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Abstract

Recently, there has been an increasing need in scientific
workflows to solve the shimming problem, the use of a spe-
cial kind of adaptors, called shims, to link related but in-
compatible workflow tasks. However, existing techniques
produce scientific workflows that are cluttered with many
visible shims, which distract a scientist’s focus on functional
components. Moreover, these techniques do not address a
new type of shimming problem that occurs due to the incom-
patibility between the ports of a task and the inputs/outputs
of its internal task component. To address these issues,
1) we propose a task template model which encapsulates
the composition and mapping of shims and functional task
component within a task interface; 2) we design an XML-
based task specification language, called TSL, to realize the
proposed task template model; 3) we propose a service-
oriented architecture for task management to enable the dis-
tributed execution of shims and functional components; and
4) we implement the proposed model, language and archi-
tecture and present a case study to validate them. Our tech-
nique uniquely addresses both types of shimming problems.
To our best knowledge, this is the first shimming technique
that makes shims invisible at the workflow level, resulting in
scientific workflows that are more elegant and readable.

1 Introduction

Scientific workflows have recently emerged as a new
paradigm for scientists to formalize and structure complex
and distributed scientific processes to enable and accelerate
scientific discoveries [4, 3]. During workflow design, third-
party autonomous services and applications are frequently
used. Very often, these services and applications are syntac-
tically mismatching or semantically incompatible, necessi-
tating the use of a special kind of workflow components,
called shims, to mediate them. A shim takes the output data
of an upstream workflow task, performs some transforma-
tion, and then feeds the data to the input of a downstream
task. The shimming problem has been widely recognized as

an important problem in the community [1, 10], leading to
much efforts in the development of shims [6], shim-aware
workflow composition [1] and the suggestion of a new dis-
cipline called shimology [10].
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Figure 1. (a) The TYPE-I shimming problem; (b) The
TYPE-II shimming problem. (#: mismatch)

We refer to the above shimming problem as TYPE-I
shimming problem, which occurs at the workflow level due
to the incompatibility of output ports of an upstream task
with the input ports of a downstream task. For example, in
Figure 1.(a), when the output port OP5 of upstream task
T is incompatible with the input port 1 P35 of downstream
task 75, a shim is needed to mediate them. While still not
recognized by the community, we identify a second type
of shimming problem, called TYPE-II shimming problem
that occurs at the fask level when tasks are created from
third-party heterogeneous services and applications (called
task components) and there is incompatibility between task
ports and inputs/outputs of task components. For example,
in Figure 1.(b), although T1.OP; (i = 1,2,3) and T5.IP;
(j = 2,3,1) are compatible, inside T», input port I P is
incompatible with input /5 of task component C' and output
O3 of C is incompatible with output port O P3 of task 75.

Existing shimming techniques have two serious limi-
tations. First, they produce scientific workflows that are
cluttered with many visible shims. For example, a recent
study of the 560 scientific workflows available from my-
Experiment (www.myexperiment.org) shows that over 30%
of workflow tasks are shims. Ideally, these shims should



be hidden from scientists so that they can better focus on
functional components of workflows. Second, these tech-
niques do not address TYPE-II shimming problem and thus
require a user to write custom wrapper shim code around a
task component according to the task programming model
of a system. Moreover, these hard-coded implicit shims are
irreusable across other tasks. Addressing TYPE-II shim-
ming problem is more challenging due to the heterogeneity
of task components and the needed flexible mapping be-
tween task ports and inputs/outputs of task components (see
Figure 1.(b) for illustration).

To address these issues, 1) we propose a task template
model which encapsulates the composition and mapping of
shims and functional task components within a task inter-
face, 2) we design an XML-based task specification lan-
guage, called TSL, to realize the proposed task template
model; 3) we propose a service-oriented architecture to en-
able the distributed execution of shims and functional com-
ponents; and 4) we implement the proposed model, lan-
guage and architecture and present a case study to validate
them. Our technique uniquely addresses both types of shim-
ming problems. To our best knowledge, this is the first
shimming technique that makes shims invisible at the work-
flow level, resulting in scientific workflows that are more
elegant and readable. We summarize the advantages of our
approach in Section 3.3.

2 Task Template Model

Tasks are the basic building blocks of a scientific work-
flow. A task model provides the modeling primitives to
model design-time and run-time behaviors of workflow
tasks. As shown in Figure 2, the design-time behavior of
a task is modeled in a task template model and specified in
a task specification language (TSL) as a task template spec-
ification (TTS), which defines the interface of a task and
its implementation details. A set of task templates in a sys-
tem constitute a task library, from which one can instantiate
task instances for the creation of a scientific workflow. Dur-
ing run-time, the execution status including run-time state
and behavior of each task instance is maintained by a rask
run, which is modeled according to a fask run model and
described in a task run description language as a task run
descriptor.

In this section, we propose a task template model and
its task specification language, TSL, for the specification
of dataflow-based task templates, enabling the abstraction
of various heterogeneous and distributed services and ap-
plications into uniform workflow tasks. Our proposed task
template model is illustrated in Figure 3.(a), consisting of
the following three layers:

o The logical layer contains the task interface that mod-
els the input ports and output ports of a task template.
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Figure 2. Main concepts and their relationships in a task
model.

In a scientific workflow, tasks are connected to one
another via these ports through data channels. Dur-
ing workflow execution, tasks communicate with each
other by passing data through data channels. The data
type of each port is also defined as part of the task in-
terface.

o The physical layer contains one or more task compo-
nents that model the services or/and applications that
are used to implement the task. The heterogeneous
characteristics of a task component is modeled in this
layer, including task type, inputs, outputs, location,
invocation mechanism, authentication and protocol if
needed.

o The mapping layer essentially consists of a list of map-
ping instructions that perform the mapping between
the input/output ports of the task interface and the in-
puts/outputs of the task component. For each mapping,
a shim is incorporated only if the type of input/output
port and input/output are incompatible. All shims be-
tween input ports and inputs are formed an inputports-
to-inputs shim set; while all shims between outputs and
output ports are formed an outputs-to-outputports shim
set.

The separation of the logical layer from the physical
layer not only hides the implementation details of a task
from its interface, thus providing a uniform interface of a
task to the workflow engine, but also brings the opportu-
nity to integrate various heterogeneous and distributed ser-
vices and applications into a scientific workflow in a uni-
form way. However, the integration of heterogeneous ser-
vices and applications into scientific workflows is challeng-
ing since these services/applications are often written in var-
ious programming languages, invoked via different invoca-
tion mechanisms and run in disparate computing environ-
ments. Currently, our proposed task template model focuses
on the modeling of the following aspects of the heterogene-
ity of a task component:
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Figure 3. (a) An extensible task template model; (b) - (c) static mappings between input/output ports of a task interface and

inputs/outputs of the task components W.S and A.

Heterogeneous inputs of a task component. A task
component can take inputs from command line argu-
ments (user-specified or constant), environment vari-
ables, input files, communication messages (e.g.,
SOAP messages for Web services), and the system
standard input, etc.

Heterogeneous outputs of a task component. A task
component can produce outputs as environment vari-
ables, files, communication messages, the system stan-
dard output, the exit code, and the standard error, etc.

Heterogeneous invocation mechanisms. Based on dif-
ferent computing environments, the types and loca-
tions of executables, various local and remote invoca-
tion mechanisms are modeled.

To hide the heterogeneous characteristics of a task com-
ponent from the task interface, all the above heterogeneous
aspects of a task component are modeled in the physical
layer, while the mapping layer models the following three
kinds of mappings between the input/output ports of the
task interface and the heterogeneous inputs/outputs of a task
component:

e The inputports-to-inputs mapping (M1) specifies how
the input data taken from an input port I P; of a task
is mapped to an input I; of the task component C. If
1 P; is not mapped, then any data from I P; will not be
used by C. For each shim S in an inputports-to-inputs
shim set, M1 contains the mapping between I P; and
the input of S and the mapping between output of .S
and I;.

The outputs-to-outputports mapping (M2) specifies
how the output data produced from an output O; of a
task component is mapped back to an output port OP;
of the task. Similarly, if an output of a task component
is not mapped, then such output data is discarded. For
each shim S in an outputs-to-outputports shim set, M2
contains the mapping between O; and the input of S
and the mapping between output of S and OP;.

The constant mapping (M3) specifies a constant that
will be assigned to an input of the task component be-
fore the execution of the task component. A constant

mapping can also be used to assign a constant value to
an output port of a task when the execution of the task
component completes. Such flexibility is important to
improve the configurability of a task template.

Figure 3.(b) - (c) illustrate two cases of the application of
our proposed task template model: Web services and Win-
dows applications. For simplicity, shims are not shown in
these mappings. For M1, in a Web service operation WS,
as shown in Figure 3.(b), the input port I P; is mapped to
I, one part of the request message of W.S; the input port
I P, is mapped to I, a second part of the request message.
For M3, a constant 10.5 is assigned to I3, a third part of the
request message. For M2, a part of the response message
O is mapped to the output port OP1; Oo, a second part of
the response message, is mapped to the output port O Ps;
and Os, a third part of the response message is not mapped,
indicating that its value is discarded and never used after-
wards. For Windows/Unix applications, both mappings are
more sophisticated due to the rich modes of inputs and out-
puts. As illustrated in Figure 3.(c), for M1, the input port
IP; is mapped to environment variable I, requiring that
this environment variable be assigned the value from IP;
before the execution of a Windows/Unix Application A, and
such value will be taken as A’s input; the input port I Py is
mapped to file I5, indicating that a file /5 needs to be cre-
ated with the content from I Py before the execution of A.
For M3, a constant string of “-f” is assigned to I3, indicating
that the invocation of A is achieved via a constant command
line argument of “-f”’. For M2, environment variable O is
mapped to output port O P, thus, after the execution of A,
O, is produced as an environment variable and its value will
be assigned to output port O P1; the exit code O5 is mapped
to output port O P, therefore its value will be assigned to
O Ps, after the execution of A; the execution of A will pro-
duce file O3; however, since O3 is not mapped, this file is
discarded and will not be used afterwards. An optimization
algorithm can delete such files to reclaim storage resources.

3 Shimming in TSL

In this section, we first propose an approach to the
TYPE-II shimming problem, and then provide an algorithm



to reduce the TYPE-I shimming problem to the TYPE-II
shimming problem, and finally summarize the advantages
of our shimming approach.

<tsl:taskTemplate versi " xmins:tsl=" ">

<taskInterface id ="

<taskName>Mesh Hole Fill</taskName>
<taskDescription>Fill holes in the iso-surface. </taskDescription>
<inputPorts number="3">
<portid =" " default =" ">
<portType>File(TET) </portType>
<portDescription>An obj mesh format file of iso-surface.</portDescription>
<portDefaultValue>...</portDefaultValue>

<lport>

<portid =*IPao" default = *Yes"o.. </ports
<finputPorts>
<outputPorts number="2">

<portid =" vs

<portType>File(OBJ)</portType>
<portDescription>An obj mesh format file with holes covered.</portDescription>
</port>
<portid =" ">... </port>
<loutputPorts>
| <ltaskinterface> |

|
|
|
|
|
|
|
|
| <portid ="1P85" default = "Yes">...</port>
|
|
|
|
|
|
|
|

<taskComponent id =" " default =" "role=" ">

<taskType>Windows Application </taskType>

<executable>file://localhost/OBJ_FILL.exe </executable>

<taskDescription> converting an OBJ Input file to an OBJ output file. </taskDescription>
<AppName>OBJ_FILL </AppName>

<inputs>

<inputid = "1123" mode="FILE" fileName=" " type=" “f>
<inputid =" " mode=" " envName=" " type=" ">
<inputid =" " mode=" " argName=" " type=" ">
<linputs>
<outputid =" " mode=" " fileName=" " type=" ">
<outputid =" " mode=" " name=" " type=" ">
</outputs>

<taskInvocation>
<operatingSystem>Windows</operatingSystem>
<invocationMode> Local</invocationMode>
<interactionMode> No</interactionMode>
<invocationAuthentication>...</invocationAuthentication>
</taskInvocation>
</taskComponent>

l
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
| <outputs> |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

<taskComponent id =" " default = "No" role=" ">

<taskType>Windows Application </taskType>

<taskDescription> converting a TET Input file into an OBJ Output file. </taskDescription>
<executable>file://localhost/TET_FILL.exe </executable>

<AppName>TET_FILL </AppName>

<inputs>

<inputid ="117" mode=" " fileName=" " type=" ">
</inputs>

<outputid =" " mode=" " fileName=" " type=" ">
</outputs>

<taskinvocation>
<operatingSystem>Windows</operatingSystem>
<invocationMode> Local</invocationMode>
<interactionMode> No</interactionMode>
<invocationAuthentication>...</invocationAuthentication>

]
|
|
|
|
|
|
' <outputs>
|
|
|
|
|
|
|
| </taskInvocation>

<mapping id =" ">
<inputmapping from="

" to=" " shimming =" ">
<shims id =" ">
<shimmingfrom="
<shimmingfrom="
</shims>

]
|
|
|
|
s |
! |
! |
: <finputmapping> |

|
|

|
|

|
|

|
|

|
|

.

<inputmapping from=" " to=" " shimming ="No"/>
<inputmapping from="1°89" to="1126" shimming = "No"/>
<assign from="-" to="
<outputmapping from=" ">

s

<outputmapping from="
</mapping>

</mappings>
<taskInstances>

! <taskComponent id =" "> |

! <ftaskinstance> |

<taskComponent id =" ">
<ltaskInstance>
<ltaskInstances>
<ltsl:taskTemplate>

Figure 4. An example of a task template specification.

3.1 Addressing the TYPE-II shimming
problem

According to the above task template model, an XML-
based task template specification language, called T'SL, is
proposed to model heterogeneous and distributed services

and applications, including shims. In TSL, both shims and
functional task components are uniformly modeled as task
components with the shim role and the functional role, re-
spectively. A task component can be registered with a sys-
tem with one role or both roles.

Due to space limit, we will not present the full syntax
and semantics of TSL but illustrate it with an example. Fig-
ure 4 presents an example of task template specification
(TTS) for a task template written in TSL. The logical layer,
the physical layer, and the mapping layer are realized by
the taskInterface element, the taskComponents
element and the mappings element, respectively. At the
logical layer, the taskInterface element contains sub-
elements inputPorts and outputPorts to define the
input and output ports of the task template.

At the physical layer, the taskComponents element
contains a set of taskComponent elements, modeling
either functional task components (specified by role =
"functional") or shim task components (specified by
role = "shims"). Each functional taskComponent
element specifies one possible implementation of the task
interface of the task template. Similar to functional
task components, shims are heterogeneous, distributed and
system-independent. For each task component (shim or
functional), we model its input/output information, invo-
cation details, such as operating system, invocation mode
(e.g., local or remote), interaction mode (interactive or
non-interactive), and authentication information. Shims
are introduced into taskComponents only if there is an
inputports-to-inputs shim set or outputs-to-outputports shim
set as a result of the TYPE-II shimming problem.

At the mapping layer, the mappings element con-
tains the instructions for M1 (by the inputmapping el-
ement), M2 (by the outputmapping element) and M3
(by the assign element). If there is no shim for an in-
putmapping/outputmapping, the shim attribute inside the
inputmapping/outputmapping is set to “No”’; oth-
erwise (shim = “Yes”), each shimmings element is en-
coded inside an inputmapping or outputmapping
element. A shimmings element is uniquely identified by a
shim’s taskComponent id. The shimming elements
are encoded inside the shimmings element to provide the
mappings among input/output ports, inputs/outputs of task
components and input/outputs of shims.

The taskInstances element contains all task in-
stances that are instantiated from the same task template
and hence share the same task interface. In our model, we
consider all functional task components in a task template
is functionally equivalent but might have different imple-
mentations and deployments and thus might provide differ-
ent types of inputs and outputs. Each task instance uses
a unique functional component, which uniquely identifies
the necessary mapping and shimming to provide the same
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Figure 5. Reducing the TYPE-I shimming problem to the TYPE-II shimming problem.

task interface. Therefore, in TTS, each task instance en-
coded in the taskInstance element contains one spe-
cific functional task component from alternative task com-
ponents provided by the task template. The taskCompo-
nent’s id inside each taskInstance can be used to re-
trieve the corresponding inputmapping and outputmapping
of this task component.

Essentially, our example of task template specification,
called Mesh Hole Fill (MHF), provides three input ports
and two output ports at the interface. MHF encapsulates
two functional task components: one is called OBJ_FILL
( taskComponent id = TC101), a Windows appli-
cation that can be locally executed without user interac-
tion. Another functional component encapsulated in MHF
is developed as a Web service ( taskComponent id
= TC103). OBJ_FILL has three inputs with the modes
of file, environment variable and constant command-line
argument. Two outputs are defined with the modes of
file and exit code. As the input of OBJ_FILL (input
id = I123) is incompatible with the inputport (port
id=I123) in input mapping, a shim ( taskComponent
id = TC102) is incorporated into the physical layer and
the mapping layer of the TTS.

3.2 Addressing the TYPE-I shimming
problem

We propose a reduction algorithm that reduces the
TYPE-I shimming problem to the TYPE-II shimming prob-
lem and provide a transparent solution to both problems.
As shown in Figure 5.(a), given two task instances 77 and
T5, in which T5 encapsulates functional task component C.
When the type of output port T7.OP; is incompatible with
the type of input port T5.I P;, a TYPE-I shimming prob-
lem occurs. A new task template 7% can be created from
T5’s task template by encapsulating an appropriate shim S
and CY, inside, and then an instance of T3 can be used as
a replacement of 75. The pseudocode of the reduction al-
gorithm, ReduceTYPE-I2TYPE-II, is sketched in Figure 6.
First, the TTS of T} is copied from the TTS of T5. Sec-
ond, if possible, a suitable shim S is retrieved automatically
based on the types of T7.0P; and T5.IP;. Finally, differ-
ent layers of T3 are updated accordingly, in particular, T3’s
input port is mapped to S’s input and S’s output is mapped
to the input of the task component C.

Algorithm: ReduceTYPE-I2TYPE-II

Input: TypeOf(T4 .OP;): a type of a task instance 7% ’s output port O P; and
TypeOf(T>.1 P ;): a type of task instance T%’s input port I P ;

Output: a new task instance T} initialized by a new task template T'

Begin

(1) If TYPE-I problem occurs

(2) Then Retrieve a shim from system or third-party

(3) If 3 ashim S and TypeOf(S.in) = TypeOf(T.O P;) and TypeOf(S.out) =
TypeOf(T>.1P )

(4) Then

(5) Create new task template 7" by copying T%’s TTS

(6) Initialize a instance TQ' based on T

(@) TypeOf(T’) I Pj)=TypeOf(T1.O P;) /*update TTS’s logical layer*/
) Add S into T’s taskComponents /*update TTS’s physical layer*/
) Map T5.1P; to S.in /*update TTS’s mapping layer*/

(10) Map S.out to the input of T’s task component C,

(11) Else

(12) Report to Type Match Error

(13)Else

(14) No shim required to reduce

End Algorithm

Figure 6. Algorithm Reduce TYPE-I2TYPE-II

3.3 Advantages of Our Approach

we identify the following advantages of our shimming
approach:

1) Transparent shimming. This is the first shimming
technique that hides all shimming and mapping details in-
side a task interface and thus produces scientific workflows
in which all shims are invisible. As a result, a scientist can
better focus on the functional part of a scientific workflow
without being distracted by the clutter of shims, which are
usually not science-relevant to the scientist but are techni-
cally needed.

2) Addressing both TYPE-I and TYPE-II shimming prob-
lems. This is the first solution that addresses the TYPE-II
shimming problem. Moreover, our approach enables the re-
duction of the TYPE-I shimming problem to the TYPE-II
shimming problem, providing a consistent solution to both
types of shimming problems.

3) System and language independent. Since our shim-
ming technique is based on an XML-based TSL language,
which models all the details of abstraction, shimming and
mapping. TSL can be implemented by different systems
using different languages and thus provides a system and
language independent solution.

4) Reusable and extensible. In our approach, similar to
functional task components, shims can be arbitrary local
and remote heterogeneous services and application written
in various languages and run in different platforms. As a
result, shims are reusable across tasks, workflows and sys-
tems. Moreover, TSL is easily extensible for more sophisti-
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shims and functional task components.

cated shimming techniques, such as the composition of ba-
sic shims to construct composite shims.

4 Service-Oriented Architecture for Task
Management

We have previously designed a service-oriented archi-
tecture for VIEW, a visual scientific workflow management
system [8]. As shown in Figure 7.(a), the VIEW system
consists of six loosely-coupled subsystems: a Workbench
to visually design workflows, a Workflow Engine to sched-
ule workflows, a Task Manager to dispatch and execute
workflow tasks, a Provenance Manager to store and query
provenance, a Data Product Manager to store, query and
manage data products, and a Workflow Monitor to moni-
tor workflow and task execution status. Here, we propose
a service-oriented architecture for the Task Manager to pro-
vide run-time support for our proposed task template model,
enabling the parallel execution of tasks (shims and func-
tional task components) in a heterogeneous and distributed
environment.

As shown in Figure 7.(b), the architecture of the Task
Manager consists of a Task Master and a set of Task Ex-
ecutors. The Task Master manages all task templates, task
instances, and task runs, while Task Executors are respon-
sible for the invocation and execution of various heteroge-
neous task components. Four types of Task Executors are
proposed but the extensibility are provided for future types
of Task Executors:

1) A TYPE-A executor provides an execution environ-
ment mostly for user-interaction and visualization intensive
tasks, or the tasks that can be executed in the host of the
TYPE-A executor. A TYPE-A executor is typically de-
ployed at a client-side machine such that a user can view
and interact with the graphical user interfaces of tasks as-
signed to the executor. Each TYPE-A executor is required
to communicate remotely with the Task Master and locally
with tasks. To avoid the clutter of display, tasks are exe-
cuted sequentially in an execution environment provided by
a TYPE-A executor.

2) A TYPE-B executor provides an execution environ-
ment mostly for tasks with tasks components being Web
services, whose interfaces are described by WSDL. A

TYPE-B executor can be deployed either at the host of the
Task Master or at any other standalone host. Each TYPE-
B executor is required to communicate remotely with tasks,
which can be executed in parallel.

3) A TYPE-C executor provides an execution environ-
ment for tasks that are registered and specified to execute
on remote systems, including the underlying high-end com-
puting environment, such as Grids and Clusters. Typically,
those tasks require long-duration back-end computations
without user interactions. This type of executors can be de-
ployed either at the host of the Task Master or at any other
standalone host. Each TYPE-C executor is required to com-
municate remotely with tasks, which can be executed in par-
allel.

4) A TYPE-D executor provides an execution environ-
ment for built-in tasks and those that are registered and
specified to execute at the host where the Task Master is
deployed. Those built-in tasks can be hard-coded into the
subsystem and installed with the Task Master. Each TYPE-
D executor communicates locally with both the Task Master
and tasks, and tasks can be executed in parallel.

Different types of Task Executors implement different
internal functions to accommodate tasks using program-
ming languages and invocation mechanisms, but all of them
provide uniform interfaces to the Task Master on one hand
and uniform interfaces to services and applications on the
other hand. The architecture of Task Executors are extensi-
ble in nature: to support new types of task components in
the future, it is only required for a particular Task Executor
to add new functions to incorporate their invocation meth-
ods without affecting other Task Executors and the Task
Master.

S Implementation and a Case Study

We implemented our proposed models and architecture
in VIEW 2.1 system. The Task Master and Task Execu-
tors are developed using Microsoft Visual Studio 2005 and
Microsoft .NET Framework and implemented as Web Ser-
vices. The communications among the Task Master, Task
Executors and other VIEW service components are based on
synchronous/asynchronous SOAP messages via the HTTP
protocol.
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Figure 8. A scientific workflow composed in the VIEW 2.1 system with shims to the TYPE-I and TYPE-II problem.

Figure 8 presents a typical scientific workflow designed
in VIEW 2.1 for surface extraction from volume data, a re-
quired preprocessing step for surface analysis. The work-
flow is composed of three task instances: the first is the
Iso-Surfacer task instance which uses the marching cubes
algorithm to extract the surface from volume data. The sec-
ond task instance, TET_FILL, analyzes the extracted surface
to fill holes generated in an image file. The resulting surface
is rendered in a 3D-interactive display using VTK_Display
task instance as shown in Figure 8.(c). The data types of in-
put/output ports for each task instance are listed as follows:
the Iso-surfacer task instance reads a volume file format-
ted as VOL from its inputport, and output a file formatted
as OBJ; the inputport and outputport of TET_FILL task in-
stance are typed as File(OBJ); The VTK Display task in-
stance read a VTK file and visualize it on a display window.

The TET_FILL task instance is initialized by the Mesh
Fill Hole task template which encapsulates two task compo-
nents: the TET_FILL task component is a third-party Win-
dows application using C++, invoked by a TYPE-D Execu-
tor. Another task component is called OBJ_FILL, imple-
mented by a Web service that receives and outputs a datas-
tream encoded in SOAP messages. This task component is
invoked by a TYPE-B Executor. The Mesh Fill Hole task
template’s TSL can be viewed by Task Template Browser
in Figure 8.(c) and stored in the VIEW Task Master.

Figure 8.(c) illustrates the Type-I shim that occurs be-
tween TET_FILL and VTK_Display task instances. The
input port of VTK Display is typed as File(VTK), incom-
patible with the type of TET_FILL’s output defined as
File(OB)J), then a Type-I shimming problem is detected au-
tomatically by the system (see the blue Type-I shimming de-
tection icon in Figure 8.(c) ). By clicking the icon, the sys-
tem allows scientists to either select system-provided shims
or register any third party shims if there is no existing shim
available. In addition, the system allows scientists to auto-
matically hide shims inside a task instance by applying our
proposed ReducingType-12Type-II algorithm.

The Type-II shim problem in this workflow occurs

when mapping from the TET_FILL task instance’s input-
port to an input of its task component. The type of the
input port is defined as File(OBJ), while the input re-
quires a tetrahedral mesh file typed as File(TET). The
incompatibility is automatically detected by system with
the red Type-II shimming detection icon in Figure 8.(b).
After clicking the icon, a system-provided shim called
OBJ_TET_CONVERTER is automatically applied to the in-
put mapping. Figure 8.(a) shows the shimming between
the input port (ID:87,Type:File(OBJ)) and the shim’s in-
put (ID:17,Type:File(OBJ)), and the shimming between the
shim’s output (ID:13,Type:File(TET)) and the task compo-
nent input (ID:123,Type: File(TET)). The implementation
details of the OBJ_.TET_-CONVERTER shim is encoded in
the Mesh Fill Hole task template’s TTS, which is imple-
mented as a Windows application using C++ and invoked
remotely by a TYPE-A Executor.

6 Related Work

The term “shims” and the shimming problem were first
introduced in [6]. In an open world such as the Web,
the shimming problem is unavoidable when third-party au-
tonomous and heterogeneous services and applications are
used to compose scientific workflows, but the output of one
task is incompatible with the input of another task. Incom-
patibility comes in two forms: 1) Although the output of
a task is syntactically compatible with the input of another
task, they are still not compatible semantically. For exam-
ple, both tasks might use xsd:string to encode under-
lying different complex data types. 2) Although the output
of a task is syntactically incompatible with the input of an-
other task, they could still be semantically equivalent. For
example, DNA sequences might be represented in differ-
ent formats and data types, which are semantically equiv-
alent. In both cases, shims are proposed as the treatment
of the shimming problem and are defined as the “software
that transforms between closely related (either syntactically
or semantically) in order to join outputs and inputs of two



components” in [6].

Several shimming techniques have been proposed to ad-
dress the shimming problem. Szomszor et al. [12] pro-
posed an architecture to support automatic translation be-
tween two semantically equivalent but syntactically differ-
ent XML documents. This technique does not address the
first form of incompatibility and the translation of other data
types. Bowers and Ludischer [10] proposed an ontology-
based approach to the shimming problem by associating
each port of a task with an XML-based structural type and
an ontology-based semantic type, respectively. An output
port of an upstream task can be directly connected to an in-
put port of a downstream task if and only if these two ports
are both semantically and syntactically compatible (called
semantically valid and structurally valid in their terms). If
two ports are semantically compatible but syntactically in-
compatible, then an XML shim is created whenever pos-
sible to mediate the two ports. Similarly, the solution is
limited to shims that perform data transformation on XML
data. Ambite and Kapoor [1] proposed a planning approach
to automatically construct scientific workflows that process
relational data. Shims can be automatically inserted into the
workflow when necessary. However, only shims that pro-
cess relational data are supported within this framework.
Hull et al. [5] proposed that semantic types should be re-
lated to each other by other relationship types, such as has-
Part in addition to the subsumption relationship. In this
way, a richer types of shims can be created, such as extrac-
tor shims. A preliminary classification of shims are avail-
able in [6]. Existing scientific workflow management sys-
tems [9, 11, 2] provide limited support to the TYPE-I shim-
ming problem; shims are visible in these systems. Finally,
our previous version of the VIEW system [8, 7] focused on
the investigation of a reference architecture for SWFMSs,
while this paper focuses on addressing the shimming prob-
lem.

None of the above techniques addresses the TYPE-II
shimming problem, which is the focus of this paper. Our
approach provides a general solution to both TYPE-I and
TYPE-II shimming problems and naturally converts the
TYPE-I shimming problem to the TYPE-II shimming prob-
lem by only XML-based TTS operations. Shims, similar to
functional components, can be executed in heterogeneous
and distributed environments. Once they are registered,
they can be discovered and reusable to other workflows. In
addition, our approach uniquely allows shims to be either
invisible or visible at the workflow level, supporting both
functional and operational perspectives of scientific work-
flows.

7 Conclusions and Future Work

In this paper, we firstly proposed a task template model
which encapsulates the composition and mapping of shims

and functional task component within a task interface. Sec-
ond, we designed an XML-based task specification lan-
guage, called TSL, to realize the proposed task template
model. Third, we proposed a service-oriented architecture
for task management to enable the distributed execution of
shims and functional task components. Finally, we imple-
mented the proposed models, languages and architecture
and presented a case study to validate them. Ongoing work
includes the extension of the TSL to support more types of
shim services, such as P2P services and Grid services, and
the development of various scientific workflow applications
enabled by the presented techniques.
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