
Service-Oriented Architecture for VIEW: a Visual Scientific Workflow
Management System

Cui Lin, Shiyong Lu, Zhaoqiang Lai, Artem Chebotko, Xubo Fei, Jing Hua and Farshad Fotouhi
Department of Computer Science, Wayne State University

{cuilin, shiyong, kevinlai, artem, xubo, jinghua, fotouhi} @wayne.edu

Abstract
Scientific workflows have recently emerged as a new

paradigm for scientists to formalize and structure complex
and distributed scientific processes to enable and accel-
erate many scientific discoveries. In contrast to business
workflows, which are typically controlflow oriented, scien-
tific workflows tend to be dataflow oriented, introducing a
new set of requirements for system development. These re-
quirements demand a new architectural design for scientific
workflow management systems (SWFMSs). Although sev-
eral SWFMSs have been developed that provide much ex-
perience for future research and development, a study from
an architectural perspective is still missing. The main con-
tributions of this paper are: i) based on a comprehensive
survey of the literature and identification of key require-
ments for SWFMSs, we propose the first reference archi-
tecture for SWFMSs, ii) in compliance with the reference
architecture, we further propose a service-oriented archi-
tecture for VIEW (a VIsual sciEntific Workflow management
system), iii) we implement VIEW to validate the feasibility
of the proposed architectures, and iv) we present two case
studies to showcase the applications of our VIEW system.

1. Introduction

Scientific workflows have recently emerged as a new par-
adigm for scientists to integrate, structure, and orchestrate
a wide range of local and remote heterogeneous services,
such as Web services, Grid services, and P2P services into
complex and distributed scientific processes to enable and
accelerate many scientific discoveries [16]. A scientific
workflow is a formal specification of a scientific process,
which represents, streamlines, and automates the steps from
dataset selection and integration, computation and analysis,
to final data product presentation and visualization. A sci-
entific workflow management system (SWFMS) is a system
that supports the specification, modification, run, re-run,
and monitoring of a scientific workflow using the workflow
logic to control the order of executing workflow tasks. The

design of a reference architecture at an appropriate level
of abstraction that addresses architectural requirements for
SWFMSs is critical and challenging.

Although the reference architecture proposed by the
Workflow Management Coalition (WfMC) [7] has been
well adopted in the development of different business work-
flow management systems (BWFMSs), including the re-
cent development of the YAWL system [17] that is aimed
at exploring various workflow patterns [18]. Existing ar-
chitectures for BWFMSs are not appropriate for SWFMSs
since business workflows are typically controlflow oriented,
while scientific workflows tend to be dataflow oriented,
introducing a new set of requirements and challenges for
system development, from the requirements of intensive
user-interaction, customized user interface, reproducibility,
high-end computing, interoperability, to heterogeneous data
product, service, and application management. While sev-
eral SWFMSs [11, 2, 22, 5, 14, 12] have been developed
during the past few years, which provide much experience
for future research and development, an architectural ref-
erence that can provide a high-level organization of sub-
systems and their interactions in an SWFMS is missing.
The availability of such a reference architecture can pro-
vide a guidance for the architectural design of a particular
SWFMS in various scientific domains.

To address this issue, i) we propose the first reference
architecture for SWFMSs based on a comprehensive sur-
vey of the literature and identification of key requirements;
ii) in compliance with the proposed reference architecture,
we further propose a service-oriented architecture for the
VIEW system. By leveraging SOA [21], VIEW consists of
six loosely-coupled service components, each of which cor-
responds to a functional component that is identified in the
reference architecture, whose functionality is exposed as a
Web service; iii) we implement the VIEW system to vali-
date the feasibility of the proposed architectures; and iv) we
present two case studies to showcase our ongoing VIEW ap-
plications.

2008 IEEE International Conference on Services Computing

978-0-7695-3283-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCC.2008.118

335

2008 IEEE International Conference on Services Computing

978-0-7695-3283-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCC.2008.118

335

2. Seven key architectural requirements

Based on a comprehensive study of the workflow litera-
ture covering both SWFMSs and BWFMSs from an archi-
tectural perspective [9] and our own experience from the
development of our previous VIEW prototype [4], in addi-
tion to the general requirements of scalability, reliability,
extensibility, availability, and security, which are also re-
quired for a BWFMS, we identify the following seven key
architectural requirements for an SWFMS:

R1: User interaction support and user interface cus-
tomizability. In scientific workflows, scientists are often the
end users to design, modify, run, re-run, and monitor sci-
entific workflows. User-friendly graphical user interfaces
and domain-specific visualization capability are crucial for
scientists to successfully manage the full life cycle of scien-
tific workflows and their various data products, and to speed
up the exploratory process of arriving at a proper workflow
design with appropriate parameter values and input datasets
that lead to satisfactory scientific results. Therefore, a key
architectural requirement is the flexibility of customizing
the user interface for a science and engineering discipline,
a scientific domain or problem, or according to an individ-
ual scientist’s tastes and habits. An architecture that sup-
ports user interface customizability will greatly improve the
reusability of system components for various scientific do-
mains.

R2: Reproducibility support. Reproducibility is the fun-
damental principle of any science method. Scientific re-
sults produced from the execution of scientific workflows
must be reproducible. Therefore, sufficient provenance in-
formation, including the derivation history of a data prod-
uct, needs to be maintained in order to answer the following
questions: What workflows or workflow steps are executed
to produce this result? What parameter values are used?
What input datasets have contributed to this result? What
scientists’ interactions are involved in producing this result?
With such information, a scientific result can be reproduced
in the same system or in other peer systems when necessary.
Therefore, a key functional component for an SWFMS is
the management of provenance metadata, from collection,
representation, storage, querying, to visualization. Such a
component is usually not required for a BWFMS.

R3: Heterogeneous service and software tool integra-
tion. Scientists often need to integrate and orchestrate a
wide range of heterogeneous analytical and computational
services, such as Web services, Grid services, and P2P ser-
vices into a scientific workflow for solving a complex sci-
entific problem. Third party software tools that are writ-
ten in various programming languages and platforms should
be easily integrated into a scientific workflow application
in a plug-and-run fashion. Therefore, a key architectural
requirement is the abstraction of various service and soft-
ware tools as workflow tasks and the extensibility for future

service and software tool integration whose interfaces and
communication protocols are yet unknown.

R4: Heterogeneous data product management. The exe-
cution of scientific workflows often produces huge amounts
of data objects. These data objects can be primitive or
complex values, files in different sizes and formats, data-
base tables, or data objects of other forms. Scientists are
often overwhelmed and lost in the sea of heterogeneous
and potentially distributed data objects. Therefore, a key
functional component for an SWFMS is the abstraction of
various heterogeneous data objects as data products and
the efficient management of data products for their storage,
archival, browsing, searching, access, and visualization.

R5: High-end computing support. Today, many scien-
tific problems need the support of high-end computing, such
as Grid and Cluster computing. Given the fast advance of
high-end computing technology, a key architectural feature
is the separation of the science-focused and technology-
independent problem-solving environment from the under-
lying often fast advance of high-end computing infrastruc-
ture. In this way, scientists can focus on their science while
utilizing the state-of-the-art computing facilities behind the
scene.

R6: Workflow monitoring and failure handling. The
monitoring of the progress of the execution of scientific
workflows is very important for scientists, particularly for
long-running scientific workflows. Moreover, since scien-
tific workflows are designed and modified by scientists in
an ad hoc fashion and can involve various services that are
accessed over network communications, many exceptions
or failures can occur in an unforeseeable way. Finally, the
complexity and scale of data analysis and computation in
scientific workflows impose additional challenges on work-
flow monitoring and failure handling.

R7: Interoperability. As more and more scientific re-
search projects become collaborative in nature and involve
several geographically distributed organizations, many sci-
entific workflows are distributed and collaborative, consist-
ing of several subworkflows, each of which is managed by
a different SWFMS. Therefore, it is very important that var-
ious SWFMSs can interoperate with one another to take ad-
vantage of the software tool library and salient features pro-
vided by each SWFMS. Moreover, the interoperability of
subsystems will enable the reuse of a subsystem in another
SWFMS.

3. A reference architecture for SWFMSs

Although the reference architecture proposed for
BWFMSs by WfMC has been widely accepted, this ref-
erence architecture does not satisfy the key requirements
from R1 to R5 for an SWFMS. Recent development of sev-
eral SWFMSs, including our previous VIEW prototype [4],
provide much experience and insight to the design of the

336336

Operational Layer

I1

I2

I5 I3

I6

Workflow Management Layer

Task Management Layer

Grid
Services

W eb
ServicesScienti fic

 Databases

Presentation Layer

Other
Workflow

Engines

Data Product
Management

Provenance
Management

Task
Management

Presentation &
Visualization

I4

Workflow
Engine

Workflow
Monitoring

Workflow
Design

1

2

4

3

J2EE
Applicatio ns

.Net
Applicatio nsFuture

Applications

Figure 1. A reference architecture for SWFMSs.

reference architecture shown in Figure 1, which consists of
four logical layers, seven major functional subsystems, and
six interfaces.

Layers. The first layer is the Operational Layer, which
consists of a wide range of local or remote heterogeneous
data and services, software tools, and their operational envi-
ronments, including high-end computing environment. The
separation of the Operational Layer from other layers iso-
lates high-end computing environment from higher-level
functionalities and thus satisfies R5.

The second layer is called the Task Management Layer,
which abstracts underlying heterogeneous data into data
products, services and software tools into workflow tasks,
and provides efficient management for data products, work-
flow tasks, and provenance metadata. Therefore, the Task
Management Layer satisfies requirements R2, R3, and R4.
Moreover, the separation of the Task Management Layer
from the Operational Layer promotes the extensibility of
the Operational Layer with new services and new high-end
computing facilities, and localizes system evolution due to
hardware or software advances to the interfaces between the
Operational Layer and the Task Management layer.

The third layer is the Workflow Management Layer,
which is responsible for the execution and monitoring of
scientific workflows. At this layer, the building blocks of a
scientific workflow are the workflow tasks provided by the
underlying Task Management Layer. Moreover, the inter-
operability issues between the workflow engine and other
workflows engine is addressed in this layer. Therefore, the
Workflow Management Layer addresses requirements R6
and R7. Finally, the separation of the Workflow Manage-
ment Layer from the Task Management Layer not only iso-
lates the choice of a workflow model from the choice of a
task model, provenance model, and data product model, but
also separates the enforcement of workflow logic from the
execution of the constituent workflow tasks and the creation

of data products.

The fourth layer is the Presentation Layer, which pro-
vides the functionality of workflow design and various user
interfaces and visualizations for all assets of the whole sys-
tem. The Presentation Layer has interfaces to each lower
layer (not shown in the figure for simplicity). The separa-
tion of the Presentation Layer from other layers provides
the flexibility of customizing the user interfaces of the sys-
tem and promote reusability of the rest of system compo-
nents for different scientific domains. Thus, this separation
supports architectural requirement R1.

Subsystems. The seven major functional subsys-
tems correspond to the key functionalities required for an
SWFMS. The subsystem of Workflow Design is responsi-
ble for the design and modification of scientific workflows.
Several complementary modes of environments can be pro-
vided for the design and modification of workflows, includ-
ing graphical tools and scripting languages either from a
standalone software designer or from a web portal tool. The
subsystem of Presentation and Visualization is very impor-
tant for complex data analysis applications in which the
presentation of workflows and visualization of various data
products and provenance metadata are the key to gain in-
sights and knowledge from large amount of data and meta-
data. These two subsystems are located at the Presentation
Layer to meet requirement R1. The subsystem of Workflow
Engine is at the heart of the whole system and is a subsys-
tem that is responsible for the run and re-run of scientific
workflows, using the workflow logic to control the order of
initiating workflow tasks. The subsystem of Workflow Mon-
itoring meets requirement R6 and is in charge of monitoring
the status of workflow execution and if failures occur, pro-
viding tools for failure recovery. The subsystem of Task
Management is responsible for the registration, annotation,
searching, and execution of workflow tasks. The subsystem
of Provenance Management meets requirement R2 and is
mainly responsible for the management of scientific work-
flow provenance metadata, including their representation,
storage, archival, searching, and visualization. The subsys-
tem of Data Product Management meets requirement R4
and is mainly responsible for the management of heteroge-
neous data products. One key challenge for data product
management is the heterogeneous and potentially distrib-
uted nature of data products, making efficient access and
movement of data products an important research problem.

Interfaces. Only six interfaces are explicitly defined,
which show how the Workflow Engine interacts with other
subsystems. Interface I1 isolates the workflow design en-
vironment from workflow execution environment, and pro-
vides APIs for the execution of workflow specifications that
are provided by different workflow design tools. Interface
I2 isolates the execution of a workflow from its monitor-
ing and failure handling. Interface I3 separates workflow

337337

scheduling from individual task execution. Interface I4

is used for provenance tracking and reproducibility sup-
port. Interface I5 separates workflow management from
data product management. Finally, Interface I6 defines the
APIs for interoperating with other workflow engines pro-
vided by various vendors, corresponding to requirement R7.

4. Service-Oriented Architecture for VIEW

In order to validate the feasibility of our proposed refer-
ence architecture, we firstly present the advantages of using
SOA in SWFMSs; secondly, we propose a service-oriented
architecture for our VIEW system that complies with the
reference architecture, followed by the description of each
major service component; finally, we present the implemen-
tation and two case studies to showcase the applications of
our VIEW system.

4.1 Advantages of using SOA in SWFMSs
While the emergence of SOA as an architectural para-

digm provides many benefits for distributed computing [6],
we identify the following advantages of using SOA specifi-
cally for the development of an SWFMS.

1) Service loose coupling. Service loose coupling min-
imizes the dependencies among subsystems of an SWFMS
by the definitions of a set of language and platform indepen-
dent interfaces. In our proposed architecture, each subsys-
tem’s functionality is exposed as a Web service. As a result,
an SWFMS can be developed on demand from various sub-
systems provided by different parties as Web services. One
can also easily switch from one service to another for each
subsystem. For example, there may be several provenance
management services available, and using SOA, one can use
and switch any provenance management service on demand
for a specific SWFMS.

2) Service abstraction and autonomy. A Web service
provides an abstract interface that is independent from its
implementation. In addition, each Web service is au-
tonomous in the sense that a service provider has the control
over the application logic that the Web service encapsulates.
As a result, a service provider can dynamically change the
implementation and deployment environment of a Web ser-
vice for a subsystem of an SWFMS with no downtime for
the SWFMS as long as such changes do not affect the de-
fined interface. Such autonomy also greatly facilitates the
management of the development and evolution of the whole
system.

3) Service reusability. As each subsystem of an SWFMS
becomes a uniform computing unit with standard interface
descriptions and universal accessibility through standard
communication protocols. Each subsystem can be reused
across various SWFMSs, even simultaneously used by both
local SWFMSs and other SWFMSs across the Internet.

4) Service discoverability. As each subsystem of an
SWFMS is implemented as a Web service that is enriched

Workflow
Engine Workflow

Monitor

Presentation Layer

Workflow Management Layer

Task Management Layer

WEI
WMI

Task
Manager

Provenance
Manager

Data Product
Manager

TMI PMI

Workbench

DPMI

2

3

4

Figure 2. Overall architecture of the VIEW system.

with a semantic description, one can register the service in
some public service registries. As a result, the subsystem
becomes discoverable and can be selected and used by other
SWFMSs on demand.

5) Service interoperability. Service interoperability is
enabled by the open standards of messages and commu-
nication protocols for Web services, which are supported
by a large body of IT industry and the Web Services Inter-
operability Organization (WS-I). Using Web services, the
interoperability of subsystems within an SWFMS and the
interoperability across various SWFMSs can be greatly im-
proved, thus satisfying requirement R7.

4.2 Overall architecture and major sub-
system architectures

The overall architecture of VIEW in Figure 2 consists
of six loosely-coupled, autonomous, reusable, and discov-
erable service components that correspond to the main
functional subsystems proposed in the reference architec-
ture. The Operational Layer is omitted from the fig-
ure for simplicity. Except for Workbench, the interface
for each service component is defined and described by
WSDL: IWE , IWM , ITM , IPM and IDPM for the interface
of the Workflow Engine, Workflow Monitor, Task Manager,
Provenance Manager, and Data Product Manager, respec-
tively. Service components interact with one another by
Web service invocation using SOAP messages via Internet-
based protocols. The details of these interfaces are not pre-
sented due to space limit. In the following, we focus our
discussion on the architectural details of major service com-
ponents.

Workbench. The Workbench subsystem implements the
functions of workflow design, presentation, and visualiza-
tion identified at the Presentation Layer in the reference ar-
chitecture. Currently it consists of five components (see
Figure 3:(a)): Workflow Designer, Provenance Explorer,
and the GUIs for Task Manager, Workflow Monitor, and
Data Product Manager, respectively. The Workflow De-
signer provides a scientist-friendly GUI for the design and
modification of scientific workflows. A scientist can drag
and drop existing workflow tasks into the design panel and

338338

link them one to another using various dataflow and con-
trolflow constructs. Scientific workflows are saved in XML
files into a local Workflow Repository as well as into the
Provenance Manager via IPM . In this way, the provenance
capability can be turned off to avoid provenance track-
ing overhead when necessary. Each scientific workflow is
stored in two XML files: a specification file to store the logi-
cal structure and components of the scientific workflow, and
a layout file to store the graphical layout information of the
scientific workflow. While both files are needed to display
and manipulate a scientific workflow in Workbench, only
the specification file is needed for the execution of a scien-
tific workflow. The separation of presentation from content
improves the interoperability of our workflow model and
user interface customizability (requirement R1).

Provenance Explorer enables a user to browse, query,
and visualize scientific workflow provenance metadata.
Moreover, together with the GUI for Data Product Man-
ager, one can present and visualize various data products,
from simple data values and plain texts, to complex ones
such as 3D multimodality brain images. The GUIs for Task
Manager, Workflow Monitor and Data Product Manager
provide scientist-friendly user interfaces for the manage-
ment of these subsystems. They interact with subsystems
via ITM , IWM , and TDPM , respectively. The loosely cou-
pled nature provided by SOA improves the customizability
of these user interface designs (requirement R1).

Workflow Engine. The architecture of Workflow En-
gine is shown in Figure 3:(c). Centered around Scheduler,
Workflow Engine consists of seven functional components:
Scheduler, Translator, Controlflow Management, Dataflow
Management, Workflow Status Management, Workflow Sta-
tus Storage, and Provenance Collector. There are four
salient features for this architecture design. First, the Trans-
lator component provides a mapping scheme for translat-
ing a workflow specification into an optimized executable
workflow representation. Second, the separation of con-
trolflow and dataflow management from workflow schedul-
ing greatly improves the extensibility of our workflow
model since the introduction of additional controlflow and
dataflow constructs can be achieved by upgrading their in-
dividual components without modifying other components
of the service component. Third, Workflow Status Man-
agement and durable Workflow Status Storage provides a
foundation for workfow monitoring and failure handling
(requirement R6). Finally, Provenance Collector separates
the concern of provenance collection and is responsible for
collecting all provenance information and storing them into
Provenance Manager via IPM .

Task Manager. The architecture of Task Manager is
shown in Figure 3:(b). It consists of two layers: the wrap-
per layer and the task layer. The wrapper layer contains
various wrappers that can dynamically wrap existing ser-

vices or software tools as workflow enabled tasks. Many of
these wrappers are generic in the sense that they can be ap-
plied to a category of applications. For example, the generic
Web service wrapper can be used to wrap an operation of
an arbitrary Web service into a workflow task. In this way,
all Web services become workflow tasks and can interop-
erate with other services and software tools in the frame-
work of scientific workflows. The introduction of new cat-
egories of services or software tools is achieved by the in-
troduction of a new wrapper. Therefore, our architecture
promotes the ability of heterogeneous service and software
tool integration (requirement R3). The task layer provides
various functions for workflow task management, includ-
ing registration, annotation, searching, execution, and data
product movement. Data product movement is used for the
movement of data products generated from task execution
to Data Product Manager or the other way around.

Data Product Manager. Our current implementation
of Data Product Manager is still very preliminary and in-
cludes the functions of registration, searching, and data
product movement. Our vision for this subsystem is that a
user and the Workflow Engine will access various data prod-
ucts transparently with respect to their heterogeneity and
distribution (requirement R4). We expect our architectural
design will facilitate the realization of such a vision.

Provenance Manager. The Provenance Manager shown
in Figure 3:(d) includes three layers: the provenance model
layer, the relational model layer, and the model mapping
layer.

The provenance model layer contains a provenance
model management component and a provenance ontology
repository. This layer is responsible for the representa-
tion of scientific workflow run provenance via domain on-
tologies that serve as vocabularies to describe and serialize
provenance metadata. Such ontologies may include general
provenance vocabularies and ontologies used to represent
knowledge in a particular scientific field, e.g., bioinformat-
ics or medicine. To address the requirements of provenance
representation interoperability, extensibility, and semantic
integration in VIEW, we use Semantic Web technologies
for provenance representation. In particular, Web Ontology
Language (OWL) is used to express ontologies, Resource
Description Framework (RDF) is used to serialize prove-
nance metadata, and the RDF query language SPARQL is
used to express provenance queries.

The relational model layer includes a relational prove-
nance storage, represented by a Relational Database Man-
agement System (RDBMS), which serves as an efficient
backend to store and query provenance metadata. In this
layer, provenance metadata is stored in relations or tables
and is queried using Structured Query Language (SQL).
The requirements addressed by this layer include efficiency
and scalability of provenance metadata management.

339339

Workflow
Design

Workflow
Repository

Workflow Designer

Provenance Explorer

Subsystem GUIs

Task
Manager GUI

Workflow
Monitor GUI

Data Product
Manager GUI

Provenance
Querying

Provenance
Visualization

Task Repository

Task Registration &
Annotation

Task
Execution

Data Product
Movement

Task
Searching

Task Management Layer

Web Service
Wrapper

Grid Service
Wrapper

Java Programs
Wrapper

.Net Programs
Wrapper

Future
 Wrappers

Wrapper Layer

I TM

(a) Workbench. (b) Task Manager.

Workflow Status
Storage

Translator

Workflow Status
Management

Scheduler

Provenance
Collector

Controlflow
Management

Dataflow
Management

I WE

Model Mapping Layer

Provenance Model Layer

Pro venance
Onto lo gy Repo sito ry

Relational
Provenance Storage

Relational Model Layer

Provenance Model
Management

Query
Mapping

Data
Mapping

Schema
Mapping

PMI

(c) Workflow Engine. (d) Provenance Manager.

Figure 3. Architectures for major subsystems.

Finally, the model mapping layer serves as an integra-
tion medium between the two other layers. It includes three
mappings: (1) schema mapping to generate a relational
database schema based on an ontology that is used to repre-
sent provenance metadata, (2) data mapping to map prove-
nance metadata in RDF to relational tuples and store them
into the relational database, and (3) query mapping to trans-
late provenance queries in SPARQL into relational queries
in SQL that can be executed by the RDBMS. The main chal-
lenge of this layer is to provide various efficient Semantics-
preserving mappings between the two different data mod-
els. More details on provenance storage and querying in
VIEW are available in [3], where a sample provenance on-
tology is described and the three mappings are further stud-
ied and experimentally evaluated.

Workflow Monitor. Our current implementation of
Workflow Monitor is still very preliminary and focus on the
implementation of monitoring workflow execution status.
Future implementation will introduce other features includ-
ing forward recovery and backward recovery in the case of
failures.

4.3 Implementation and case studies

We implemented the proposed service-oriented architec-
ture in our VIEW system using Microsoft .NET 2005 that
supports Web service programming. First, we reused the
existing components of our previous VIEW prototype [4],
which was built upon a component-based modular archi-
tecture, by upgrading original codes from Native VC++ to
Managed C++, which can interoperate with all other .NET
capable languages; second, we restructured the VIEW sys-
tem according to the proposed architecture and introduced
three new service components: Workflow Monitor, Task

Manager, and Data Product Manager; third, we imple-
mented a set of functions that need to be exposed as Web
services for each service component; fourth, we manip-
ulated and transported XML-format data among memory,
files and databases using ADO.NET and SQL Server 2005;
finally, we enhanced the Workbench in its presentation and
visualization capability using VTK and OpenGL. Due to
space limit, we will not present the evaluation result of the
system in this paper, but only comment that VIEW is suf-
ficient to support user-interaction intensive and parameter-
intensive scientific workflows as demonstrated in the fol-
lowing two case studies.

Neurological disorder diagnosis. Advanced multi-
modality imaging has been prevalently used for the diagno-
sis of brain disease. However, due to the underlying com-
plexity in management of multimodality data and analysis
tasks, it requires hours, even days, to completely analyze
one patient’s multimodality imaging data, which makes it
impossible to employ a large number of existing datasets
for population-based image analysis. We have successfully
applied the VIEW system to the cross-subject brain imag-
ing analysis for computer-assisted diagnosis of neurolog-
ical disorders. Figure 4:(a) demonstrates one part of the
entire workflow, which integrates many tasks and datasets
involved in the cross-subject analysis of diffusion tensor
imaging (DTI), thus efficiently processing and producing
the final results of fiber tract analysis.

In a nutshell, this sub-workflow registers different brains
in a common space, Conformal Brain Template (CBT), in
order to enable cross-subject comparison. The workflow
portion shaded in blue (labeled as W1) processes the nor-
mal subjects to generate a normal population-based distrib-

340340

W 1

W 2

W 3

W 1

W 2

W 3

Figure 4. (a) A user-interaction intensive scientific workflow in VIEW for neurological disorder diagnosis. (b) A parameter-
intensive scientific workflow in VIEW for biological simulations.

ution of the CBT, while the workflow portion shaded in pink
(labeled as W2) handles an individual patient’s DTI data.
After mapping fibers into the CBT, the comparison analy-
sis shaded in green (labeled as W3) can precisely pinpoint
the locations of abnormalities. Note that, users need to fre-
quently rotate, manipulate and interact with the visual imag-
ing data in the scientific workflow. Our VIEW system can
successfully satisfy and facilitate this user-interaction inten-
sive and visual content intensive image application analysis.
Therefore, the designed workflow allows batch processing
of a large population of subjects, which helps identify pa-
tients and their specific abnormal neurocortex areas.

Biological simulations. Pheromones can be used as at-
tractants for the opposite sex in many environments; how-
ever, little is known about the search strategies employed in
responding to pheromone in the marine environment. The
spawning behavior of males of the polychaete Nereis suc-
cinea is known to be triggered at close range by a high
concentration of pheromone released by females. Since
pheromone also causes acceleration of swimming and in-
creased turning, in addition to eliciting ejaculation, we pro-
pose the hypothesis that these behaviors elicited by low con-
centrations of pheromone can be used by males to find fe-
males. To test this hypothesis, we have developed a simu-
lation scientific workflow using VIEW that is controlled by
49 parameters. The workflow is shown in Figure 4:(b), in
which workflow tasks Male Factory and Female Factory are
used to generate any number of different kinds of male and
female worms based on the parameters specified by a user;
Model Factory and Environment Factory are used to gen-
erate the experiment and environment model, respectively;
task Simulation calculates the movement of the worms step
by step with all intermediate data recorded for each step so
that output of the model can be used for future analysis;
finally, task Visualization is used to display the movement
trajectories and task Statistical Analysis is used to analyze
the simulation results. Our simulations show that complex
turning behavior leading to greater chances of successful

mating encounters. Similar behavior was recorded in field
observations. We are currently enhancing this workflow to
determine what pheromone concentrations produce signifi-
cant increases in the probability of mating encounters.

5. Related work

Although the term “scientific workflows” were first
coined by Vouk and Singh in 1996 [19] for workflow appli-
cations in scientific problem solving environments, only re-
cently there is an increasing momentum for the research and
development of SWFMSs and their applications, due to the
increasingly demanding requirements of many compute-
intensive and data-intensive scientific applications, and en-
abled by the underlying advances of computing technolo-
gies, notably Service computing [14] and Grid computing
[20]. Scientific workflows leverage existing techniques de-
veloped for business workflows but deviate from them as
a result of a different set of scientific requirements raised
from a wide range of science and engineering problems
[15]. While business workflows are controlflow oriented
with the mission of carrying out business logic to achieve a
business goal, scientific workflows tend to be dataflow ori-
ented aimed at enabling, facilitating, and speeding up the
derivation of scientific results from raw datasets.

Many BWFMSs have been developed in the past two
decades [8, 13, 1, 10], and many of them adopted the ref-
erence architecture proposed by the Workflow Management
Coalition [7] or its variants. However, existing architectures
for BWFMSs are not suitable for SWFMSs as they do not
satisfy key requirements R1 to R5.

Several SWFMSs have been developed over recent
years. The Kepler system [11] is a Java-based open source
SWFMS. A scientific workflow is composed from com-
ponents called actors and its execution is controlled by a
computational model controller called director. Kepler in-
herits its GUI from Ptolemy II for workflow composition
and modification. The Taverna system [14] is another Java-
based open source SWFMS mainly targeted for life science.

341341

Currently, Taverna supports a repository of Web services
for various bioinformatics data analysis and transforma-
tion. Taverna uses an XML-based workflow language called
SCUFL for workflow representation with each component
being either a Web service or a processor developed using
Java Beanshell script. The Triana system [12] has a sophis-
ticated graphical user interface for workflow composition
and modification, including grouping, editing, and zooming
functions. Coming from the gravitational wave field, the
system contains a large repository of tools for data analy-
sis and processing. The VisTrails system [2] is developed
to manage visualizations and is the first system that sup-
ports provenance tracking of workflow evolution in addition
to tracking the data product derivation history. The Pega-
sus system [5] provides a framework which maps complex
scientific workflows onto distributed grid resources. Arti-
ficial intelligence planning techniques are used in Pegasus
for workflow composition. Finally, the Swift system [22]
combines a novel scripting language called SwiftScript with
a powerful runtime system to support the concise specifi-
cation, and reliable and efficient execution, of large loosely
coupled computations over Grid environments.

Although these systems provide much experience in fu-
ture research and development, a reference architecture that
can address the architectural requirements specifically for
SWFMSs is missing, which is the motivation of this re-
search.

6. Conclusions and future work

We proposed a reference architecture for SWFMSs and
presented an SOA based design of the architecture in the
VIEW system. Ongoing work includes the extension of our
architecture to address security issues, a more comprehen-
sive evaluation of the VIEW system and the development of
various scientific workflow applications using VIEW.

References

[1] G. Alonso, R. Günthör, M. Kamath, D. Agrawal, A. Abbadi,
and C. Mohan. Exotica/FMDC: A workflow management
system for mobile and disconnected clients. Distributed and
Parallel Databases, 4(3):229–247, 1996.

[2] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva,
and H. Vo. VisTrails: visualization meets data management.
In SIGMOD Conference, pages 745–747, 2006.

[3] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi. Storing
and querying scientific workflow provenance metadata us-
ing an RDBMS. In Proc. of the Second IEEE International
Workshop on Scientific Workflows and Business Workflow
Standards in e-Science, pages 611–618, 2007.

[4] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, and F. Fo-
touhi. VIEW: a Visual Scientific Workflow Management
System. In IEEE SWF, pages 207–208, 2007.

[5] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. Berriman, J. Good, A. Laity,

J. Jacob, and D. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Sci-
entific Programming Journal, 13(3):219–237, 2005.

[6] T. Erl. Service-oriented architecture concepts, technology
and design. Pearson Education Inc., 2005.

[7] D. Hollingsworth. The workflow reference model. The
Workflow Managment Coalition, 1994.

[8] F. Leymann and D. Roller. Business process management
with FlowMark. In COMPCON, pages 230–234, 1994.

[9] C. Lin and S. Lu. Architectures of workflow management
systems: A survey. Technical Report TR-SWR-01-2008,
January 2008.

[10] L. Liu, C. Pu, and D. Ruiz. A systematic approach to flex-
ible specification, composition, and restructuring of work-
flow activities. J. Database Manag., 15(1):1–40, 2004.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific work-
flow management and the Kepler system. Concurrency and
Computation: Practice and Experience, 18(10):1039–1065,
2006.

[12] S. Majithia, M. Shields, I. Taylor, and I. Wang. Triana: A
graphical web service composition and execution toolkit. In
ICWS, pages 514–524, 2004.

[13] J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and
H. Singh. Webwork: METEOR2’s web-based workflow
management system. J. Intell. Inf. Syst., 10(2):185–215,
1998.

[14] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
R. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat,
and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045–
3054, 2004.

[15] I. Taylor, E. Deelman, D. Gannon, and M. Shields. Work-
flows for e-science. Springer-Verlag London Limited, 2007.

[16] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou,
C. Pautasso, T. Heinis, R. Grønmo, H. Hoff, A. Berre,
M. Glittum, and S. Topouzidou. Developing scientific
workflows from heterogeneous services. SIGMOD Record,
35(2):22–28, 2006.

[17] W. van der Aalst, L. Aldred, M. Dumas, and A. ter Hofstede.
Design and implementation of the YAWL system. In CAiSE,
pages 142–159, 2004.

[18] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and
A. Barros. Workflow patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003.

[19] M. Vouk and M. Singh. Quality of service and scientific
workflows. In Quality of Numerical Software, pages 77–89,
1996.

[20] J. Yu and R. Buyya. A taxonomy of scientific workflow
systems for grid computing. SIGMOD Record, 34(3):44–
49, 2005.

[21] L. Zhang, J. Zhang, and H. Cai. Services Computing.
Springer, 1 edition, 2007. ISBN-10:354038281X.

[22] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von von-
Laszewski, I. Raicu, T. Stef-Praun, and M. Wilde. Swift:
Fast, reliable, loosely coupled parallel computation. In IEEE
SWF, pages 199–206, 2007.

342342

