gaussian curvature will be closer to zero
indicating a smoother bundle surface. A positive Gaussian curvature
value denotes convex areas on the surface whereas a negative
Gaussian curvature describes saddle surfaces (Fig. 7). Planar surfaces
or cylindrical surfaces have Gaussian curvature G=0. We sample the
surface points and find the curvature at each point which is
subsequently analyzed for specific patterns.

Experimental results

We use our brain mapping and registration framework to evaluate
the hypothesis that medial temporal lobe epilepsy has associated
atrophy in the fornix and cingulum fiber bundles. We conducted a
population-based comparison study using 12 healthy volunteers and
15 epileptic patients. For each subject, we use high resolution
anatomical MRI data as well as 25-direction DTI data. Anatomical
images are conformally mapped to a solid sphere using the proposed
method. The bijection inherent in the map ensures that voxels
selected in the reference template are mapped back to the native
space of each subject. The MRI and the DTI are affine-registered using
the algorithm described in FSL (Brehens et al., 2003). To track the
fibers, the seed voxels are chosen on the template. The inverse map
and the corresponding affine registration parameters transform the
seed voxels to the DTI space. The cingulum and the fornix fibers are
illustrated in Fig. 8d. Probabilistic tracking of the bundles will
generate around 2000 samples per voxel of the ROI. The anisotropy
cutoff is set at 0.2 and the maximum length of the fiber path is set at
500. The following sub-sections describe the setup for ROI selection
and the results of the hypothesis.

Protocol for choosing ROIs

ROI selection protocol for the cingulum and fornix bundle is
explained below (Fig. 8). For the cingulum, there are 4 ROIs. The first 2
are drawn in the coronal plane at locations where the genu and the
splenium of the corpus callosum intersect the mid-sagittal plane
(Fig. 8a). The other 2 ROIs are drawn on the slice where the splenium
intersects the mid-sagittal plane and the second one where the pons
intersects the mid-sagittal plane (Fig. 8b). For the fornix bundle, 3
ROIs were drawn. The first ROI is drawn at the Foramen of Monro, the
second ROI is drawn at the posterior limb of the internal capsule, and
the third ROI is drawn in the coronal plane where the slice intersects
the pons in the mid-sagittal plane (Fig. 8c). The ROIs were chosen
carefully with expert intervention to ascertain maximum reproduc-
ibility of the fiber tracts. Only the fibers passing through these ROIs are
chosen for analysis.

We had 3 raters work separately on 5 normal datasets to test the
reliability of the chosen ROIs. The 3 raters performed 3 trials on each
of the 5 datasets. The inter-rater and intra-rater reliability analysis
was calculated and the results are presented in Table 1. Among the
three raters, two raters had knowledge of the anatomywhile the third
rater had no particular background and was only trained to use the
software. The raters manually delineated the ROIs in the DTI space
with 3 trials for each dataset (Figs. 8a–c). The kappa values for the
intra-rater reliability for the cingulum and the fornix were 0.94 and
0.94, respectively. The corresponding inter-rater reliability values
were 0.93 and 0.94 for the cingulum and fornix, respectively.



Fig. 8. (a) and (b) show the manual selection of ROIs for the cingulum in DTI. (c) shows manual selection of the ROIs for the fornix in DTI. (d) A DTI image on which the extracted
cingulum and fornix fiber bundles are superimposed in red and yellow, respectively.

Table 2
The mean and standard deviations of the volume ratio (VR) values of the normal
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To test the accuracy of the mapping and registration framework,
we used another reliability analysis measure called inter-modal
reliability. To evaluate the inter-modal reliability, ROIs selected on the
MRI template were mapped to the DTI space and used to track the
fibers. The third row in Table 1 shows the kappa values for the inter-
modal reliability calculated for the 5 datasets, 0.85 for the cingulum
and 0.92 for the fornix. All kappa values obtained in these
experiments fell in the “almost perfect” agreement range (Pantazis
et al., 2010). They suggest that operator dependence is minimal and
the statistical significance of the evaluation study is not affected by
ROI selection protocol.

Anisotropy (volume ratio) results

The anisotropy was quantified using VR defined as the ratio of
ellipsoid volume over the volume of the sphere

VR = 1− 27λ1λ2λ3

ðλ1 + λ2 + λ3Þ3
: ð10Þ

It measures the ratio of the isotropic and anisotropic components at
each voxel so that a lower VR value indicates more isotropy and less
diffusion. We find the mean VR values of the voxels belonging to
specific fiber bundles. This represents the global measure of
anisotropy of the bundle. For the cingulum of the healthy volunteers,
this value is around 0.187 whereas for epileptic patients, it is around
0.109. This suggest that the mean VR of the cingulum in epileptic
patients is 40% less than that of the normal subjects. The fornix bundle
has a normal mean VR value of 0.212 compared to the epileptic
patients that have a mean VR value of 0.159, which reflects a 25%
decrease. A standard t-test on the data shows that the difference
Table 1
Average kappa values (κ) for intra-rater, inter-rater, and inter-modal reliability for 5
datasets.

Kappa values (κ) Cingulum bundle Fornix bundle

Intra-rater 0.94±0.04 0.94±0.03
Inter-rater 0.93±0.04 0.94±0.04
Inter-modal 0.85±0.02 0.92±0.04
between the two groups is statistically significant (p-valueb0.0001).
These values are consistent for the cingulum and the fornix. These
results are presented in Table 2.

Shape analysis results

Fig. 9a visualizes the cingulum fiber bundle for a normal subject.
The bundle surface has a smooth appearance consistent with the
anatomy of the fiber. Fig. 9b shows the same fiber bundle for an
epileptic patient. This bundle has a bumpy appearance, which is
attributed to abnormality associated with the disease. Structural
changes are clearly visualized in the surface shape. We quantify the
shape variations using the Gaussian curvature. Smooth bundles are
expected to have a Gaussian curvature close to zero. The region-
growing algorithm uses the normalized tensor product given in Eq.
(9) to create the 3D volume and the marching cubes to create the final
surface. Subsequently, we calculate the Gaussian curvature at every
point on the surface. The procedure is described below.

The fiber bundle is skeletonized and parameterized from 0 to t to
normalize the lengths across the subjects. The Gaussian curvature is
sampled along the skeleton using

Cðr; θ; tÞ = ∫∫Gðr; θ; tÞdrdθdt; ð11Þ

where drdθ is the cross-section at the skeleton point dt and G is the
Gaussian curvature at the surface point defined by r and θ. We divide
Eq. (11) by the number of samples to calculate the mean Gaussian
subjects and the temporal lobe epilepsy patients in the cingulum (a) and the fornix (b)
fiber bundles.

Mean volume
ratio±standard
deviation

p-value of
t-test

Normal subjectsa 0.187±0.031 3.74×E−06
Temporal lobe epilepsy patientsa 0.109±0.012
Normal subjectsb 0.212±0.030 9.20×E−05
Temporal lobe epilepsy patientsb 0.159±0.015



Fig. 9. Shapes of a part of cingulum fiber bundle of a normal subject (a) compared to
that of an epileptic patient (b).

Fig. 10. Histograms of the Gaussian curvatures of the surface of the cingulum fiber
bundle for a patient (a) and a normal subject (b).
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curvature of the bundle for a subject. Experiments conducted on 12
normal subjects and 15 epileptic patients measured the mean and
standard deviation of the Gaussian curvatures for the two groups.
Table 3 lists the results and shows that the epileptic patients have a
positive mean Gaussian curvature indicating that they have more
convex areas of high curvature. In contrast, the mean Gaussian
curvature for the normal subjects is close to zero. Fig. 10 compares the
histograms of the Gaussian curvatures for a normal subject and a
patient. The peaks in the histograms denote smooth areas where the
curvature is zero. For the normal subject, Fig. 10b, the plot goes to zero
quickly on either side of the peak but for the patient, Fig. 10a, the plot
goes to zero gradually indicating many areas of higher curvature. The
saddle areas correspond to the left side of the peak and the convex
areas correspond to the right side of the peak. The analysis results
show that shape changes are successfully quantified and the
differences are significant for the fiber bundles.

Discussion

The paper presented an approach for quantitative evaluation of
fiber bundles using well-known measures of anisotropy. Experiments
conducted on medial temporal epilepsy subjects showed significant
decreases in the anisotropy of the cingulum and the fornix fiber
bundles. The abnormality was consistently reproducible by the VR
measure, a quantity measuring the extent of deviation from isotropic
diffusion. The discriminative power of VR was significant when
compared to other anisotropic measures.

Previous DTI studies on TLE have mostly focused on specific
anatomical abnormalities and used popular measures like fractional
anisotropy (FA) andmean diffusivity (MD) to quantify diffusion. Most
studies have reported lower FA and higher MD values for pathologies
affecting hippocampi, thalamus, external capsule, corpus callosum,
fornix, and cingulum (Gaolang et al., 2008, Wieshmann et al., 1999,
Yoo et al., 2002, Arfanakis et al., 2002, Assaf et al., 2003). Their findings
were reported on specific white matter abnormalities associated with
TLE, for example, mesial temporal sclerosis or hippocampal sclerosis.
Our main goal was to conduct experiments on TLE irrespective of
known anatomical abnormalities and report significant differences in
Table 3
The mean and standard deviations of the Gaussian curvatures of the normal subjects
and the temporal lobe epilepsy patients on the surfaces of the cingulum (a) and the
fornix (b) fiber bundles.

Mean Gaussian
curvature±standard
deviation

p-value of
t-test

Normal subjectsa 0.059±0.048 1.30×10−7

Temporal lobe epilepsy patientsa 0.436±0.027
Normal subjectsb 0.043±0.025 1.26×10−9

Temporal lobe epilepsy patientsb 0.478±0.044
specific fiber tracts. The fornix and cingulum reported significant
differences for the VR measure (Table 2) with a t-test significance
value of pb0.001. FA differences were previously shown to be
significant for the two bundles (Concha et al., 2005) but the
experiments only targeted patients with known anatomical abnor-
mality, i.e., TLE patients with MTS. We also quantified shape changes
of the fiber bundles using differences in their surface curvature.
Table 3 shows the differences in the curvature of the cingulum fiber
bundle and is visualized in Fig. 9 for normal vs. an epileptic patient.
Visual examination of the bundle surface confirms that atrophy is
associated with a bumpy surface in the TLE patients.

Seed voxels for tracking of the fibers were provided by the proposed
mapping framework. Themotivation for the frameworkwas to perform
the analysis in the native space of the subject. This will mitigate errors
associated with the spatial normalization of the DTI data which is
difficult to handle due to tensor reorientation problems. The conformal
parameterization of the volume was an excellent choice since it uses
the intrinsic geometry of the brain formapping. Also, since themapping
is performed on a curvature-constant domain, distortions are mini-
mized. Moreover, the mapping is bijective and analysis can be easily
transferred to the native space as desired. Mapping methods based on
geometry have distinct advantages over intensity-based techniques,
the latter normalizes and smoothes the data making ROI selection
difficult. We used a constrained conformal mapping method using
manually delineated landmarks for registration.

Landmark-based methods are generally more flexible than
automatic methods since prior knowledge of the brain features can
be used to drive a better alignment and registration (Pantazis et al.,
2010). The landmarks were manually chosen uniformly across the
brain by experts. All the structural scansweremapped to theMNI_152
template. Exact feature alignment followed by optimal shape
transformation functional improved the accuracy of the mapping.
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An affine registration between the MRI and the corresponding DTI
completed the mapping from the MNI_152 template to each in-
dividual DTI image.

Bias in DTI analysis is attributed to artifacts due to subject motion
or distortion effects during acquisition and operator dependence. The
datasets were corrected for Eddy current effects using the tools
available in FSL. The images were inspected after the correction and
compared to the corresponding T1 image for geometrical distortion in
brain regions where the ROIs would be defined. Onlymatched DTI and
T1 scans were included in the study.

The operator can bias the ROI selection process and hence we
followed a strict set of protocols for ROI selection as described in a
previous section. Three raters placed the ROIs on 5 datasets to
evaluate the inter-rater and intra-rater reliability which turned out to
be excellent (Table 1). Moreover, ROIs defined on the MRI template
and transformed to the DTI using the mapping parameters and the
affine registration parameters showed good reproducibility of the
fibers (inter-modal reliability).

Probabilistic tracking of fibers was the preferred choice because of
its inherent ability to account for uncertainty in the tracking. To get
reasonable connectivity information from the tracking, a large
number of samples are generated. The generated paths represent
the sampling space of the seed voxel. From the sampling space, only
fiber paths that pass through these ROIs were chosen for the
anisotropy analysis. Connection probabilities were not taken into
consideration in this paper. Since the probabilities depend on the seed
locations of the ROIs, it is unclear if changes in connectivity are
significant at this time.

Finally, the surface of the fiber bundle was generated using the
entire diffusion tensor information at each voxel. A simple region-
Fig. 11. (a) Curvature histogram when no noise is added. (b)–(d) Curvature histograms wh
show some curvature values away from zero but the overall distribution is maintained.
growing algorithm was employed to extract the surface from the
bundle volume. We used the normalized tensor scalar product as a
measure of the tensor. The normalization of the tensor makes it
independent of the size of the tensor and the region-growing
algorithm only depends on the shape and the orientation.

To check for artifacts in the region-growing output, a sensitivity
analysis was performed. We simulated fiber bundle degradation with
a Gaussian disturbing function on a normal dataset. The curvature
with no degradation was 0.01 which gradually increased to 0.11 for
10% degradation, 0.19 for 20% degradation, and 0.27 for 30%
degradation. The sensitivity analysis confirmed that the method was
sensitive to changes in the fiber bundles and thus was an excellent
method to analyze the shape.

We also simulated white matter degradation by adding Gaussian
white noise, N(0;σ), where σ is the standard deviation. A normal
dataset was subjected to varying levels of noise controlled by the
variance σ2 of the noise. The region-growing algorithm was executed
and the fiber bundle surfaces were extracted for three noisy datasets
at three different noise levels, σ2=10, σ2=20, and σ2=30. Themean
Gaussian curvatures for noise levels σ2=10, σ2=20, and σ2=30
were calculated as 0.02, 0.03, and 0.05 respectively. The distributions
of the Gaussian curvature are illustrated in Fig. 11. As noise levels
increase, more convex and saddle surfaces appear as is evident from
the histogram. However, the overall distribution is consistent and the
mean curvature is not influenced by noise. Region growing does
indeed have its disadvantages. The results of the algorithm is noisy in
places where fiber mixing and fiber crossing is rampant and hence is
not reliable for calculating curvature. In other words, only a well-
delineated fiber tract will subsequently generate a good bundle
surface for measuring curvature.
en noise is simulated with σ2=10, σ2=20, and σ2=30, respectively. The histograms
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Limitations

Limitations of the proposed framework are listed below.

1) The mean VR is the anisotropy measure that was found to be most
significant for the analysis of the fornix and the cingulum fiber
bundles. FA is the most popular measure for DTI studies, validated
by different groups. Effectiveness of the VR is unclear and more
experiments are needed to understand its significance for
quantifying other areas of the white matter affected by TLE. This
is an important future direction of our research.

2) Accuracy of the mapping framework is usually higher for brain
regions closer to the landmarks since the registration is more
accurate in these regions. Analysis of brain regions away from the
landmarks needs to be evaluated or the framework should be
customized to ensure accuracy in areas under study.

3) The region-growing algorithm used to generate the surface shape
of the bundle may generate artifacts in areas with multi-
fiber crossings and thus the measured curvature may be
inaccurate. Moreover, surfaces constructed for the bundles that
have low anisotropy may be noisy. Hence, region growing should
be restricted to areas where the fiber tracts can be delineated
reliably.

Conclusion

Based on our experiments, it is clear that for the epileptic patients,
the VR provides a good discrimination for analyzing anisotropic
differences in the fornix and the cingulum fiber bundles. The analysis
was conducted through our brain mapping and registration frame-
work whose accuracy was validated by a reliability study. Further-
more,we applied a region-growing algorithmbased on thenormalized
tensor scalar product to visualize the differences in the shapes of the
bundles.Weobserved that themeanVRdecreases by 25% for the fornix
and 40% for the cingulum.Moreover, the shapes are bumpy in epileptic
patientswhereas they are smooth in normal subjects. Quantification of
the bundle shape indicates an overall positive Gaussian curvature in
the epileptic patients, which is reflective of having more convex areas
where atrophy due to disease is noticeable.
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