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Abstract

It is vital to recover 3D geometry from multi-view RGB im-
ages in many 3D computer vision tasks. The latest methods
infer the geometry represented as a signed distance field by
minimizing the rendering error on the field through volume
rendering. However, it is still challenging to explicitly im-
pose constraints on surfaces for inferring more geometry de-
tails due to the limited ability of sensing surfaces in volume
rendering. To resolve this problem, we introduce a method to
infer signed distance functions (SDFs) with a better sense of
surfaces through volume rendering. Using the gradients and
signed distances, we establish a small surface patch centered
at the estimated intersection along a ray by pulling points
randomly sampled nearby. Hence, we are able to explicitly
impose surface constraints on the sensed surface patch, such
as multi-view photo consistency and supervision from depth
or normal priors, through volume rendering. We evaluate our
method by numerical and visual comparisons on scene bench-
marks. Our superiority over the latest methods justifies our
effectiveness.

Introduction
3D reconstruction from multi-view images is an important
task in 3D computer vision. Classic methods like structure
from motion and multi-view stereo (Schönberger and Frahm
2016; Schönberger et al. 2016) estimate 3D point clouds per
the multi-view photo consistency. With deep learning mod-
els (Yao et al. 2018; Yu et al. 2022), we are able to learn
depth priors from a large scale dataset, which can be further
generalized to infer depth maps from unseen images. Al-
though these methods can estimate a coarse geometry from
depth predictions, it is still a challenge to recover continuous
and complete surfaces with details from multi-view images.

The latest methods (Fu et al. 2022; Yu et al. 2022; Wang
et al. 2022; Guo et al. 2022) infer signed distance functions
(SDFs) from multi-view images through volume rendering,
and then run the marching cubes (Lorensen and Cline 1987)
to reconstruct the surface. To supervise signed distances,
they transform the predicted signed distances into radiance
to render a pixel color by integrating colors along a ray,
which can be optimized by minimizing the difference to the
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ground truth pixel color. Although these methods obtained
smooth and complete reconstructions, severe artifacts may
appear in the empty space, the reconstructed surfaces may
drift away from the GT surface, and few details can be re-
vealed on the surface, due to the unawareness of the surface.
Hence, how to sense the surface and further impose more ef-
fective surface constraints along with the volume rendering
is the key to improve the learning of SDF.

To resolve this problem, we propose to infer an SDF from
multi-view images through volume rendering with a better
sense of surface. Our novelty lies in the way of establish-
ing a surface patch around an estimated ray-surface inter-
section, which enables to explicitly impose more effective
constraints on surface patches, along with the volume ren-
dering. Specifically, using the predicted signed distances and
gradients, we randomly sample queries near an estimated in-
tersection, and pull them onto the zero level set, which pro-
duces a surface patch. With the sensed surface patch, we are
able to explicitly impose surface constraints such as multi-
view photo consistency and supervision from depth or nor-
mal priors, to improve the SDF inference through volume
rendering. We justify the effectiveness of our modules, and
report superiority performance over the latest methods in
terms of numerical and visual comparisons on widely used
benchmarks. Our contributions are listed below.

• We introduce a method for SDF inference that can get
constrained not only through volume rendering but also
by constraints that can be explicitly imposed on surfaces.
It significantly improves the accuracy of inferred SDFs.

• We propose to use predicted signed distances and gradi-
ents to sense a surface patch near the estimated intersec-
tion of a ray and the zero level set in volume rendering.

• We justify the feasibility of our idea and report the state-
of-the-art performance on the widely used benchmarks.

Related Work
Mult-view 3D Reconstruction. 3D shape reconstruc-
tion from multiple images has been extensively stud-
ied (Schönberger and Frahm 2016; Schönberger et al. 2016;
Mildenhall et al. 2020; Vicini, Speierer, and Jakob 2022).
Given multiple RGB images, classic multi-view stereo
(MVS) (Schönberger and Frahm 2016; Schönberger et al.
2016) employ multi-view photo consistency to estimate



depth maps. However, these methods are limited by large
viewpoint variations and complex illumination. Alterna-
tively, with multiple silhouette images, (Laurentini 1994)
proposed to reconstruct 3D shapes as voxel grids using space
carving. These methods lack the ability to reveal concave
structures and work with high-resolution voxel grids.

Recent methods (Yao et al. 2018) employ neural networks
to learn prior knowledge to predict depth maps. During
training, they learn priors using depth supervision or multi-
view consistency in an unsupervised way, and then gener-
alize the learned priors to predict depth images for unseen
cases through a forward pass. Recent works (Huang et al.
2024; Chen, Li, and Lee 2023; Yu, Sattler, and Geiger 2024;
Guédon and Lepetit 2023; Zhang, Liu, and Han 2024) lever-
age 3D Gaussian Splatting for surface reconstruction. How-
ever, they are inferior to neural implicit methods in quality
due to the explicit and disconnected 3D Gaussians.

These methods reconstructed 3D shapes as point clouds or
voxel grids, both of which are discrete 3D representations.
While neural implicit representations represent continuous
surfaces as the zero level set for 3D reconstruction.
Neural Implicit Representations. Neural implicit repre-
sentations have become a popular 3D representation, us-
ing coordinate-based neural networks to map coordinates to
signed distances or occupancy labels. These can be inferred
from 3D supervision (Takikawa et al. 2021; Liu et al. 2021;
Tang et al. 2021), point clouds (Zhou et al. 2022; Chen, Liu,
and Han 2022, 2023b; Ma et al. 2023; Chen, Liu, and Han
2023a, 2024), or multi-view images (Mildenhall et al. 2020;
Guo et al. 2022; Zhang et al. 2024; Hu and Han 2023; Jiang,
Hua, and Han 2023). Methods using 3D supervision or point
clouds typically skip positional encodings, while multi-view
approaches use them to capture high-frequency details.

Differentiable rendering enables tuning implicit rep-
resentations by minimizing errors between the rendered
and ground truth images. Surface rendering methods like
DVR (Niemeyer et al. 2020) and IDR (Yariv et al.
2020) predict radiance on surfaces and use view direc-
tion for high-frequency detail but require background fil-
tering. Volume rendering methods like NeRF (Milden-
hall et al. 2020) and its variations (Müller et al. 2022;
Azinović et al. 2022) model geometry and color without
masks. UNISURF (Oechsle, Peng, and Geiger 2021) and
NeuS (Wang et al. 2021) refine occupancy and signed dis-
tance fields using revised rendering equations, with im-
provements via depth (Yu et al. 2022), normals (Guo et al.
2022), and multi-view consistency (Fu et al. 2022).

Our approach differs previous methods by sensing surface
patches along rays and imposing explicit surface constraints
to recover finer geometric details.

Method
Overview. We aim to recover the geometry of a scene by
learning an SDF f from K posed images CGT

k . We can use
additional supervision such as depth DGT

k and normal NGT
k

maps that are either captured by real sensors or estimated
by monocular networks, where k ∈ [1,K]. For randomly
sampled 3D queries q, f predicts its signed distance f(q)

at q. We parameterize the SDF f using a coordinate-based
MLP with parameters θ.

As illustrated in Fig. 1, we aim to infer fθ along
with a color function lϕ which is parameterized by an-
other MLP with parameters ϕ through volume rendering.
Our optimization is to minimize a loss L according to
{CGT

k , DGT
k , NGT

k },

min
θ,ϕ

L(fθ, lϕ, {CGT
k }, {DGT

k }, {NGT
k }). (1)

Geometry prediction. We use an MLP to approximate the
geometry function fθ. For a query q, fθ use the coordinate
and the position encoding (Mildenhall et al. 2020) e(q) to
capture the geometry with high frequency. The SDF fθ pre-
dicts the signed distance d = fθ(q, e(q)) at q.
Color Prediction. We use another MLP to approximate the
color function lϕ. To model the view-dependent color c at q,
we also leverage the view direction v, the gradient g in the
signed distance field, and the feature z of geometry around
q. Hence, we predict color by c = lϕ(q, e(q), v, g, z). We
obtain the gradient g from the geometry function fθ as g =
∇fθ, which can be produced by automatic differentiation
from the geometry network. And we use the output of one
FC layer from the geometry network as the feature z.
Volume Rendering. We use volume rendering to render the
radiance field represented by the SDF fθ and the color func-
tion lϕ into images. We can learn the parameters θ and ϕ by
minimizing the rendering error to the ground truth images.

We start from emitting a ray r from the camera center o
through a randomly sampled pixel on an image. To render a
color along the ray r pointing to a view direction v, we sam-
ple points {qi|i ∈ [1, I]} along r by qi = o+ ti ∗ v. We use
the geometry network di = fθ(qi, e(qi)) and color network
ci = lϕ(qi, e(qi), v, gi, zi) to predict the signed distance and
color at each sampled point qi. We follow VolSDF (Yariv
et al. 2021) to transform the signed distance di to density
values σi for volume rendering.

Following NeRF (Mildenhall et al. 2020), the color Cr for
the ray r is integrated by,

αi = 1− exp(−δiσi), Ti =

i−1∏
j=1

(1−αj), Cr =

I∑
i=1

Tiαici,

(2)
where αi is the alpha value at point qi, δi is the inter-
val between neighboring points, and Ti is the transmittance
through qi. Similarly, we can render depth Dr and normal
map Nr using the following equations,

Dr =

M∑
i=1

Tiαiti, Nr =

M∑
i=1

Tiαini. (3)

Surface Sense. We use the geometry function fθ to sense
the surface. NeRF or its variations (Yariv et al. 2021; Wang,
Skorokhodov, and Wonka 2022; Wang et al. 2022) apply the
secant method (Mescheder et al. 2019) to estimate the in-
tersection of a ray and the surface per the signed distances
or occupancy labels predicted at points sampled along the
ray, as shown in Fig. 2 (a). Although it is a way of sensing
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Figure 1: Overview of our method. We infer SDF fθ from multi-view images including RGB images, depth and normal maps
that were either captured by sensors or estimated by monocular networks. Using the predicted signed distances and gradients
∇fθ, we are enabled to sense a surface patch s by pulling randomly sampled queries q onto the zero level set as shown in Fig. 2
(d). With s, we can infer fθ using both supervision through volume rendering and constraints that can be explicitly imposed on
the sensed surface s.

(a) Intersection (b) Depth Patch (c) Pulled Points

Query

Zero level set

∆fθd

(d) Pulling with Gradient

Figure 2: Patch Difference. Current methods mainly impose
constraints on single points on surface in (a), rather than a
patch, since it is very hard to obtain a 3D surface patch dur-
ing volume rendering. Different from obtaining a patch from
depth in (b), our method projects randomly sampled points
on the zero level set to obtain the surface patch which is
more representative in (c).

a surface, on the zero level set, only one single point gets
supervised during the differentiable rendering procedure.

We introduce a novel way of sensing a surface patch by
pulling randomly sampled queries. The sensed surface is
represented by pulled queries as shown in Fig. 2 (c), which
is a denser and more continuous surface representation than
a single point intersection in Fig. 2 (a). It is much more
geometry-aware than the single point intersection and also
points back-projected from a depth patch in Fig. 2 (b).

Using the character of SDF, we can leverage the gradient
and the signed distance to move any points onto the zero
level set (Ma et al. 2021; Chou, Chugunov, and Heide 2022;
Ma et al. 2022a,b).

More specifically, for a 3D point q = [x, y, z], it is lo-
cated on the d-level set in a signed distance field represented
by fθ, where d = fθ(q, e(q)). The gradient at q in the field
∇fθ(q, e(q)) = [∂fθ/∂x, ∂fθ/∂y, ∂fθ/∂z] points to the
level sets with larger signed distances than d. As demon-
strated in Fig. 2 (d), we can pull q onto its zero level set by
moving it along its gradient g with a stride of |d|,

q′ = q − d×∇fθ(q, e(q))/||∇fθ(q, e(q))||2, (4)

where q′ is the projection of point q on the zero level set.
Our idea of sensing a surface patch is to use the pro-

jections of randomly sampled points to form a point sur-
face. Specifically, we sample a set of points {pj |j ∈ [1, J ]}
around a 3D anchor q using a Gaussian distribution. The
Gaussian distribution has a variance τ2 to cover the area
centered at q between neighboring rays. τ2 determines the
size of the sensed patch, we report ablation study on τ2 in
experiments. The anchor q could be either the intersection
estimated along a ray or a point back-projected from posed
depth maps. Using Eq. 4, we pull each pj to its projection p′j
on the zero level set which represents the surface. We denote
a surface patch s that we sense as,

s = {p′j |j ∈ [1, J ]}. (5)

Optimization
Constraints through Volume Rendering
We use the following losses to provide constraints through
the volume rendering. We follow MonoSDF (Yu et al. 2022)
to use losses to supervise rendered RGB, depth and normal
maps. The GT depth maps and normal maps are either cap-
tured by sensors or estimated by monocular networks.
RGB Rendering Loss. We use the RGB images CGT

k to
supervise the images rendered from the field using Eq. 6,

LRGB =
∑

r∈B
||Ck(r)− CGT

k (r)||1, (6)

where CGT
K (r) is the ground truth pixel color on the RGB

image and B denotes a set of sampled rays in a mini-batch.
Depth Rendering Loss. With GT depth maps DGT

k , we can
supervise the depth maps rendered from Eq. 3 below,



LDR =
∑

r∈B
||Dk(r)−DGT

k (r)||1, (7)

where DGT
k (r) is the depth cue at the ray r in mini-batch B.

Normal Rendering Loss. Given GT normal maps NGT
k , we

can also supervise the normal maps rendered from Eq. 3,

LNor =
∑

r∈B
||Nk(r)−NGT

k (r)||1+

||1−Nk(r)
TNGT

k (r)||1,
(8)

where NGT
k (r) is the normal cue at the ray r in mini-batch.

Eikonal Loss. To learn fθ as a SDF, we constrain the gradi-
ents ∇fθ in the field using the Eikonal term,

LEik =
∑

q∈B
(||∇fθ(q, e(q))||2 − 1)2, (9)

where q ∈ B denotes all points sampled on rays in the mini-
batch B.

Surface Constraints
With a surface patch s that we sense using Eq. 5, we are able
to explicitly impose surface constraints on s.
Depth Consistency. With GT depth maps, we can regress
depth of points p′j on the surface patch s by projecting them
to the current view plane. We compute the consistency of the
calculated depth and the regressed depth,

LDC =
∑

p′
j∈s

wj × (DGT
k (p′j)− Zk(p

′
j))

2, (10)

where DGT
k (p′j) is the depth interpolated at the projection of

p′j on the depth map DGT
k using bilinear interpolation, and

Zk(p
′
j) is the projected depth from p′j to the plane of DGT

k
using the pose and the intrinsic matrix of the camera. We
use a mask wj to rule out p′j whose projections are out of
the view range or |DGT

k (p′j)−Zk(p
′
j)| is larger than 15mm

which indicates potential invisibility from the current view.
LDC is different from LDR in Eq. 7. LDC only constrains

zero level set in the field, while LDR constrains all locations
sampled along a ray r, due to the integration in rendering.
Photometric Consistency. With the surface patch s, we
constrain the photo consistency on s across different views.
We use the normalization cross correlation (NCC) of patches
in one reference gray image U ′

k1 = gray(CGT
k1 ) and another

source gray image U ′
k2 = gray(CGT

k2 ),

NCC(U ′
k1(s), U

′
k2(s)) =

Cov(U ′
k1(s), U

′
k2(s))√

V ar(U ′
k1(s))V ar(U ′

k2(s))
,

(11)
where Cov and V ar are the covariance and the variance over
the gray level color interpolated at projections of {p′j}, de-
noted as U ′(s). We regard the view to be rendered as the
reference image U ′

k1 and regard the neighboring eight im-
ages as the source images {U ′

k2}. We consider occlusion,
and only use the top three largest NCC scores to compute
the following photometric consistency loss below,

Figure 3: Error map comparison on ScanNet (bigger error:
red, smaller error: blue) highlights our superiority.

LNCC =

∑3
k2=1 1−NCC(U ′

k1(s), U
′
k2(s))

3
. (12)

Surface Fitting. We improve the smoothness of the surface
patch s using a surface fitting loss. We hope all p′j on s can
locate on the same plane determined by the depth supervi-
sion DGT

k (r) and the normal supervision NGT
k (r) of ray r.

We use αx + βy + γz + µ = 0 to represent the plane, and
solve [α, β, γ, µ] using DGT

k (r) and NGT
k (r). We measure

the fitting error using the equation below,

LFit =
∑

p′
j∈s

wj × ηj × ||αxj +βyj + γzj +µ||2, (13)

where wj is the mask introduced in Eq. 10 and ηj is the
confidence determined by the gradient ∇fθ(p

′
j , e(p

′
j)). We

model the confidence as the consistency between the gradi-
ent ∇fθ(p

′
j , e(p

′
j)) and the normal NGT

k (r) of r using the
cosine distance ηj = cos(∇fθ(p

′
j , e(p

′
j)), N

GT
k (r)), which

pushes p′j more onto the plane if its gradient is well aligned
with the normal NGT

k (r) of r. Note that ∇fθ(p
′
j , e(p

′
j)) in-

volves second order derivative due to the p′j in Eq. 4 which
helps the network to find better solutions (Ben-Shabat,
Koneputugodage, and Gould 2021).

Loss Function
We use all these constraints to infer the geometry and color
in the field below,

L =LRGB + λ1LDR + λ2LNor + λ3LEik

+ λ4LDC + λ5LNCC + λ6LFit,
(14)

where λ1 to λ6 are balance weights which make each term
contribute to the performance equally.

Experiments and Analysis
We report numerical and visual comparisons with the latest
methods on real-world indoor scene to highlight our superi-
ority and justify the effectiveness of module in our method.



Figure 4: (a) Visual comparison on ScanNet released by
NeuralRGBD. We use error maps (bigger error: red, smaller
error: blue) to highlight our superiority over NeuralRGBD.
(b) Visual comparison on Replica. We use error maps (big-
ger error: red, smaller error: blue) to highlight our superior-
ity over MonoSDF.

Acc↓ Comp↓ CD-L1↓ Prec↑ Recall↑ F-score↑
COLMAP 0.047 0.235 0.141 0.711 0.441 0.537
UNISURF 0.554 0.164 0.359 0.212 0.362 0.267

NeuS 0.179 0.208 0.194 0.313 0.275 0.291
VolSDF 0.414 0.120 0.267 0.321 0.394 0.346

Manhattan 0.072 0.068 0.070 0.621 0.586 0.602
NeuRIS 0.050 0.049 0.050 0.717 0.669 0.692

Neuralangelo 0.245 0.272 0.258 0.274 0.311 0.292
MonoSDF 0.035 0.048 0.042 0.799 0.681 0.733

Ours 0.036 0.039 0.037 0.820 0.777 0.797

Table 1: Comparisons on ScanNet released by MonoSDF.

Datasets. We evaluate our method by comparisons with the
latest methods for scene reconstruction from multi-view im-
ages under both synthetic scenes and real scans. The syn-
thetic indoor scenes are Replica (Straub et al. 2019), released
by MonoSDF (Yu et al. 2022), the real scans indoor scenes
are ScanNet (Dai et al. 2017), released by either MonoSDF
or NeualRGBD (Azinović et al. 2022), and real-world large-
scale indoor scenes, Tanks and Temples (Knapitsch et al.
2017), released by MonoSDF.
Baselines. We compare our method with SOTA
neural implicit-based reconstruction methods, in-
cluding COLMAP (Schönberger and Frahm 2016),
UNISURF (Oechsle, Peng, and Geiger 2021), NeuS (Wang
et al. 2021), VolSDF (Yariv et al. 2021), Manhattan-
SDF (Guo et al. 2022), NeuRIS (Wang et al. 2022),
Neuralangelo (Li et al. 2023), and MonoSDF on ScanNet,
using MonoSDF’s experimental setup with monocular
depth and normal cues as supervision. For NeuralRGBD
comparisons, we adopt its setting, using sensor-captured
depth for fair evaluation.
Evaluation Metrics. As for evaluation metrics, we follow
previous methods (Yu et al. 2022; Azinović et al. 2022), and
report accuracy, completeness, Chamfer Distance (CD), the
F-score with a threshold of 5cm, Precision and Recall, as
well as normal consistency (NC).
Details. For each posed view, we sample 1024 rays per train-

Scene 0050 Scene 0002 Scene 0005 Scene 0012 Mean

N
eu

ra
lR

G
B

D Acc[cm]↓ 2.84 3.93 4.13 2.78 3.42
Comp[cm]↓ 10.41 32.72 33.35 3.03 19.88

Chamfer-L1↓ 6.63 18.33 18.74 2.90 11.65
Prec↑ 90.24 73.74 72.68 91.33 82.00

Recall↑ 71.19 34.05 41.30 86.33 58.22
F-score↑ 79.59 46.59 52.67 88.76 66.90

O
U

R
S

Acc[cm]↓ 2.78 3.70 5.51 2.71 3.68
Comp[cm]↓ 3.16 7.10 8.98 2.83 5.52

Chamfer-L1↓ 2.97 5.4 7.25 2.77 4.60
Prec↑ 92.54 86.90 80.66 91.48 87.89

Recall↑ 85.27 73.12 73.83 88.33 80.14
F-score↑ 88.76 79.41 77.09 89.88 83.79

Table 2: Numerical comparison with NeuralRGBD on Scan-
Net subsets used by NeuralRGBD. GT meshes were gener-
ated with TSDF fusion using the same amount of images
and depth maps as did NeuralRGBD on each scene. Under
the same setting as NeuralRGBD, GT depth is sensor cap-
tured depth maps.

(a) MonoSDF (b) Ours

Figure 5: Compactness comparison with MonoSDF (GT
mesh:Gray).

ing batch. Using VolSDF’s error-bounded sampling strat-
egy and architecture, we sample points along rays. To cre-
ate surface patches, we backproject geometry cues (either
predicted monocular or dataset-provided sensor cues) to ob-
tain 3D anchor points q. Around each anchor, we define an
isotropic Gaussian distribution N(q, τ2) and sample J = 9
points, with τ2 controlling patch size. Ablation studies in
Tab. 5 analyze the effect of different τ2 values. Loss weights
are set as λ1 = 0.1, λ2 = 0.05, λ3 = 0.05, λ4 = 0.5,
and λ6 = 0.5 for balanced contributions. To improve coarse
shape reconstruction, we apply inverse weight annealing for
LNCC , setting λ5 = 0 for the first 100 epochs and gradually
increasing it to 0.1.

Experimental Results
ScanNet from MonoSDF. We present numerical com-
parisons with the latest methods in Tab. 1. Following
MonoSDF (Yu et al. 2022), we use monocular cues esti-
mated by the pretrained Omnidata model (Eftekhar et al.
2021). To align the Omnidata depth (range [0, 1]) with the
rendered depth Dr in Eq. 7, we solve scale w and shift
q parameters via least-squares optimization per mini-batch.
These parameters are used to backproject depth and calcu-
late LDC in Eq. 10.

As shown in Tab. 1, our method produces more accurate
and smoother surfaces. Neuralangelo struggles with real-
world indoor scenes like ScanNet, even with parameter tun-
ing and monocular cues, as evident in our visual compar-
isons (Fig. 3) and error maps (supplementary). Addition-
ally, our method enhances the quality of volume-rendered
images, with visual and PSNR comparisons available in the



Test split Train split
Normal C.↑ CD-L1↓ F-score↑ Normal C.↑ CD-L1↓ F-score↑

MonoSDF 92.11 2.94 86.18 93.86 2.63 92.12
Ours 91.68 2.81 89.73 94.29 2.37 94.09

Table 3: Comparisons with MonoSDF on Replica.
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Figure 6: Visual comparison with MonoSDF on Tanks and
Temples.

supplementary material.
ScanNet from NeuralRGBD.NeuralRGBD (Azinović et al.
2022) evaluated on a different subset of ScanNet using
sensor-captured depth maps but lacked normal maps. In this
case, we use only the ground truth depth maps for LDR

in Eq. 7 and LDC in Eq. 10. Tab. 2 demonstrates that our
method outperforms the latest approaches, while Fig. 4 (a)
highlights our more accurate reconstruction, especially on
planar structures.
Replica. We evaluate our method on synthetic Replica
scenes, following the MonoSDF setup and using monocular
cues predicted by the pretrained Omnidata model. The scale
and shift are solved as in Tab. 1. Tab. 3 shows our superiority
over MonoSDF, both with and without Replica pretraining
(”Train split” and ”Test split”). Additionally, we compare
against SOTA dense monocular SLAM methods (DROID-
SLAM (Teed and Deng 2021), NICER-SLAM (Zhu et al.
2023)) and the RGB-D SLAM system NICE-SLAM (Zhu
et al. 2022), retrained under our settings. Tab. 4 demonstrates
that our method significantly outperforms these approaches
across all metrics. Visual comparisons with NeuralRGBD in
Fig. 4 (b) further highlight our more accurate reconstruc-
tions.
Tanks and Temples. We follow the same experimental set-
ting in MonoSDF (Yu et al. 2022), and apply monocular cues
during optimization. Since the GT meshes are not publicly
available, we only compare visual results with MonoSDF.
The visual comparison in Fig. 6 show that our method can

(a) Anchors (b) 0.5τ (c) τ (d) 2τ (e) 3τ2 2 2 2

Figure 7: Comparisons on sizes of patch surfaces.

recover more accurate geometry details.
Analysis. For methods learning implicit representations
from multi-view images, the most challenging problem is to
infer the accurate zero level set of the implicit function. Our
significant improvements over the latest methods mainly
come from the fact that our surface constraints address this
challenge quite well. We visualize a cross section of the re-
constructed scenes and GT meshes in Fig. 5. We can see
that our surface (in yellow) is much closer to the GT mesh
(in grey) than MonoSDF, although both MonoSDF and ours
reconstruct complete and smooth surfaces. Since MonoSDF
can not recover the zero level set accurate, its reconstructed
surface is inflated, not only near this cross section but also
other places in the scene, which leads to the floating surface
over the GT mesh with large errors.

Ablation Studies
Ablation studies on ScanNet released by MonoSDF justify
the effectiveness of modules in our method.
Loss. We first justify the effectiveness of losses in Tab. 6.
We mainly focus on the losses for surface constraints, since
the effectiveness of losses for volume rendering have been
widely justified in previous studies. Compared to the base-
line, each loss for a surface constraint can improve the per-
formance. Fig. 8 shows that each loss may improve different
aspects, for example, the depth consistency makes the sur-
face smoother, the photometric consistency makes the sur-
face more compact, and the surface fitting loss also con-
tributes to the smoothness of the surface.
We also try larger weights or smaller weights on all the
three losses for surface constraints. The results of “10×”
and “0.1×” show that weighting more or less on surface
constraints do not balance well with the constraints through
volume rendering and improve the reconstruction accuracy.
Point Number J in a Surface Patch s. We explore the ef-
fect of point number J on the performance. We try different
densities J = {1, 9, 16, 25} on surface patches by sampling
queries using the same Gaussian distribution. The numer-
ical comparison in Tab. 5 shows that a too small number
of queries may not be able to represent a surface, such as
J = 1, while a too large number of points may not im-
prove the performance further but increase the time com-
plexity. We also compare our patch-level photo consistency
with the pixel-level photo consistency. The results of “Pix-
els” show that patch-level photo consistency achieves better
performance.
Guassian Distribution for Sampling. We also conduct an
experiment to explore the effect of the variance τ2 of the
Guassian distribution on the performance. We initially set τ2
to be the distance between two other pixels in the 3D world
coordinate, and use it as a baseline. We try different vari-
ance candidates including {0.5τ2, τ2, 2τ2, 3τ2} to sample
J = 9 points around each anchor. The comparison in Tab. 5
shows that a small variance may not cover a large enough
area which degenerates the performance of inference while
a large variance covers a too large area where points may be
ruled out by our masks. This may decrease the efficiency and
also degenerate the performance. We visualize sizes of these



room 0 room 1 room 2 office 0 office 1 office 2 office 3 office 4 Mean

RGB-D input

NICE-SLAM

Acc[cm]↓ 3.53 3.60 3.03 5.56 3.35 4.71 3.84 3.35 3.87
Comp[cm]↓ 3.40 3.62 3.27 4.55 4.03 3.94 3.99 4.15 3.87

Recall ↑ 86.05 80.75 87.23 79.34 82.13 80.35 80.55 82.88 82.41
Normal C.↑ 91.92 91.36 90.79 89.30 88.79 88.97 87.18 91.17 89.93

RGB monocular input

DROID-SLAM

Acc[cm]↓ 12.18 8.35 3.26 3.01 2.39 5.66 4.49 4.65 5.50
Comp[cm]↓ 8.96 6.07 16.01 16.19 16.20 15.56 9.73 9.63 12.29

Recall↑ 60.07 76.20 61.62 64.19 60.63 56.78 61.95 67.51 63.62
Normal C.↑ 72.81 74.71 79.21 77.53 78.57 75.79 77.69 76.38 76.59

NICER-SLAM

Acc[cm]↓ 2.53 3.93 3.40 5.49 3.45 4.02 3.34 3.03 3.65
Comp[cm]↓ 3.04 4.10 3.42 6.09 4.42 4.29 4.03 3.87 4.16

Recall ↑ 88.75 76.61 86.10 65.19 77.84 74.51 82.01 83.98 79.37
Normal C.↑ 93.00 91.52 92.38 87.11 86.79 90.19 90.10 90.96 90.27

OURS

Acc[cm]↓ 2.54 1.75 2.41 2.24 1.70 2.78 2.90 2.31 2.33
Comp[cm]↓ 2.08 2.54 2.58 2.89 3.11 2.94 3.11 2.77 2.75

Recall↑ 96.00 91.99 93.00 88.59 90.34 86.99 88.99 91.59 90.93
Normal C.↑ 95.60 94.20 94.36 90.47 92.79 92.40 92.19 94.49 93.31

Table 4: Numerical comparison in each scene on Replica.

Figure 8: Effect of losses. We use MonoSDF as a baseline and apply one loss each time.

J ,τ2 Acc↓ Comp↓ CD-L1↓ Prec↑ Recall↑ F-score↑
1 0.037 0.040 0.039 0.781 0.738 0.760
9 0.036 0.039 0.037 0.820 0.777 0.797

16 0.037 0.039 0.038 0.802 0.754 0.777
25 0.037 0.041 0.039 0.789 0.732 0.759

Pixels 0.037 0.039 0.038 0.801 0.787 0.794

0.5τ2 0.037 0.040 0.039 0.783 0.743 0.763
τ2 0.036 0.039 0.037 0.820 0.777 0.797
2τ2 0.036 0.039 0.037 0.805 0.757 0.781
3τ2 0.037 0.040 0.038 0.793 0.738 0.766

Table 5: Effect of point number J and variance τ2.

patch surfaces in Fig. 7, where all patch surfaces tightly lo-
cate on the reconstructed surfaces.
Mask wj and Weight ηj . We highlight the effect of the
mask wj and the weight ηj by removing one of them each
time. We report the comparison in Tab. 6. The decreased re-
sults “No wj” and “No ηj” show that wj can rule out outliers
during pulling while ηj can make network focus more on the
most important p′j on the patch surface.
The effect of pulling. We conduct an experiment to demon-
strate that the pulling mechanism can boost the performance.
We conduct this experiment without pulling by imposing
depth, photometric consistency and surface fitting directly
on 3D anchor q rather than the sensed surface patch. As
shown in Tab. 6, without pulling, the overall performance

Acc↓ Comp↓ CD-L1↓ Prec↑ Recall↑ F-score↑
Baseline 0.035 0.048 0.042 0.799 0.681 0.733

Only LDC 0.039 0.041 0.040 0.778 0.753 0.766
Only LNCC 0.036 0.039 0.037 0.801 0.744 0.772
Only LFit 0.037 0.039 0.038 0.794 0.777 0.785

10× 0.041 0.043 0.042 0.764 0.753 0.759
0.1× 0.039 0.045 0.042 0.775 0.712 0.743

No wj 0.038 0.039 0.038 0.790 0.760 0.770
No ηj 0.036 0.040 0.038 0.801 0.768 0.784

No pulling 0.037 0.041 0.039 0.772 0.734 0.753
Ours-Full 0.036 0.039 0.037 0.820 0.777 0.797

Table 6: Effect of Losses and pulling.

decreases.

Conclusion

We propose a method to infer SDFs from multi-view images
via volume rendering with surface patch sensing. By using
SDF to define a local patch around the estimated ray-surface
intersection, we directly apply surface constraints. Leverag-
ing gradients and signed distances, we pull sampled points
onto the zero level set, enabling explicit surface constraints
that enhance accuracy and capture finer geometry details.
Numerical and visual comparisons demonstrate our supe-
riority over recent methods, validated across widely used
benchmarks.
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